草业学报 ›› 2021, Vol. 30 ›› Issue (7): 34-43.DOI: 10.11686/cyxb2020516
吴旭东(), 蒋齐(), 任小玢, 俞鸿千, 王占军, 何建龙, 季波, 杜建民
收稿日期:
2020-11-24
修回日期:
2021-01-14
出版日期:
2021-07-20
发布日期:
2021-06-03
通讯作者:
蒋齐
作者简介:
Corresponding author. E-mail: ycjqnx@163.com基金资助:
Xu-dong WU(), Qi JIANG(), Xiao-bin REN, Hong-qian YU, Zhan-jun WANG, Jian-long HE, Bo JI, Jian-min DU
Received:
2020-11-24
Revised:
2021-01-14
Online:
2021-07-20
Published:
2021-06-03
Contact:
Qi JIANG
摘要:
生物土壤结皮是荒漠化地区地表景观的基本组成部分和土壤养分的主要供给来源,降水格局影响该区域生态系统的稳定性。以自然降水为对照,通过使用遮雨棚和喷灌系统控制降水输入,探究降水量对生物土壤结皮及下层土壤碳、氮和微生物的影响,为气候变化对荒漠草原生态系统稳定性的影响提供基础数据。结果表明:1)-50%降水处理有利于土壤有机碳(SOC)、土壤微生物生物量碳(SMB-C)和土壤真菌的积累,并提高了结皮层及中间土层全氮(TN)含量和真菌数量,+50%降水处理提高了各土层土壤细菌数量、结皮层以及中间层土壤微生物生物量氮(SMB-N)含量,并显著降低了各土层土壤C∶N、SMB-C∶SMB-N和真菌数量∶细菌数量,不同降水处理下土壤SOC、SMB-C、SMB-N含量、细菌和真菌数量均随土层深度显著下降;2)细菌对降水减少更为敏感,而真菌比细菌更能抵御干旱气候,土壤细菌和真菌对降水变化具有不同的适应策略;3)-50%降水处理有利于土壤养分的恢复,对结皮层以下土层土壤养分的恢复尤为明显,+50%降水处理导致结皮层和深层土壤养分略有退化。
吴旭东, 蒋齐, 任小玢, 俞鸿千, 王占军, 何建龙, 季波, 杜建民. 降水水平对荒漠草原生物土壤结皮碳、氮和微生物的影响[J]. 草业学报, 2021, 30(7): 34-43.
Xu-dong WU, Qi JIANG, Xiao-bin REN, Hong-qian YU, Zhan-jun WANG, Jian-long HE, Bo JI, Jian-min DU. Effects of precipitation on carbon, nitrogen and microbial characteristics of biological soil crusts in a desert steppe of Northern China[J]. Acta Prataculturae Sinica, 2021, 30(7): 34-43.
降水水平 Precipitation levels | 结皮厚度 Biocrust thickness (mm) | 结皮盖度 Biocrust cover (%) | 结皮组成 Biocrust composition |
---|---|---|---|
+50% | 10.25 | 45.5 | 苔藓Moss;藻类Algae |
CK | 8.33 | 40.0 | 藻类Algae;地衣Lichen |
-50% | 7.18 | 31.7 | 地衣Lichen |
表1 不同降水水平下生物土壤结皮生长发育情况
Table 1 Growth and development of biological soil crusts under different precipitation levels
降水水平 Precipitation levels | 结皮厚度 Biocrust thickness (mm) | 结皮盖度 Biocrust cover (%) | 结皮组成 Biocrust composition |
---|---|---|---|
+50% | 10.25 | 45.5 | 苔藓Moss;藻类Algae |
CK | 8.33 | 40.0 | 藻类Algae;地衣Lichen |
-50% | 7.18 | 31.7 | 地衣Lichen |
降水水平Precipitation levels | 土层Soil layer | 有机碳SOC (g·kg-1) | 全氮TN (g·kg-1) | 碳氮比C∶N |
---|---|---|---|---|
+50% | CL | 5.20±0.03Ca | 0.40±0.01Ba | 13.00±0.27Ba |
ML | 4.48±0.08Cb | 0.39±0.01Ba | 11.58±0.09Cb | |
DL | 4.07±0.08Cc | 0.36±0.02Ab | 11.33±0.55Cb | |
CK | CL | 5.77±0.09Ba | 0.41±0.01Ba | 14.20±0.46Aa |
ML | 4.99±0.08Bb | 0.36±0.00Cb | 13.87±0.22Aa | |
DL | 4.57±0.00Bc | 0.36±0.01Ab | 12.70±0.36Bb | |
-50% | CL | 8.05±0.09Aa | 0.54±0.02Aa | 15.02±0.59Aa |
ML | 6.38±0.08Ab | 0.50±0.02Ab | 12.68±0.52Bb | |
DL | 5.65±0.03Ac | 0.37±0.01Ac | 15.27±0.48Aa |
表2 不同降水水平下生物结皮及下层土壤有机碳、全氮含量
Table 2 Soil SOC and TN contents in soil layers under different precipitation levels
降水水平Precipitation levels | 土层Soil layer | 有机碳SOC (g·kg-1) | 全氮TN (g·kg-1) | 碳氮比C∶N |
