草业学报 ›› 2020, Vol. 29 ›› Issue (12): 150-160.DOI: 10.11686/cyxb2020186
王占军1(), 马琨2,3(), 崔慧珍3, 李光文3, 俞鸿千1, 蒋齐1
收稿日期:
2020-04-21
修回日期:
2020-06-01
出版日期:
2020-12-28
发布日期:
2020-12-28
通讯作者:
马琨
作者简介:
Corresponding author. E-mail: makun0411@163.com基金资助:
Zhan-jun WANG1(), Kun MA2,3(), Hui-zhen CUI3, Guang-wen LI3, Hong-qian YU1, Qi JIANG1
Received:
2020-04-21
Revised:
2020-06-01
Online:
2020-12-28
Published:
2020-12-28
Contact:
Kun MA
摘要:
为揭示宁夏不同草原类型土壤丛枝菌根(AM)真菌分布特征及其差异机制,以长期围封的荒漠草原(白草+甘草、短花针茅+牛枝子+猪毛蒿、黑沙蒿、短花针茅)和干草原(长芒草+赖草+甘肃蒿)植被群落为研究对象,利用脂肪酸指纹图谱和Illumina高通量测序的方法,研究了土壤AM真菌多样性、组成与草地植被群落特征、土壤环境因子间的相互关系。结果表明:干草原样地以16:1ω5c中性脂表征的土壤AM真菌生物量与荒漠草原4种植被群落样地间均有极显著差异(P<0.01)。长芒草+赖草+甘肃蒿群落草地土壤AM真菌的香农-维纳指数、辛普森指数、Chao1丰富度指数、Pielou均匀度指数均显著高于荒漠草原4种植被群落样地(P<0.05)。荒漠草原、干草原的5种植被群落下土壤AM真菌分属1门、3纲、4目、7科、8属、50种,球囊霉属(Glomus)、类球囊霉属(Paraglomus)是优势属。不同AM真菌分类水平下,干草原与荒漠草原土壤有11类AM真菌的相对丰度有显著性差异。非度量多维尺度(NMDS)分析表明,干草原与荒漠草原土壤AM真菌群落空间分布距离较远,AM真菌群落间相似性较低(Stress=0.17,P=0.001)。Pearson相关分析显示,AM真菌群落香农-维纳多样性指数、Chao1丰富度指数与对应草地植被群落香农-维纳指数、群落物种数、总生物量、群落重要值呈显著或极显著正相关(P<0.05或P<0.01)。AM真菌的幼套球囊霉属(Claroideoglomus)、类球囊霉属相对丰度与土壤全氮、全磷、碱解氮、有机质、速效钾含量呈显著或极显著正相关。降水量、海拔导致对应植被群落土壤理化性质、植被群落特征差异是驱动荒漠草原和干草原土壤AM真菌多样性及优势属相对丰度显著变化的主要因素。
王占军, 马琨, 崔慧珍, 李光文, 俞鸿千, 蒋齐. 土壤丛枝菌根真菌与宁夏主要草原类型植被群落分布间的相互关系研究[J]. 草业学报, 2020, 29(12): 150-160.
Zhan-jun WANG, Kun MA, Hui-zhen CUI, Guang-wen LI, Hong-qian YU, Qi JIANG. Correlations between arbuscular mycorrhizal fungi and distribution of main grassland types in Ningxia[J]. Acta Prataculturae Sinica, 2020, 29(12): 150-160.
