草业学报 ›› 2022, Vol. 31 ›› Issue (2): 1-13.DOI: 10.11686/cyxb2021256
• 研究论文 •
王亚晖1,2(), 唐文家3, 李森1,2(), 赵鸿雁1,2, 谢家丽1,2, 马超3, 颜长珍1
收稿日期:
2021-06-28
修回日期:
2021-09-13
出版日期:
2022-02-20
发布日期:
2021-12-22
通讯作者:
李森
作者简介:
Corresponding author. E-mail: lisen@lzb.ac.cn基金资助:
Ya-hui WANG1,2(), Wen-jia TANG3, Sen LI1,2(), Hong-yan ZHAO1,2, Jia-li XIE1,2, Chao MA3, Chang-zhen YAN1
Received:
2021-06-28
Revised:
2021-09-13
Online:
2022-02-20
Published:
2021-12-22
Contact:
Sen LI
摘要:
近年来受到气候变化和人类活动的影响,青海省草地生产力发生明显的变化。本研究基于MOD17A3HGF.006数据产品,以草地净初级生产力(NPP)为指标,采用Sen-MK趋势分析、相关分析和残差分析等方法构建决策树,分析青海省2001-2017年草地NPP变化趋势,并探究其驱动因素的空间异质性。结果表明:1)近17年来青海省草地NPP发生显著(P<0.05)变化的面积为11.41×104 km2,其中NPP极显著(P<0.01)增加、显著(0.01≤P<0.05)增加、显著减少和极显著减少的草地分别占全省草地面积的11.88%、17.25%、0.20%和0.08%;全省草地生产力明显提高。2)草地NPP显著变化的不同主导因素类型中,气温主导的区域最大,占草地NPP显著变化面积的60.66%;其次是人类活动和人类活动+气温,分别占23.45%和9.49%;气温和人类活动是引起青海省草地NPP显著变化的主要因素。3)气温、降水和人类活动对青海省草地NPP变化的作用均以促进为主;同时,人类活动又是草地退化的主要因素,其贡献了草地NPP减少趋势区域的77.49%;而在青海省主要的生态工程区内,人类活动对草地的保护和治理成效明显。
王亚晖, 唐文家, 李森, 赵鸿雁, 谢家丽, 马超, 颜长珍. 青海省草地生产力变化及其驱动因素[J]. 草业学报, 2022, 31(2): 1-13.
Ya-hui WANG, Wen-jia TANG, Sen LI, Hong-yan ZHAO, Jia-li XIE, Chao MA, Chang-zhen YAN. Change in grassland productivity in Qinghai Province and its driving factors[J]. Acta Prataculturae Sinica, 2022, 31(2): 1-13.
趋势 Trends | Sen斜率 Sen slope (β) | MK检验 MK test (Z) |
---|---|---|
极显著增加 Extremely significant increase | β>0 | Z>2.58 |
显著增加 Significant increase | β>0 | 1.96<Z≤2.58 |
变化不显著 No significant trend | ? β | -1.96≤Z≤1.96 |
显著减少 Significant decrease | β<0 | -2.58≤Z<-1.96 |
极显著减少 Extremely significant decrease | β<0 | Z<-2.58 |
表1 草地NPP变化趋势分级标准
Table 1 Classification of grassland NPP trends
趋势 Trends | Sen斜率 Sen slope (β) | MK检验 MK test (Z) |
---|---|---|
极显著增加 Extremely significant increase | β>0 | Z>2.58 |
显著增加 Significant increase | β>0 | 1.96<Z≤2.58 |
变化不显著 No significant trend | ? β | -1.96≤Z≤1.96 |
显著减少 Significant decrease | β<0 | -2.58≤Z<-1.96 |
极显著减少 Extremely significant decrease | β<0 | Z<-2.58 |
图2 草地NPP显著变化的主导因素类型分类决策树Y:是 Yes;N:否 No;HA:人类活动 Human activities;Tmp:气温 Temperature;Pre:降水 Precipitation;RNPP-Tmp:NPP与气温的Pearson相关系数 Pearson correlation coefficient between NPP and temperature;RNPP-Pre:NPP与降水的Pearson相关系数 Pearson correlation coefficient between NPP and precipitation;rNPP-Pre,Tmp:控制气温时,NPP与降水的偏相关系数 Partial correlation coefficient between NPP and precipitation while influence of temperature is eliminated;ENPP-Tmp:NPP与气温一元回归中的残差 Residual error in a single regression between NPP and temperature;ENPP-Pre:NPP与降水一元回归中的残差 Residual error in single regression between NPP and precipitation;ENPP-Tmp,Pre:NPP与气温、降水多元回归中的残差 Residual error in multiple regression among NPP, temperature and precipitation.