---|---|---|---|---|
+50% | CL | 5.20±0.03Ca | 0.40±0.01Ba | 13.00±0.27Ba |
ML | 4.48±0.08Cb | 0.39±0.01Ba | 11.58±0.09Cb | |
DL | 4.07±0.08Cc | 0.36±0.02Ab | 11.33±0.55Cb | |
CK | CL | 5.77±0.09Ba | 0.41±0.01Ba | 14.20±0.46Aa |
ML | 4.99±0.08Bb | 0.36±0.00Cb | 13.87±0.22Aa | |
DL | 4.57±0.00Bc | 0.36±0.01Ab | 12.70±0.36Bb | |
-50% | CL | 8.05±0.09Aa | 0.54±0.02Aa | 15.02±0.59Aa |
ML | 6.38±0.08Ab | 0.50±0.02Ab | 12.68±0.52Bb | |
DL | 5.65±0.03Ac | 0.37±0.01Ac | 15.27±0.48Aa |
项目Item | 因素 Factor | F | P | 偏 η2 Partial η2 | R2 |
---|---|---|---|---|---|
有机碳SOC | 降水水平Precipitation level | 2444.785 | 0.000 | 0.996 | 0.998 |
土层Soil depth | 1309.664 | 0.000 | 0.993 | ||
降水水平×土层Precipitation level×soil depth | 94.629 | 0.000 | 0.955 | ||
全氮TN | 降水水平Precipitation level | 168.775 | 0.000 | 0.949 | 0.975 |
土层Soil depth | 110.800 | 0.000 | 0.925 | ||
降水水平×土层Precipitation level×soil depth | 34.900 | 0.000 | 0.886 | ||
碳氮比C∶N | 降水水平Precipitation level | 72.639 | 0.000 | 0.890 | 0.935 |
土层Soil depth | 24.582 | 0.000 | 0.732 | ||
降水水平×土层Precipitation level×soil depth | 16.657 | 0.000 | 0.787 |
表3 降水水平、土层及其交互作用对土壤SOC、TN、C∶N的影响
Table 3 Effects of precipitation levels, soil depth and their interaction on the contents of soil SOC, TN and C∶N
项目Item | 因素 Factor | F | P | 偏 η2 Partial η2 | R2 |
---|---|---|---|---|---|
有机碳SOC | 降水水平Precipitation level | 2444.785 | 0.000 | 0.996 | 0.998 |
土层Soil depth | 1309.664 | 0.000 | 0.993 | ||
降水水平×土层Precipitation level×soil depth | 94.629 | 0.000 | 0.955 | ||
全氮TN | 降水水平Precipitation level | 168.775 | 0.000 | 0.949 | 0.975 |
土层Soil depth | 110.800 | 0.000 | 0.925 | ||
降水水平×土层Precipitation level×soil depth | 34.900 | 0.000 | 0.886 | ||
碳氮比C∶N | 降水水平Precipitation level | 72.639 | 0.000 | 0.890 | 0.935 |
土层Soil depth | 24.582 | 0.000 | 0.732 | ||
降水水平×土层Precipitation level×soil depth | 16.657 | 0.000 | 0.787 |
降水水平 Precipitation levels | 土层 Soil layer | 土壤微生物生物量碳 SMB-C (mg·kg-1) | 土壤微生物生物量氮 SMB-N (mg·kg-1) | 微生物量碳氮比 SMB-C∶SMB-N |
---|---|---|---|---|
+50% | CL | 886.07±113.69Ca | 93.13±1.10Ba | 9.51±1.21Ca |
ML | 683.29±0.01Cb | 86.89±0.81Bb | 7.86±0.07Cb | |
DL | 327.32±0.08Cc | 64.74±0.40Ac | 5.06±0.03Cc | |
CK | CL | 2532.44±107.77Ba | 81.58±1.02Ca | 31.35±1.37Aa |
ML | 1055.19±143.92Bb | 76.32±2.14Cb | 13.86±2.22Bb | |
DL | 807.96±46.87Bc | 57.50±1.08Bc | 14.06±1.07Bb | |
-50% | CL | 2799.79±151.34Aa | 98.86±0.51Aa | 28.32±1.39Ba |
ML | 1609.68±103.85Ab | 92.57±0.82Ab | 17.39±1.09Ab | |
DL | 1347.04±107.77Ac | 47.28±0.69Cc | 28.51±2.57Aa |
表4 不同降水水平下土壤微生物生物量碳、氮含量
Table 4 Soil microbial biomass carbon and nitrogen contents in soil layers under different precipitation levels