草原类型Grassland types | 样地Plot | 优势种群 Dominant populations | 主要伴生种 Main companion species | 经纬度 Longitude and latitude (o) | 海拔 Altitude(m) | 降水量 Precipitation(mm) |
---|---|---|---|---|---|---|
荒漠草原 Desert steppe | T0 | 白草+甘草 P.centrasiaticum+G. uralwnsis | 赖草、针茅、达乌里胡枝子、牛枝子 Leymus secalinus, S. breviflora, Lespedeza davurica,L. potaninii | 107.04761° E 38.08083° N | 1463 | 231 |
T1 | 短花针茅+牛枝子+猪毛蒿 S. breviflora+L. potaninii+A. scoparia | 糙隐子草、赖草、苦豆子、猫头刺、骆驼蓬、地梢瓜 C. squarrosa, L. secalinus, Sophora alopecuroides,Oxytropis aciphylla, Peganum harmala, Cynanchum thesioides | 106.47742° E 37.44003° N | 1371 | 154 | |
T2 | 黑沙蒿A. ordosica | 白草、狗尾草、赖草、针茅、草木樨状黄芪、牛枝子 P. centrasiaticum, Setaria viridis, L. secalinus, S. breviflora, Astragalus melilotoides, L. potaninii | 106.62185° E 37.75618° N | 1340 | 137 | |
T3 | 短花针茅S. breviflora | 糙隐子草、锋芒草、细弱黄耆(细茎黄芪) C. squarrosa, Tragus racemosus, Astragalus miniatus | 105.72931° E 37.40300° N | 1377 | 114 | |
干草原 Dry steppe | T4 | 长芒草+赖草+甘肃蒿 S. bungeana+L. secalinus+Artemisia gansuensis | 扁穗冰草、糙隐子草、硬质早熟禾、糙叶黄耆(皱黄芪) Agropyron cristatum, C. squarrosa, Poa sphondylodes, Astragalus scaberrimus | 106.48354° E 36.73344° N | 2029 | 336 |
表1 样地基本概况
Table 1 Basic characteristics of the grassland plot
草原类型Grassland types | 样地Plot | 优势种群 Dominant populations | 主要伴生种 Main companion species | 经纬度 Longitude and latitude (o) | 海拔 Altitude(m) | 降水量 Precipitation(mm) |
---|---|---|---|---|---|---|
荒漠草原 Desert steppe | T0 | 白草+甘草 P.centrasiaticum+G. uralwnsis | 赖草、针茅、达乌里胡枝子、牛枝子 Leymus secalinus, S. breviflora, Lespedeza davurica,L. potaninii | 107.04761° E 38.08083° N | 1463 | 231 |
T1 | 短花针茅+牛枝子+猪毛蒿 S. breviflora+L. potaninii+A. scoparia | 糙隐子草、赖草、苦豆子、猫头刺、骆驼蓬、地梢瓜 C. squarrosa, L. secalinus, Sophora alopecuroides,Oxytropis aciphylla, Peganum harmala, Cynanchum thesioides | 106.47742° E 37.44003° N | 1371 | 154 | |
T2 | 黑沙蒿A. ordosica | 白草、狗尾草、赖草、针茅、草木樨状黄芪、牛枝子 P. centrasiaticum, Setaria viridis, L. secalinus, S. breviflora, Astragalus melilotoides, L. potaninii | 106.62185° E 37.75618° N | 1340 | 137 | |
T3 | 短花针茅S. breviflora | 糙隐子草、锋芒草、细弱黄耆(细茎黄芪) C. squarrosa, Tragus racemosus, Astragalus miniatus | 105.72931° E 37.40300° N | 1377 | 114 | |
干草原 Dry steppe | T4 | 长芒草+赖草+甘肃蒿 S. bungeana+L. secalinus+Artemisia gansuensis | 扁穗冰草、糙隐子草、硬质早熟禾、糙叶黄耆(皱黄芪) Agropyron cristatum, C. squarrosa, Poa sphondylodes, Astragalus scaberrimus | 106.48354° E 36.73344° N | 2029 | 336 |
处理 Treatment | 香农-维纳指数 Shannon-Wiener index | Pielou均匀度指数Pielou index | 辛普森指数Simpson index | 物种数 Species | 总盖度 Total coverage (TC,%) | 总高度 Total height (TH, cm) | 总生物量 Total biomass (TB, g·m-2) | 优势种群重要值Important value |
---|---|---|---|---|---|---|---|---|
T0 | 1.18b | 0.51a | 0.51a | 9.00b | 66.50ab | 16.19ab | 111.74b | 0.43 |
T1 | 1.16b | 0.54a | 0.54a | 8.67b | 79.00a | 9.05b | 82.83b | 0.37 |
T2 | 1.07b | 0.72a | 0.55a | 4.50b | 56.67bc | 23.48a | 112.89b | 0.46 |
T3 | 0.97b | 0.62a | 0.50a | 5.50b | 47.67c | 7.87b | 59.67b | 0.14 |
T4 | 2.16a | 0.74a | 0.82a | 18.50a | 92.00a | 13.07b | 195.44a | 0.69 |