Fig.2 The decision tree to distinguish combination types of dominant factors driving significant grassland NPP changes
图4 2001-2017年青海省平均草地NPP、平均气温和平均降水的年际变化
Fig.4 Inter-annual variations of average grassland NPP, average temperature and average precipitation in Qinghai Province during 2001-2017
图6 2001-2017年青海省草地NPP显著变化的不同主导因素类型空间分布HA:人类活动 Human activities;Tmp:气温 Temperature;Pre:降水 Precipitation.
Fig.6 Spatial distribution of the combination types of dominant factors driving significant grassland NPP changes in Qinghai Province during 2001-2017
图7 2001-2017年青海省气温(a)、降水(b)和人类活动(c)分别对草地NPP变化影响的空间分布PC:正相关 Positive correlation;NC:负相关 Negative correlation.
Fig.7 Spatial distribution of effect of temperature (a), precipitation (b) and human activities (c) on grassland NPP in Qinghai Province during 2001-2017
1 | Gang C C, Wang Z Q, Yang Y, et al. The NPP spatiotemporal variation of global grassland ecosystems in response to climate change over the past 100 years. Acta Prataculturae Sinica, 2016, 25(11): 1-14. |
刚成诚, 王钊齐, 杨悦, 等. 近百年全球草地生态系统净初级生产力时空动态对气候变化的响应. 草业学报, 2016, 25(11): 1-14. | |
2 | Costanza R, d’Arge R, Groot R D, et al. The value of the world’s ecosystem services and natural capital. Nature, 1997, 387(6630): 253-260. |
3 | Gao S Z, Zhao H, Han Z J, et al. Grassland tourism and sustainable development of grassland. Journal of Agricultural Sciences, 2006, 27(3): 93-96. |
高生珠, 赵宏, 韩占军, 等. 草地旅游业与草地可持续发展.农业科学研究, 2006, 27(3): 93-96. | |
4 | Li W J, Jiu C L, Tan Z H, et al. Natural grassland productivity and the livestock-feeds balance in Qinghai Province. Resources Science, 2012, 34(2): 367-372. |
李文娟, 九次力, 谭忠厚, 等. 青海省草地生产力及草畜平衡状况研究. 资源科学, 2012, 34(2): 367-372. | |
5 | Wei X X. Remote sensing based monitoring of grassland productivity and its evaluation of carrying capacity in Qinghai Province for recent 40 years. Lanzhou: Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 2019. |
魏晓旭. 近40年青海省草地生产力变化遥感监测及其承载力评价. 兰州: 中国科学院西北生态环境资源研究院, 中国科学院大学, 2019. | |
6 | Wu H, An R, Li X X, et al. Remote sensing monitoring of grassland degradation based on NPP change in the Maduo County of the sources region of Yellow River. Pratacultural Science, 2011, 28(4): 536-542. |
吴红, 安如, 李晓雪, 等. 基于净初级生产力变化的草地退化监测研究. 草业科学, 2011, 28(4): 536-542. | |
7 | Matsushita B, Tamura M. Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia. Remote Sensing of Environment, 2002, 81(1): 58-66. |
8 | Liu J, Meng B P, Ge J, et al. Spatio-temporal dynamic changes of grassland NPP in Gannan prefecture, as determined by the CASA model. Acta Prataculturae Sinica, 2019, 28(6): 19-32. |
刘洁, 孟宝平, 葛静, 等. 基于CASA模型和MODIS数据的甘南草地NPP时空动态变化研究.草业学报, 2019, 28(6): 19-32. | |
9 | Wang C S, Meng F D, Li X E, et al. Factors affecting plant primary productivity of grasslands: A review. Acta Ecologica Sinica, 2014, 34(15): 4125-4132. |