降水水平 Precipitation levels | 土层 Soil layer | 土壤微生物生物量碳 SMB-C (mg·kg-1) | 土壤微生物生物量氮 SMB-N (mg·kg-1) | 微生物量碳氮比 SMB-C∶SMB-N |
---|---|---|---|---|
+50% | CL | 886.07±113.69Ca | 93.13±1.10Ba | 9.51±1.21Ca |
ML | 683.29±0.01Cb | 86.89±0.81Bb | 7.86±0.07Cb | |
DL | 327.32±0.08Cc | 64.74±0.40Ac | 5.06±0.03Cc | |
CK | CL | 2532.44±107.77Ba | 81.58±1.02Ca | 31.35±1.37Aa |
ML | 1055.19±143.92Bb | 76.32±2.14Cb | 13.86±2.22Bb | |
DL | 807.96±46.87Bc | 57.50±1.08Bc | 14.06±1.07Bb | |
-50% | CL | 2799.79±151.34Aa | 98.86±0.51Aa | 28.32±1.39Ba |
ML | 1609.68±103.85Ab | 92.57±0.82Ab | 17.39±1.09Ab | |
DL | 1347.04±107.77Ac | 47.28±0.69Cc | 28.51±2.57Aa |
项目Item | 因素 Factor | F | P | 偏 η2 Partial η2 | R2 |
---|---|---|---|---|---|
土壤微生物生物量碳SMB-C | 降水水平Precipitation level | 371.898 | 0.000 | 0.976 | 0.989 |
土层Soil depth | 371.087 | 0.000 | 0.976 | ||
降水水平×土层Precipitation level×soil depth | 39.902 | 0.000 | 0.899 | ||
土壤微生物生物量氮SMB-N | 降水水平Precipitation level | 212.080 | 0.000 | 0.959 | 0.996 |
土层Soil depth | 2733.098 | 0.000 | 0.997 | ||
降水水平×土层Precipitation level×soil depth | 188.386 | 0.000 | 0.877 | ||
微生物量碳氮比SMB-C∶SMB-N | 降水水平Precipitation level | 332.507 | 0.000 | 0.974 | 0.983 |
土层Soil depth | 110.336 | 0.000 | 0.925 | ||
降水水平×土层Precipitation level×soil depth | 45.483 | 0.000 | 0.910 |
表5 降水水平、土层及其交互作用对SMB-C、SMB-N和SMB-C∶SMB-N的影响
Table 5 Effects of precipitation levels, soil depth and their interaction on the contents of SMB-C, SMB-N and SMB-C∶SMB-N
项目Item | 因素 Factor | F | P | 偏 η2 Partial η2 | R2 |
---|---|---|---|---|---|
土壤微生物生物量碳SMB-C | 降水水平Precipitation level | 371.898 | 0.000 | 0.976 | 0.989 |
土层Soil depth | 371.087 | 0.000 | 0.976 | ||
降水水平×土层Precipitation level×soil depth | 39.902 | 0.000 | 0.899 | ||
土壤微生物生物量氮SMB-N | 降水水平Precipitation level | 212.080 | 0.000 | 0.959 | 0.996 |
土层Soil depth | 2733.098 | 0.000 | 0.997 | ||
降水水平×土层Precipitation level×soil depth | 188.386 | 0.000 | 0.877 | ||
微生物量碳氮比SMB-C∶SMB-N | 降水水平Precipitation level | 332.507 | 0.000 | 0.974 | 0.983 |
土层Soil depth | 110.336 | 0.000 | 0.925 | ||
降水水平×土层Precipitation level×soil depth | 45.483 | 0.000 | 0.910 |
降水水平 Precipitation levels | 土层 Soil layer | 真菌数量 Number of fungi (×103 cfu·g-1) | 细菌数量 Number of bacteria (×106 cfu·g-1) | 真菌∶细菌 Fungi∶bacteria (×10-3) |
---|---|---|---|---|
+50% | CL | 4.68±0.11Ca | 25.37±1.10Aa | 0.18±0.01Cc |
ML | 3.26±0.03Cb | 15.57±0.59Ab | 0.21±0.01Cb | |
DL | 1.04±0.02Cc | 1.59±0.40Ac | 0.69±0.20Ca | |
CK | CL | 5.23±0.14Ba | 10.18±0.23Ba | 0.51±0.03Bb |
ML | 4.37±0.13Bb | 4.46±0.10Bb | 0.98±0.03Bb | |
DL | 4.35±0.10Ab | 0.54±0.02Bc | 8.01±0.15Aa | |
-50% | CL | 9.34±0.12Aa | 4.49±0.10Ca | 2.08±0.08Ab |