表2 不同类型草地植被群落特征
Table 2 Vegetation community characteristics in different grassland types (mean±SD,n=6)
处理 Treatment | 香农-维纳指数 Shannon-Wiener index | Pielou均匀度指数Pielou index | 辛普森指数Simpson index | 物种数 Species | 总盖度 Total coverage (TC,%) | 总高度 Total height (TH, cm) | 总生物量 Total biomass (TB, g·m-2) | 优势种群重要值Important value |
---|---|---|---|---|---|---|---|---|
T0 | 1.18b | 0.51a | 0.51a | 9.00b | 66.50ab | 16.19ab | 111.74b | 0.43 |
T1 | 1.16b | 0.54a | 0.54a | 8.67b | 79.00a | 9.05b | 82.83b | 0.37 |
T2 | 1.07b | 0.72a | 0.55a | 4.50b | 56.67bc | 23.48a | 112.89b | 0.46 |
T3 | 0.97b | 0.62a | 0.50a | 5.50b | 47.67c | 7.87b | 59.67b | 0.14 |
T4 | 2.16a | 0.74a | 0.82a | 18.50a | 92.00a | 13.07b | 195.44a | 0.69 |
处理 Treatment | 香农-维纳指数 Shannon-Wiener index | 辛普森指数 Simpson index | Chao1丰富度指数 Chao1 index | Pielou 均匀度指数 Pielou index |
---|---|---|---|---|
T0 | 4.93±0.25b | 0.94±0.01ab | 404.29±94.42c | 0.60±0.02a |
T1 | 2.70±0.64c | 0.69±0.16c | 363.74±49.65c | 0.34±0.08c |
T2 | 5.19±0.45ab | 0.94±0.03ab | 568.65±171.44bc | 0.60±0.05a |
T3 | 4.48±1.05b | 0.86±0.11ab | 972.46±510.74ab | 0.48±0.07b |
T4 | 6.22±0.66a | 0.96±0.04a | 1383.88±72.92a | 0.62±0.07a |
表3 不同草原类型土壤AM真菌多样性及丰富度
Table 3 AM fungal diversity and richness under different grassland types (mean±SD,n=6)
处理 Treatment | 香农-维纳指数 Shannon-Wiener index | 辛普森指数 Simpson index | Chao1丰富度指数 Chao1 index | Pielou 均匀度指数 Pielou index |
---|---|---|---|---|
T0 | 4.93±0.25b | 0.94±0.01ab | 404.29±94.42c | 0.60±0.02a |
T1 | 2.70±0.64c | 0.69±0.16c | 363.74±49.65c | 0.34±0.08c |
T2 | 5.19±0.45ab | 0.94±0.03ab | 568.65±171.44bc | 0.60±0.05a |
T3 | 4.48±1.05b | 0.86±0.11ab | 972.46±510.74ab | 0.48±0.07b |
T4 | 6.22±0.66a | 0.96±0.04a | 1383.88±72.92a | 0.62±0.07a |
图4 不同类型草原土壤AM真菌属水平分类组成
Fig.4 Taxonomic composition and relative abundance of the soil AM fungi based on the genus level under different grassland types
图5 不同类型草原土壤AM真菌群落结构的非度量多维尺度分析
Fig.5 Non-metric multidimensional scaling analysis (NMDS) of the soil AM fungal β diversity under different grassland types
参数 Variable | 总盖度 Total coverage | 总平均高度Total average height | 总生物量 Total biomass | 重要值 Important value | 香农—维纳指数Shannon-Wiener | Pielou均匀度指数Pielou evenness index | 辛普森指数Simpson index | 物种数Species |
---|---|---|---|---|---|---|---|---|
香农-维纳指数Shannon-Wiener index | 0.14 | 0.35 | 0.56** | 0.46* | 0.43* | 0.24 | 0.33 | 0.40* |
辛普森指数Simpson index | -0.07 | 0.38* | 0.40* | 0.30 | 0.26 | 0.18 | 0.18 | 0.16 |
Chao1丰富度指数Chao1 index | 0.26 | -0.13 | 0.45* | 0.28 | 0.48* | 0.18 | 0.39* | 0.54** |
Pielou均匀度指数Pielou index | 0.02 | 0.46* | 0.49* | 0.42* | 0.33 | 0.22 | 0.24 | 0.25 |
表4 土壤AM真菌Alpha多样性指数与植被群落参数间的皮尔逊相关性分析
Table 4 Pearson’s correlation analysis of AM fungal Alpha diversity and vegetation community characteristics
参数 Variable | 总盖度 Total coverage | 总平均高度Total average height | 总生物量 Total biomass | 重要值 Important value | 香农—维纳指数Shannon-Wiener | Pielou均匀度指数Pielou evenness index | 辛普森指数Simpson index | 物种数Species |
---|---|---|---|---|---|---|---|---|