王常顺, 孟凡栋, 李新娥, 等. 草地植物生产力主要影响因素研究综述.生态学报, 2014, 34(15): 4125-4132. | |
10 | Evans J, Geerken R. Discrimination between climate and human-induced dryland degradation. Journal of Arid Environments, 2004, 57(4): 535-554. |
11 | Geerken R, Ilaiwi M. Assessment of rangeland degradation and development of a strategy for rehabilitation. Remote Sensing of Environment, 2004, 90(4): 490-504. |
12 | Cao X, Gu Z H, Chen J, et al. Analysis of human induced steppe degradation based on remote sensing in Xilin Gole, Inner Mongolia, China. Journal of Plant Ecology, 2006, 30(2): 268-277. |
曹鑫, 辜智慧, 陈晋, 等. 基于遥感的草原退化人为因素影响趋势分析. 植物生态学报, 2006, 30(2): 268-277. | |
13 | Yin L, Dai E, Zheng D, et al. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: Climate change or human activity? Ecological Indicators, 2020, 112: 106013. DOI: 10.1016/j.ecolind.2019.106013. |
14 | Li H, Hong Y, Deng G R, et al. Impact of climate change and human activities on net primary productivity of grasslands in Inner Mongolia, China during 1982-2015. Chinese Journal of Applied Ecology, 2021, 32(2): 415-424. |
李辉, 红英, 邓国荣, 等. 1982-2015年气候变化和人类活动对内蒙古草地净初级生产力的影响. 应用生态学报, 2021, 32(2): 415-424. | |
15 | Qin X, Liu W B, Mao R C, et al. Quantitative assessment of driving factors affecting human appropriation of net primary production (HANPP) in the Qilian Mountains, China. Ecological Indicators, 2021, 121: 106997. DOI: 10.1016/J.ECOLIND.2020.106997. |
16 | Leroux L, Bégué A, Seen D L, et al. Driving forces of recent vegetation changes in the Sahel: Lessons learned from regional and local level analyses. Remote Sensing of Environment, 2017, 191: 38-54. |
17 | Wang J. Methods for detecting vegetation changes and quantifying the driving factors using NDVI time series by taking Hexi as a case area. Lanzhou: Lanzhou University, 2020. |
王巨. 基于时序NDVI植被变化检测与驱动因素量化方法研究. 兰州: 兰州大学, 2020. | |
18 | Nemani R R, Keeling C D, Hashimoto H, et al. Climate-Driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300(5625): 1560-1563. |
19 | Ma H X, Chen C C, Song Y Q, et al. Analysis of vegetation cover change and its driving factors over the past ten years in Qinghai Province. Research of Soil and Water Conservation, 2018, 25(6): 137-145. |
马昊翔, 陈长成, 宋英强, 等. 青海省近10年草地植被覆盖动态变化及其驱动因素分析. 水土保持研究, 2018, 25(6): 137-145. | |
20 | Qin Q T, Chen J J, Yang Y P, et al. Spatial and temporal variations of vegetation and its response to topography and climate in the source of the Yellow River. China Environmental Science, 2021, 41(8): 3832-3841. |
覃巧婷, 陈建军, 杨艳萍, 等. 黄河源区植被时空变化及其对地形和气候的响应. 中国环境科学, 2021, 41(8): 3832-3841. | |
21 | The People’s Government of Qinghai Province. Beautiful Qinghai, 2007-2013: http://www.qh.gov.cn/dmqh/glp/index.html. |
青海省人民政府.大美青海, 2007-2013: http://www.qh.gov.cn/dmqh/glp/index.html. | |
22 | Li X Q. Natural area degraded grassland distribution in Qinghai Province. Qinghai Prataculturae, 2017, 26(3): 49-51. |