ML | 4.98±0.04Ab | 0.79±0.02Cb | 6.28±0.09Aa | |
DL | 3.43±0.02Bc | 0.60±0.01Bc | 5.69±0.10Ba |
表6 降水量对土壤微生物数量的影响
Table 6 Effects of precipitation levels on the quantity of soil microorganisms
降水水平 Precipitation levels | 土层 Soil layer | 真菌数量 Number of fungi (×103 cfu·g-1) | 细菌数量 Number of bacteria (×106 cfu·g-1) | 真菌∶细菌 Fungi∶bacteria (×10-3) |
---|---|---|---|---|
+50% | CL | 4.68±0.11Ca | 25.37±1.10Aa | 0.18±0.01Cc |
ML | 3.26±0.03Cb | 15.57±0.59Ab | 0.21±0.01Cb | |
DL | 1.04±0.02Cc | 1.59±0.40Ac | 0.69±0.20Ca | |
CK | CL | 5.23±0.14Ba | 10.18±0.23Ba | 0.51±0.03Bb |
ML | 4.37±0.13Bb | 4.46±0.10Bb | 0.98±0.03Bb | |
DL | 4.35±0.10Ab | 0.54±0.02Bc | 8.01±0.15Aa | |
-50% | CL | 9.34±0.12Aa | 4.49±0.10Ca | 2.08±0.08Ab |
ML | 4.98±0.04Ab | 0.79±0.02Cb | 6.28±0.09Aa | |
DL | 3.43±0.02Bc | 0.60±0.01Bc | 5.69±0.10Ba |
项目Item | 因素 Factor | F | P | 偏 η2 Partial η2 | R2 |
---|---|---|---|---|---|
真菌数量Number of fungi | 降水水平Precipitation level | 2238.349 | 0.000 | 0.996 | 0.998 |
土层Soil depth | 3224.841 | 0.000 | 0.997 | ||
降水水平×土层Precipitation level×soil depth | 644.944 | 0.000 | 0.993 | ||
细菌数量Number of bacteria | 降水水平Precipitation level | 1822.518 | 0.000 | 0.995 | 0.998 |
土层Soil depth | 1748.892 | 0.000 | 0.995 | ||
降水水平×土层Precipitation level×soil depth | 415.545 | 0.000 | 0.989 | ||
真菌∶细菌Fungi∶bacteria | 降水水平Precipitation level | 4424.640 | 0.000 | 0.998 | 0.999 |
土层Soil depth | 3483.242 | 0.000 | 0.997 | ||
降水水平×土层Precipitation level×soil depth | 1763.891 | 0.000 | 0.997 |
表7 降水水平、土层及其交互作用对土壤微生物数量的影响
Table 7 Effects of precipitation levels, soil depth and their interaction on the quantity of soil microorganisms’ number
项目Item | 因素 Factor | F | P | 偏 η2 Partial η2 | R2 |
---|---|---|---|---|---|
真菌数量Number of fungi | 降水水平Precipitation level | 2238.349 | 0.000 | 0.996 | 0.998 |
土层Soil depth | 3224.841 | 0.000 | 0.997 | ||
降水水平×土层Precipitation level×soil depth | 644.944 | 0.000 | 0.993 | ||
细菌数量Number of bacteria | 降水水平Precipitation level | 1822.518 | 0.000 | 0.995 | 0.998 |
土层Soil depth | 1748.892 | 0.000 | 0.995 | ||
降水水平×土层Precipitation level×soil depth | 415.545 | 0.000 | 0.989 | ||
真菌∶细菌Fungi∶bacteria | 降水水平Precipitation level | 4424.640 | 0.000 | 0.998 | 0.999 |
土层Soil depth | 3483.242 | 0.000 | 0.997 | ||
降水水平×土层Precipitation level×soil depth | 1763.891 | 0.000 | 0.997 |
图2 降水对土壤养分恢复的影响不同大写字母表示-50%处理下土层间差异极显著(P<0.01),不同小写字母表示+50%处理下土层间差异极显著(P<0.01)。Different capital letters indicate that different soil depths are significantly different under -50% precipitation treatment (P<0.01); different lowercase letters indicate that values in the different soil layers under +50% precipitation treatment are significantly different (P<0.01) .
