欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2021, Vol. 30 ›› Issue (7): 22-33.DOI: 10.11686/cyxb2020271

• 研究论文 • 上一篇    下一篇

基于APSIM模型的黄土旱塬区苜蓿——小麦轮作系统深层土壤水分及水分利用效率研究

古丽娜扎尔·艾力null, 陶海宁, 王自奎(), 沈禹颖   

  1. 兰州大学草地农业科技学院,草地农业生态系统国家重点实验室,草业科学国家级实验教学示范中心,甘肃 兰州 730020
  • 收稿日期:2020-06-15 修回日期:2020-07-15 出版日期:2021-07-20 发布日期:2021-06-03
  • 通讯作者: 王自奎
  • 作者简介:Corresponding author. E-mail: wzk@lzu.edu.cn
    第一联系人:古丽娜扎尔(1998-),女,维吾尔族,新疆阿克苏人,在读本科。E-mail: gulnzhe17@lzu.edu.cn
  • 基金资助:
    国家自然科学基金(31871560);国家牧草产业技术体系(CARS-34);中央高校基本科研业务费(lzujbky-2020-19)

Evaluating the deep-horizon soil water content and water use efficiency in the alfalfa-wheat rotation system on the dryland of Loess Plateau using APSIM

Gulnazar Ali, Hai-ning TAO, Zi-kui WANG(), Yu-ying SHEN   

  1. College of Pastoral Agriculture Science and Technology,Lanzhou University,State Key Laboratory of Grassland Agro-Ecosystem,National Demonstration Center for Experimental Grassland Science Education,Lanzhou 730020,China
  • Received:2020-06-15 Revised:2020-07-15 Online:2021-07-20 Published:2021-06-03
  • Contact: Zi-kui WANG

摘要:

黄土高原地区降水较少且季节性分配不均,苜蓿连续种植所导致的深层土壤干燥化问题已经引起普遍关注,苜蓿与粮食作物轮作是恢复苜蓿草地土壤水分、提高粮草种植系统可持续性的有效方式。但是长期轮作对土壤水分环境和水分利用效率的影响仍然缺乏研究,农业生产系统模拟模型(APSIM)具有广泛的适应性,可准确模拟耕作管理对作物系统资源利用的影响。首先根据黄土旱塬区庆阳、长武、镇原3个试验区试验数据验证APSIM模型模拟苜蓿长期连作和苜蓿-小麦轮作系统深层土壤水分和苜蓿产量的可行性,然后设置历时38年的81组轮作情景,评估不同轮作模式对农田深层土壤水分、系统干物质产量、氮素吸收和水分利用效率的影响。结果表明:APSIM模型模拟苜蓿产量的精度较高,模拟结果的决定系数(R2)为0.65,均方误差(RMSE)和平均绝对误差(MAE)分别为0.23 t·hm-2和0.17 t·hm-2,归一化均方误差(NRMSE)为29.2%;模型能够精确模拟长期苜蓿连作和苜蓿轮作小麦农田0~1000 cm的土壤含水量,长期连作模拟结果的R2为0.73,RMSE、MAE及NRMSE分别为0.021 t·hm-2、0.017 t·hm-2和11.7%,轮作系统模拟结果的决定系数为0.83,RMSE、MAE及NRMSE分别为0.024 t·hm-2、0.018 t·hm-2和11.8%。情景模拟结果表明,随着苜蓿在系统中轮作年限的增加,0~1000 cm土壤剖面水分极度缺乏(含水量在0.10~0.15)的区域以400~600 cm土层为起点不断扩大,当苜蓿轮作年限大于12年时,所有轮作周期的处理土壤都出现了大范围水分缺乏。81个情景中12年苜蓿轮作14年小麦(L12W14)、L12W16和L8W16这3个处理的总产量最大;系统吸氮量随着苜蓿加入年限的增加而增加,小麦轮作年限大于10年以后系统吸氮量急剧下降;苜蓿轮作大于8年以后系统水分利用效率随着苜蓿年限的增加而降低。综合考虑土壤水分环境和水分利用效率,建议研究区苜蓿-小麦轮作系统中苜蓿轮作年限为4~6年,小麦轮作年限大于4年。研究结果可为黄土旱塬区苜蓿草地管理及草田轮作实践提供一定的参考。

关键词: 黄土旱塬区, 草田轮作, 紫花苜蓿, 轮作周期, 水分利用效率

Abstract:

Rainfall on the Loess Plateau is limited and variable (350-650 mm·y-1). The problem of deep soil desiccation caused by continuous planting of alfalfa has aroused widespread attention. Alfalfa and food crop rotation is an effective way to restore soil moisture of alfalfa fields and improve the sustainability of forage cropping systems. However, there is still a lack of research on the effects of long-term rotation on the soil water environment and water use efficiency. The agricultural production systems simulator (APSIM) has extensive adaptability and can accurately simulate the impact of tillage management on the resource utilization of crop systems. Based on experimental data from Changwu, Zhenyuan, and Qingyang experimental stations in the dryland of Loess plateau for continuous alfalfa cropping and alfalfa based rotations, this study firstly verified the APSIM model in simulating deep soil moisture and alfalfa long-term production, and then simulated the effects of 81 different 38-year rotation patterns on farmland soil moisture, dry matter production, nitrogen absorption and water use efficiency. It was found that the APSIM model simulated the yield of alfalfa with high accuracy. The determination coefficient (R2), mean square error (RMSE) and mean absolute error (MAE) for alfalfa yield were 0.65, 0.23 t·hm-2 and 0.17 t·hm-2, respectively, and the normalized mean square error (NRMSE) was 29.2%. The model could also accurately simulate the soil moisture content for the 0-1000 cm layer in long-term continuous alfalfa and alfalfa rotation cropping systems. The R2, RMSE, MAE and NRMSE were 0.73, 0.021 t·hm-2, 0.017 t·hm-2 and 11.7%, respectively. The determination coefficients of the simulation results in the rotation system was 0.83, RMSE, MAE and NRMSE were 0.024 t·hm-2, 0.018 t·hm-2 and 11.8%, respectively. The 81 rotation scenarios modelled comprised alfalfa and wheat rotation periods of 2, 4, 6, 8, 10, 12, 14, 16, 18 years respectively. The results showed that with increasing length of alfalfa rotation in the system, the soil water content became extremely low, falling to between 0.10-0.15 in the 0-1000 cm depth with rapid loss from the 400-600 cm soil horizon. When the alfalfa rotation period was more than 12 years, all rotation patterns experienced soil water deficit. Among the 81 scenarios, the total yields of 12-year alfalfa rotated with 14-, 16-, or 18-year wheat (L12W14, L12W16 and L8W16) were the highest. The system nitrogen uptake increased with increase in the number of the years planted with alfalfa, and decreased sharply after more than 10 years of wheat planting. After rotations of alfalfa exceeding 8 years, the water use efficiency of the system decreased with the increase in the number of years planted with alfalfa. Considering the soil water environment and water use efficiency, it is suggested that optimum length of alfalfa planting in an alfalfa-wheat rotation system in the study area should be 4-6 years, and the duration of the wheat rotation should be more than four years. The results provide guidance for dryland alfalfa management and forage-grain crop rotation practices on the Loess Plateau.

Key words: dryland of Loess Plateau, forage-grain crops rotation, alfalfa, rotation cycle, water use efficiency