李旭谦. 青海省自然地理区域退化草地分布. 青海草业, 2017, 26(3): 49-51. | |
23 | Wei X X, Wei W, Liu C F. Spatiotemporal evolution of grassland vegetation and its relationship with human activities in Qinghai Province in recent 40 years. Chinese Journal of Ecology, 2021, 40(8): 2541-2552. |
魏晓旭, 魏伟, 刘春芳. 近40年青海省草地植被时空变化及其与人类活动的关系. 生态学杂志, 2021, 40(8): 2541-2552. | |
24 | Ding M J, Zhang Y L, Liu L S, et al. Temporal and spatial distribution of grassland coverage change in Tibetan Plateau since 1982. Journal of Natural Resources, 2010, 25(12): 2114-2122. |
丁明军, 张镱锂, 刘林山, 等. 1982-2009年青藏高原草地覆盖度时空变化特征. 自然资源学报, 2010, 25(12): 2114-2122. | |
25 | Wu B F. China’s land cover. Beijing: Science Press, 2017. |
吴炳方. 中国土地覆被. 北京: 科学出版社, 2017. | |
26 | Robinson N P, Allred B W, Smith W K, et al. Terrestrial primary production for the conterminous United States derived from Landsat 30 m and MODIS 250 m. Remote Sensing in Ecology and Conservation, 2018, 4(3): 264-280. |
27 | Wang J J, Zhao A Z, Hu X F. Spatiotemporal distribution of vegetation net primary productivity in Beijing-Tianjin-Heibei and natural driving factors. Ecology and Environmental Sciences, 2021, 30(6): 1158-1167. |
王金杰, 赵安周, 胡小枫. 京津冀植被净初级生产力时空分布及其自然驱动因子分析. 生态环境学报, 2021, 30(6): 1158-1167. | |
28 | Zhang Y, Hu Q W, Zou F L. Spatio-temporal changes of vegetation net primary productivity and its driving factors on the Qinghai-Tibetan Plateau from 2001 to 2017. Remote Sensing, 2021, 13(8): 1566. |
29 | Ding M J. Temperature and precipitation grid data of the Qinghai Tibet Plateau and its surrounding areas in 1998-2017. Beijing: National Tibetan Plateau Data Center, 2019. |
丁明军. 青藏高原及周边地区气温和降水格点数据(1998-2017). 北京: 国家青藏高原科学数据中心, 2019. | |
30 | Hirsch R M, Slack J R, Smith R A. Techniques of trend analysis for monthly water quality data. Water Resources Research, 1982, 18(1): 107-121. |
31 | Hirsch R M, Slack J R. A nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 1984, 20(6): 727-732. |
32 | Wang J, Wan H L, Yao S B. Spatial and temporal response of vegetation cover to climate change in different zones of Sichuan-Shaanxi area during growing season. Acta Ecologica Sinica, 2019, 39(14): 5218-5231. |
王静, 万红莲, 姚顺波. 生长季川陕不同地带植被覆盖对气候变化的时空响应. 生态学报, 2019, 39(14): 5218-5231. | |
33 | Yuan L H, Jiang W G, Shen W M, et al. The spatio-temporal variations of vegetation cover in the Yellow River Basin from 2000 to 2010. Acta Ecologica Sinica, 2013, 33(24): 7798-7806. |
袁丽华, 蒋卫国, 申文明, 等. 2000-2010年黄河流域植被覆盖的时空变化. 生态学报, 2013, 33(24): 7798-7806. | |
34 | Liu Y Y, Zhang Z Y, Tong L J, et al. Spatiotemporal dynamics of China’s grassland NPP and its driving factors. Chinese Journal of Ecology, 2020, 39(2): 349-363. |
刘洋洋, 章钊颖, 同琳静, 等. 中国草地净初级生产力时空格局及其影响因素. 生态学杂志, 2020, 39(2): 349-363. | |
35 | Liu M X, Jiao J, Pan J H, et al. Spatial and temporal patterns of planting NPP and its driving factors in Qinghai Province. Acta Ecologica Sinica, 2020, 40(15): 5306-5317. |