Fig.2 Effects of precipitation on the recovery of soil nutrients
1 | Knapp A K, Ciais P, Smith M D. Reconciling inconsistencies in precipitation-productivity relationships: Implications for climate change. New Phytologist, 2017, 214(1): 41-47. |
2 | Cregger M A, McDowell N G, Pangle R E, et al. The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem. Functional Ecology, 2014, 28(6): 1534-1544. |
3 | Gherardi L A, Sala O E. Enhanced precipitation variability decreases grass-and increases shrub-productivity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(41): 12735-12740. |
4 | Wang Y F, Yu S X, Wang J. Biomass-dependent susceptibility to drought in experimental grassland communities. Ecology Letters, 2007, 10(5): 401-410. |
5 | Sun Y, He M Z, Wang L. Effects of precipitation control on plant diversity and biomass in a desert region. Acta Ecologica Sinica, 2018, 38(7): 2425-2433. |
孙岩, 何明珠, 王立. 降水控制对荒漠植物群落物种多样性和生物量的影响. 生态学报, 2018, 38(7): 2425-2433. | |
6 | Li X R, Zhang Y M, Zhao Y G. A study of biological soil crusts: Recent development, trend and prospect. Advances in Earth Science, 2009, 24(1): 11-24. |
李新荣, 张元明, 赵允格. 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 2009, 24(1): 11-24. | |
7 | Li X R, Zhang P, Su Y G, et al. Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: A four-year field study. Catena, 2012, 97: 119-126. |
8 | Chamizo S, Cantón Y, Miralles I, et al. Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biology and Biochemistry, 2012, 49(6): 96-105. |
9 | Kuske C R, Carney T D, Housman D C, et al. Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dryland ecosystem. Glob Change Biology, 2012, 18(8): 2583-2593. |
10 | Gao L Q, Zhao Y G, Xu M X, et al. The effects of biological soil crust succession on soil ecological stoichiometry characteristics. Acta Ecologica Sinica, 2018, 38(2): 678-688. |
高丽倩, 赵允格, 许明祥, 等. 生物土壤结皮演替对土壤生态化学计量特征的影响. 生态学报, 2018, 38(2): 678-688. | |
11 | Belnap J, Phillips S L, Miller M E. Response of desert biological soil crusts to alteration in precipitation frequency. Oecologia, 2004, 141(2): 306-316. |
12 | Tang Y S, Wei C F, Yan T M, et al. Biological indicator of soil quality: A review. Soils, 2007, 39(2): 157-163. |
唐玉姝, 魏朝富, 颜廷梅, 等. 土壤质量生物学指标研究进展. 土壤, 2007, 39(2): 157-163. | |
13 | Noah F. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 2017, 15: 579-590. |
14 | Xiang S R, Doyle A, Holden P A, et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology and Biochemistry, 2008, 40(9): 2281-2289. |
15 | Wu N, Pan B R, Zhang Y M, et al. Vertical distribution patterns of soil microorganisms relating to biological crusts in the Gurbantunggut Desert, Xinjiang. Chinese Journal of Applied & Environmental Biology, 2005, 11(3): 349-353. |
吴楠, 潘伯荣, 张元明, 等. 古尔班通古特沙漠生物结皮中土壤微生物垂直分布特征. 应用与环境生物学报, 2005, 11(3): 349-353. | |