香农-维纳指数Shannon-Wiener index | 0.14 | 0.35 | 0.56** | 0.46* | 0.43* | 0.24 | 0.33 | 0.40* |
辛普森指数Simpson index | -0.07 | 0.38* | 0.40* | 0.30 | 0.26 | 0.18 | 0.18 | 0.16 |
Chao1丰富度指数Chao1 index | 0.26 | -0.13 | 0.45* | 0.28 | 0.48* | 0.18 | 0.39* | 0.54** |
Pielou均匀度指数Pielou index | 0.02 | 0.46* | 0.49* | 0.42* | 0.33 | 0.22 | 0.24 | 0.25 |
变量 Variable | 全氮 Total nitrogen | 总磷 Total phosphorus | 速效磷 Available phosphorus | 碱解氮 Available nitrogen | 有机质 Organic matter | 速效钾 Available potassium | pH | 降水量 Perception | 海拔 Elevation |
---|---|---|---|---|---|---|---|---|---|
生物量Biomass | 0.98** | 0.91** | -0.14 | 0.97** | 0.98** | 0.66** | -0.48* | -0.68** | 0.97** |
香农-维纳指数Shannon-Wiener index | 0.54** | 0.50** | 0.33 | 0.53** | 0.49** | 0.40* | 0.56** | -0.41* | 0.59** |
辛普森指数Simpson index | 0.28 | 0.25 | 0.27 | 0.27 | 0.23 | 0.21 | 0.37** | -0.28 | 0.34 |
Chao1丰富度指数Chao1 index | 0.78** | 0.81** | -0.10 | 0.75** | 0.73** | 0.76** | 0.36* | -0.48** | 0.69** |
Pielou均匀度指数Pielou index | 0.32 | 0.26 | 0.42* | 0.32 | 0.28 | 0.17 | 0.48* | -0.30 | 0.43* |
幼套球囊霉属相对丰度 Relative abundance of Claroideoglomus | 0.45* | 0.42* | 0.16 | 0.45* | 0.44* | 0.41* | 0.35* | -0.27 | 0.46* |
球囊霉属相对丰度Relative abundance of Glomus | -0.24 | -0.21 | -0.04 | -0.24 | -0.22 | -0.15 | -0.52* | 0.40 | -0.38* |
类球囊霉属相对丰度Relative abundance of Paraglomus | 0.50** | 0.50** | -0.20 | 0.46** | 0.44* | 0.48** | 0.44* | -0.47** | 0.50** |
表5 AM 真菌群落多样性、属水平相对丰度与土壤环境因子间的皮尔逊相关性分析
Table 5 Pearson’s correlation analysis of AM fungal community diversity, relative abundance based on the genus level and soil physic-chemical properties and precipitation, evaluation
变量 Variable | 全氮 Total nitrogen | 总磷 Total phosphorus | 速效磷 Available phosphorus | 碱解氮 Available nitrogen | 有机质 Organic matter | 速效钾 Available potassium | pH | 降水量 Perception | 海拔 Elevation |
---|---|---|---|---|---|---|---|---|---|
生物量Biomass | 0.98** | 0.91** | -0.14 | 0.97** | 0.98** | 0.66** | -0.48* | -0.68** | 0.97** |
香农-维纳指数Shannon-Wiener index | 0.54** | 0.50** | 0.33 | 0.53** | 0.49** | 0.40* | 0.56** | -0.41* | 0.59** |
辛普森指数Simpson index | 0.28 | 0.25 | 0.27 | 0.27 | 0.23 | 0.21 | 0.37** | -0.28 | 0.34 |
Chao1丰富度指数Chao1 index | 0.78** | 0.81** | -0.10 | 0.75** | 0.73** | 0.76** | 0.36* | -0.48** | 0.69** |
Pielou均匀度指数Pielou index | 0.32 | 0.26 | 0.42* | 0.32 | 0.28 | 0.17 | 0.48* | -0.30 | 0.43* |
幼套球囊霉属相对丰度 Relative abundance of Claroideoglomus | 0.45* | 0.42* | 0.16 | 0.45* | 0.44* | 0.41* | 0.35* | -0.27 | 0.46* |
球囊霉属相对丰度Relative abundance of Glomus | -0.24 | -0.21 | -0.04 | -0.24 | -0.22 | -0.15 | -0.52* | 0.40 | -0.38* |
类球囊霉属相对丰度Relative abundance of Paraglomus | 0.50** | 0.50** | -0.20 | 0.46** | 0.44* | 0.48** | 0.44* | -0.47** | 0.50** |
1 | Faghihinia M, Zou Y, Chen Z, et al. The response of grassland mycorrhizal fungal abundance to a range of long-term grazing intensities. Rhizosphere, 2020, 13: 100178. |
2 | Guo S J. Discussion on the grassland types in Ningxia. Journal of Ningxia Agricultural College, 1985, 1: 81-87. |
郭思加. 关于宁夏草地类型若干问题的商榷. 宁夏农学院学报, 1985, 1: 81-87. | |
3 | Zhao Y, Yu Z. Grassland monitoring of Ningxia. Yingchuan: Sunshine Press, 2016. |
赵勇, 于钊. 宁夏草原监测. 银川: 阳光出版社, 2016. | |
4 | Wagg C, Jansa J, Schmid B, et al. Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecology Letters, 2011, 14(10): 1001-1009. |
5 | Johnson N C, Rowland D L, Corkidi L, et al. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology, 2003, 84(7): 1895-1908. |
6 | Krüger C, Kohout P, Janoušková M, et al. Plant communities rather than soil properties structure arbuscular mycorrhizal fungal communities along primary succession on a mine spoil. Frontiers in Microbiology, 2017, 8: 1-16. |
7 | Zhou W P, Xiang D, Hu Y J, et al. Influences of long-term enclosure on the restoration of plant and AM fungal communities on grassland under different grazing intensities. Acta Ecologica Sinica, 2013, 33(11): 3383-3393. |
周文萍, 向丹, 胡亚军, 等. 长期围封对不同放牧强度下草地植物和AM真菌群落恢复的影响. 生态学报, 2013, 33(11): 3383-3393. | |
8 | Stovera H J, Anne N M, Katja B B. Soil disturbance changes arbuscular mycorrhizal fungi richness and composition in a fescue grassland in Alberta Canada. Applied Soil Ecology, 2018, 131: 29-37. |
9 | Zubek S, Majewska M, Błaszkowski J, et al. Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils. Biology and Fertility of Soils, 2016, 52: 879-893. |
10 | Zhang T, Sun Y, Shi Z Y, et al. Arbuscular mycorrhizal fungi can accelerate the restoration of degraded spring grassland in central Asia. Rangeland Ecology and Management, 2012, 65(4): 426-432. |
11 | Řezáčová V, Slavíková R, Konvalinková T, et al. Geography and habitat predominate over climate influences on arbuscular mycorrhizal fungal communities of mid-European meadows. Mycorrhiza, 2019, 29(6): 567-579. |
12 | Torrecillas E, Alguacil M D M, Roldán A, et al. Modularity reveals a tendency of arbuscular mycorrhizal fungi to interact difffferently with generalist and specialist plant species in gypsum soils. Applied and Environmental Microbiology, 2014, 80(17): 5457-5466. |
13 | Van G M, Jacquemyn H, Plue J, et al. Abiotic rather than biotic fifiltering shapes the arbuscular mycorrhizal fungal communities of European seminatural grasslands. New Phytologist, 2018, 220(4): 1262-1272. |
14 | Klichowska E, Nobis M, Piszczek P, et al. Soil properties rather than topography, climatic conditions, and vegetation type shape AMF-feathergrass relationship in semi-natural European grasslands. Applied Soil Ecology, 2019, 144: 22-30. |
15 | Torrecillas E, Torres P, Alguacil M M, et al. Influence of habitat and climate variables on arbuscular mycorrhizal fungus community distribution, as revealed by a case study of facultative plant epiphytism under semiarid conditions. Environmental Microbiology, 2013, 79(23): 7203-7237. |
16 | He D, Xiang X, He J, et al. Composition of the soil fungal community is more sensitive to phosphorus than nitrogen addition in the alpine meadow on the Qinghai-Tibetan Plateau. Biology and Fertility of Soils, 2016, 52(8): 1059-1072. |