16 | Xu H, He M Z, Tang L, et al. Response of changes of microbial biomass carbon and nitrogen to precipitation in desert soil. Acta Ecologica Sinica, 2020, 40(4): 1295-1304. |
许华, 何明珠, 唐亮, 等. 荒漠土壤微生物量碳、氮变化对降水的响应.生态学报, 2020, 40(4): 1295-1304. | |
17 | Knapp A K, Beier C, Briske D D, et al. Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience, 2008, 58(9): 811-821. |
18 | Shao Y Q, Zhao J, Bao Q H. Vertical distribution of soil microbial biomass in the stabilized sand dune of the Hobq desert. Journal of Desert Research, 2001, 21(1): 88-92. |
邵玉琴, 赵吉, 包青海. 库布齐固定沙丘土壤微生物生物量的垂直分布研究. 中国沙漠, 2001, 21(1): 88-92. | |
19 | Liu Y, Cui Z, Huang Z, et al. The influence of litter crusts on soil properties and hydrological processes in a sandy ecosystem. Hydrology and Earth System Sciences, 2019, 23(5): 2481-2490. |
20 | Li X R, Tan H J, Hui R, et al. Researches in biological soil crust of China: A review. Chinese Science Bulletin, 2018, 63: 2320-2334. |
李新荣, 谭会娟, 回嵘, 等. 中国荒漠与沙地生物土壤结皮研究. 科学通报, 2018, 63: 2320-2334. | |
21 | Yin R P, Wu Y S, Zhang X, et al. Effects of biological crusts on dew deposition and evaporation in the southern edge of the Mu Us Sandy Land, Northern China. Acta Ecologica Sinica, 2013, 33(19): 6173-6180. |
尹瑞平, 吴永胜, 张欣, 等. 毛乌素沙地南缘沙丘生物结皮对凝结水形成和蒸发的影响. 生态学报, 2013, 33(19): 6173-6180. | |
22 | Zhang H, Liu W J, Kang X M, et al. Changes in soil microbial community response to precipitation events in a semi-arid steppe of the Xilin River Basin, China. Journal of Arid Land, 2019, 11(1): 97-110. |
23 | Ren C J, Chen J, Lu X J, et al. Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biology and Biochemistry, 2018, 116: 4-10. |
24 | Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707. |
25 | Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method for measuring microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 1985, 17(6): 837-842. |
26 | Xu G H, Zheng H Y. Handbook of soil microbial analysis methods. Beijing: China Agriculture Press, 1986. |
许光辉, 郑洪元. 土壤微生物分析方法手册. 北京: 中国农业出版社, 1986. | |
27 | Yao H Y, Huang C Y. Soil microbial ecology and its experimental technology. Beijing: Science Press, 2006. |
姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术. 北京: 科学出版社, 2006. | |
28 | Lu R K. Methods of soil agricultural chemistry analysis. Beijing: China Agricultural Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业出版社, 2000. | |
29 | Cable J M, Huxman T E. Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia, 2004, 141(2): 317-324. |
30 | Yang X H, Zhang K B, Zhao Y J. Microbiotic soil crust-A research forefront in desertification-prone areas. Acta Ecologica Sinica, 2001, 21(3): 474-480. |
杨晓晖, 张克斌, 赵云杰. 生物土壤结皮——荒漠化地区研究的热点问题. 生态学报, 2001, 21(3): 474-480. | |