17 | Guan H L, Fan J W, Li Y Z. The impact of different introduced artificial grassland species combinations on community biomass and specie sdiversity in temperate steppe of the Qinghai-Tibetan Plateau.Acta Pratacultume Sinica, 2019, 28(9): 192-201. |
官惠玲, 樊江文, 李愈哲.不同人工草地对青藏高原温性草原群落生物量组成及物种多样性的影响. 草业学报, 2019, 28(9): 192-201. | |
18 | Xu H P, Yu C, Shu C C, et al. The effeet of plateau pika disturbance on plant community diversity and stability in an alpine meadow. Acta Prataculturne Sinica, 2019, 28(5): 90-99. |
徐海鹏, 于成, 舒朝成, 等. 高原鼠兔干扰对高寒草原植物群落多样性和稳定性的影响. 草业学报, 2019, 28(5): 90-99. | |
19 | Bao S D. Soil agrochemical analysis (The 3rd Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. | |
20 | Wei C H, Liu Y J, Ye X X, et al. Effects of intercropping potato with maize on soil and crop. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 54-64. |
魏常慧, 刘亚军, 冶秀香, 等.马铃薯/玉米间作栽培对土壤和作物的影响. 浙江大学学报(农业与生命科学版), 2017, 43(1): 54-64. | |
21 | Sato K, Suyam Y, Saito M, et al. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassland Science, 2005, 51: 179-181. |
22 | Ma K, Song L L, Wang M G, et al. Effects of maize straw returning on native arbuscular mycorrhizal fungal community structure. Chinese Journal of Applied Ecology, 2019, 30(8): 2746-2756. |
马琨, 宋丽丽, 王明国, 等.玉米秸秆还田对土壤丛枝菌根真菌群落的影响.应用生态学报, 2019, 30(8): 2746-2756. | |
23 | Mellado-Vazquez P G, Lange M, Bachmann D, et al. Plant diversity generates enhanced soil microbial access to recently photosynthesized carbon in the rhizosphere. Soil Biology and Biochemistry, 2016, 94: 122-132. |
24 | Zobel M, Opik M. Plant and arbuscular mycorrhizal fungal (AMF) communities-which drives which? Journal of Vegetation Science, 2014, 25(5): 1133-1140. |
25 | Milcu A, Christiane R, Gessler A, et al. Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes. Ecology Letters, 2014, 17(4): 435-444. |
26 | Lange M, Eisenhauer N M, Eisenhauer N, et al. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 2015, 6: 6707. |
27 | Ravenek J M, Bessler H, Engels C, et al. Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos, 2014, 123(12): 1528-1536. |
28 | Latz E, Eisenhauer N, Scheu S, et al. Plant identity drives the expression of biocontrol factors in a rhizosphere bacterium across a plant diversity gradient. Functional Ecology, 2015, 29(9): 1225-1234. |
29 | Van der Krift T A J, Kuikman P J, Moller F, et al. Plant species and nutritional-mediated control over rhizodeposition and root decomposition. Plant and Soil, 2001, 228: 191-200. |
30 | Soka G E, Ritchie M E. Arbuscular mycorrhizal spore composition and diversity associated with different land uses in a tropical savanna landscape, Tanzania. Applied Soil Ecology, 2018, 125: 222-232. |
31 | Qin H, Lu K, Strong P J, et al. Long-term fertilizer application effects on the soil, root arbuscular mycorrhizal fungi and community composition in rotation agriculture. Applied Soil Ecology, 2015, 89(5): 35-43. |
32 | Yoshimura Y, Ido A, Iwase K, et al. Communities of arbuscular mycorrhizal fungi in the roots of Pyrus pyrifolia var. culta (Japanese pear) in orchards with variable amounts of soil-available phosphorus. Microbes and Environments, 2013, 28(1): 105-111. |