31 | Rodriguez-Caballero E, Belnap J, Büdel B, et al. Dryland photoautotrophic soil surface communities endangered by global change. Nature Geoscience, 2018, 11(3): 185. |
32 | Zhao H L, Guo Y R, Zhou R L, et al. Biological soil crust and surface soil properties in different vegetation types of Horqin Sand Land, China. Catena, 2010, 82(2): 70-76. |
33 | Lu P, Wang L H, Wu F Q. Effect of soil crust strength on erosion under different rainfall intensity. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(8): 141-146. |
路培, 王林华, 吴发启. 不同降雨强度下土壤结皮强度对侵蚀的影响. 农业工程学报, 2017, 33(8): 141-146. | |
34 | Manzoni S, Schimel J P, Porporato A. Response of soil microbial communities to water stress: Results from a meta-analysis. Ecology, 2012, 93(4): 930-938. |
35 | Su Y Z, Zhou Z B, Liu Y B, et al. Carbon flux in deserts depends on soil cover type: A case study in the Gurbantunggute Desert, North China. Soil Biology Biochemistry, 2013, 58: 332-340. |
36 | Xiao B, Zhao Y G, Xu M X, et al. Soil nutrients accumulation and their loss risk under effects of biological soil crust in Loess Plateau of Northern Shaanxi Province, China. Chinese Journal of Applied Ecology, 2008, 19(5): 1019-1026. |
肖波, 赵允格, 许明祥, 等. 陕北黄土区生物结皮条件下土壤养分的积累及流失风险. 应用生态学报, 2008, 19(5): 1019-1026. | |
37 | Zhang B C, Zhou X B, Zang Z M. Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang. Journal of Arid Land, 2015, 7(1): 101-109. |
[1] | 常帅, 于红博, 张巧凤, 马梓策, 刘月璇, 李想. 锡林郭勒草原土壤速效氮空间变异分析[J]. 草业学报, 2021, 30(7): 11-21. |
[2] | 蔡元, 罗玉柱, 臧荣鑫, 李春阳, 扎西英派. 妊娠早期饲粮中添加N-氨甲酰谷氨酸对母羊早期胚胎存活及相关血液指标的影响[J]. 草业学报, 2021, 30(6): 170-179. |
[3] | 马英, 许志豪, 曾巧红, 孟建龙, 胡亚虎, 苏洁琼. 氮素添加对荒漠化草原草本植物养分化学计量特征的影响[J]. 草业学报, 2021, 30(6): 64-72. |
[4] | 余肖飞, 郭晓农, 张妍, 刘子威, 张喜闻, 徐可新, 吴治勇. 响应面法优化藜麦秸秆饲料发酵工艺的研究[J]. 草业学报, 2021, 30(5): 155-164. |
[5] | 彭艳, 孙晶远, 马素洁, 王向涛, 孙磊, 魏学红. 氮磷添加对藏北人工牧草生产性能和品质的评价[J]. 草业学报, 2021, 30(5): 52-64. |
[6] | 魏志敏, 孙斌, 方成, 代子雯, 刘满强, 焦加国, 胡锋, 李辉信, 徐莉. 根瘤菌与固氮菌联合对毛叶苕子的促生效果[J]. 草业学报, 2021, 30(5): 94-102. |
[7] | 孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征[J]. 草业学报, 2021, 30(4): 34-45. |
[8] | 蒙仲举, 陈颜洁, 包斯琴. 苏尼特右旗荒漠草原三种放牧方式下群落斑块特征[J]. 草业学报, 2021, 30(4): 13-23. |
[9] | 张小芳, 魏小红, 刘放, 朱雪妹. PEG胁迫下紫花苜蓿幼苗内源激素对NO的响应[J]. 草业学报, 2021, 30(4): 160-169. |
[10] | 李宏, 宋淑珍, 高良霜, 郎侠, 刘立山, 宫旭胤, 魏玉兵, 吴建平. 饲养水平对阿勒泰羊胃肠道发育、瘤胃发酵参数及瘤胃微生物区系的影响[J]. 草业学报, 2021, 30(4): 180-190. |
[11] | 王子欣, 胡国铮, 水宏伟, 葛怡情, 韩玲, 高清竹, 干珠扎布, 旦久罗布. 不同时期干旱对青藏高原高寒草甸生态系统碳交换的影响[J]. 草业学报, 2021, 30(4): 24-33. |
[12] | 顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57. |
[13] | 张超, 闫瑞瑞, 梁庆伟, 娜日苏, 李彤, 杨秀芳, 包玉海, 辛晓平. 不同利用方式下草地土壤理化性质及碳、氮固持研究[J]. 草业学报, 2021, 30(4): 90-98. |
[14] | 王辛有, 曹文侠, 王小军, 刘玉祯, 高瑞, 王世林, 安海涛, 邓秀霞, 王文虎. 河西地区豆禾混播草地生产性能对刈割高度与施肥的响应[J]. 草业学报, 2021, 30(4): 99-110. |
[15] | 李蒋伟, 王志有, 侯生珍, 雷云, 贾建磊, 周力, 桂林生. 日粮精粗比对育肥藏羊瘤胃组织形态及微生物菌群的影响[J]. 草业学报, 2021, 30(3): 100-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||