33 | Lugo M A, Anton A M, Cabello M N. Arbuscular mycorrhizas in the Larrea divaricata scrubland of the arid “Chaco”, Central Argentina. Journal of Agricultural Technology, 2005, 1(1): 163-178. |
34 | Lugo M A, Ferrero M, Menoyo E, et al. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in south american puna grassland. Microbial Ecology, 2008, 55: 705-713. |
35 | Jacobson K M. Moisture and substrate stability determine VA-mycorrhizal fungal community distribution and structure in an arid grassland. Journal of Arid Environments, 1997, 35(1): 59-75. |
36 | Daniell T J, Husband R, Fitter A H, et al. Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbial Ecology, 2001, 36(2/3): 203-209. |
37 | Van Geel M, Busschaert P, Honnay O, et al. Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing. Journal of Microbiological Methods, 2014, 106: 93-100. |
38 | Davison J, Moora M, Opik M, et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science, 2015, 349: 970-973. |
39 | Li X L, Gai J P, Cai X B, et al. Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza, 2014, 24(2): 95-107. |
40 | Zangaro W, Rostirola L V, Souza P B, et al. Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in Southern Brazil. Mycorrhiza, 2013, 23(1): 221-233. |
41 | Kölbl A, Steffens M, Wiesmeier M, et al. Grazing changes topography-controlled topsoil properties and their interaction on different spatial scales in a semi-arid grassland of Inner Mongolia, P. R. China. Plant and Soil, 2011, 340 (1/2): 35-58. |
[1] | 刘佳丽, 范建容, 张茜彧, 杨超, 徐富宝, 张晓雪, 梁博. 高寒草地生长季/非生长季植被盖度遥感反演[J]. 草业学报, 2021, 30(9): 15-26. |
[2] | 张峰, 孙嘉伟, 孙宇, 郑佳华, 乔荠瑢, 赵萌莉. 不同载畜率对短花针茅荒漠草原优势物种间关系及其空间分布特征的影响[J]. 草业学报, 2021, 30(8): 1-11. |
[3] | 杨鑫光, 李希来, 马盼盼, 张静, 周伟. 不同施肥水平下高寒矿区煤矸石山植被和土壤恢复效果研究[J]. 草业学报, 2021, 30(8): 98-108. |
[4] | 吴旭东, 蒋齐, 任小玢, 俞鸿千, 王占军, 何建龙, 季波, 杜建民. 降水水平对荒漠草原生物土壤结皮碳、氮和微生物的影响[J]. 草业学报, 2021, 30(7): 34-43. |
[5] | 田翠翠, 卜书海, 周多良, 刘建泉, 周永祥, 郑雪莉. 安南坝野骆驼国家级自然保护区鼠类群落结构的研究[J]. 草业学报, 2021, 30(7): 62-71. |
[6] | 林小丁, 常乐, 冯丹. 2000-2019年青海地区植被总初级生产力遥感估算及时空变化分析[J]. 草业学报, 2021, 30(6): 16-27. |
[7] | 濮阳雪华, 王月玲, 赵志杰, 黄娟, 杨宇. 陕北黄土区不同植被恢复模式植被与土壤耦合关系研究[J]. 草业学报, 2021, 30(5): 13-24. |
[8] | 孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征[J]. 草业学报, 2021, 30(4): 34-45. |
[9] | 张亦然, 刘廷玺, 童新, 段利民, 吴宇辰. 基于XGBoost算法的草甸地上生物量的高光谱遥感反演[J]. 草业学报, 2021, 30(4): 1-12. |
[10] | 蒙仲举, 陈颜洁, 包斯琴. 苏尼特右旗荒漠草原三种放牧方式下群落斑块特征[J]. 草业学报, 2021, 30(4): 13-23. |
[11] | 顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57. |
[12] | 陈宸, 井长青, 邢文渊, 邓小进, 付皓宇, 郭文章. 近20年新疆荒漠草地动态变化及其对气候变化的响应[J]. 草业学报, 2021, 30(3): 1-14. |
[13] | 吕广一, 徐学宝, 高翠萍, 于志慧, 王新雅, 王成杰. 放牧对内蒙古不同类型草原植物和土壤总氮与稳定氮同位素的影响[J]. 草业学报, 2021, 30(3): 208-214. |
[14] | 马欣, 罗珠珠, 张耀全, 刘家鹤, 牛伊宁, 蔡立群. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54-67. |
[15] | 杜佳梦, 包刚, 佟斯琴, 黄晓君, 温都日娜, 美丽, 包玉海. 1982-2015年蒙古国植被覆盖变化及其与气候变化和人类活动的关系[J]. 草业学报, 2021, 30(2): 1-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||