刘旻霞, 焦骄, 潘竟虎, 等. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素. 生态学报, 2020, 40(15): 5306-5317. | |
36 | Yang D, Yi G H, Zhang T B, et al. Spatiotemporal variation and driving factors of growing season NDVI in the Tibetan Plateau, China. Chinese Journal of Applied Ecology, 2021, 32(4): 1361-1372. |
杨达, 易桂花, 张廷斌, 等. 青藏高原植被生长季NDVI时空变化与影响因素. 应用生态学报, 2021, 32(4): 1361-1372. | |
37 | Jin K, Wang F, Han J Q, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015. Acta Geographica Sinica, 2020, 75(5): 961-974. |
金凯, 王飞, 韩剑桥, 等. 1982-2015年中国气候变化和人类活动对植被NDVI变化的影响. 地理学报, 2020, 75(5): 961-974. | |
38 | Li C H, Zhu T B, Zhou M, et al. Temporal and spatial change of net primary productivity of vegetation and its determinants in Hexi Corridor. Acta Ecologica Sinica, 2021, 41(5): 1931-1943. |
李传华, 朱同斌, 周敏, 等. 河西走廊植被净初级生产力时空变化及其影响因子研究.生态学报, 2021, 41(5): 1931-1943. | |
39 | Li F X, Tang H Y, Su W J, et al. Remote sensing investigation of desertification in Longyangxia reservoir region. Journal of Desert Research, 2003, 23(6): 686-690. |
李凤霞, 唐红玉, 苏文将, 等. 青海省龙羊峡库区沙漠化遥感监测. 中国沙漠, 2003, 23(6): 686-690. | |
40 | Bai L N, Li Z Y, Gao Z H, et al. Change monitoring of sandy desertification and land cover by remote sensing in Gonghe County, Qinghai. Journal of Soil and Water Conservation, 2006, 20(1): 131-134, 142. |
白黎娜, 李增元, 高志海, 等. 青海省共和县土地沙化与土地覆盖变化遥感监测研究. 水土保持学报, 2006, 20(1): 131-134,142. | |
41 | Zhou H K, Han F, Li Y N, et al. Causes and controlling strategies of grassland desertification of Maduo County in Qinghai Province. Journal of Anhui Agricultural Sciences, 2007, 35(32): 10397-10399. |
周华坤, 韩发, 李英年, 等. 青海省玛多县草地沙化成因及其防治对策. 安徽农业科学, 2007, 35(32): 10397-10399. | |
42 | Zhang D S, Gao S Y. Research progress on sand desertification in Qinghai Plateau. Journal of Desert Research, 2007, 27(3): 367-372. |
张登山, 高尚玉. 青海高原沙漠化研究进展. 中国沙漠, 2007, 27(3): 367-372. |
[1] | 张仁平, 郭靖, 马晓芳, 郭伟勇. 基于MODIS数据的新疆草地物候提取方法及变化趋势分析[J]. 草业学报, 2022, 31(1): 1-12. |
[2] | 王斌, 李满有, 王欣盼, 董秀, 庞军宝, 兰剑. 深松浅旋对半干旱区退化紫花苜蓿人工草地改良效果研究[J]. 草业学报, 2022, 31(1): 107-117. |
[3] | 韩小雨, 郭宁, 李冬冬, 谢明阳, 焦峰. 氮添加对内蒙古不同草原生物量及土壤碳氮变化特征的影响[J]. 草业学报, 2022, 31(1): 13-25. |
[4] | 马文明, 刘超文, 周青平, 邓增卓玛, 唐思洪, 迪力亚尔·莫合塔尔null, 侯晨. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J]. 草业学报, 2022, 31(1): 57-68. |
[5] | 汪精海, 李广, 银敏华, 齐广平, 康燕霞, 马彦麟. 调亏灌溉对高寒荒漠区人工混播草地土壤环境与牧草生长的影响[J]. 草业学报, 2022, 31(1): 95-106. |
[6] | 杨鑫, 曹文侠, 鱼小军, 汪海斌, 郝媛媛. 基于近20年MODIS NDVI日数据的青海省草地资源动态监测及其对环境因子的响应[J]. 草业学报, 2021, 30(9): 1-14. |
[7] | 吴廷美, 林慧龙, 范迪, 籍常婷, 赵玉婷, 魏靖琼. 冻原高山草地牧户家畜养殖规模影响因素分析——以青海省为例[J]. 草业学报, 2021, 30(9): 117-126. |
[8] | 刘佳丽, 范建容, 张茜彧, 杨超, 徐富宝, 张晓雪, 梁博. 高寒草地生长季/非生长季植被盖度遥感反演[J]. 草业学报, 2021, 30(9): 15-26. |
[9] | 宋梅玲, 王玉琴, 王宏生, 鲍根生. 内生真菌对高寒草地紫花针茅凋落物分解的影响[J]. 草业学报, 2021, 30(9): 150-158. |
[10] | 付刚, 王俊皓, 李少伟, 何萍. 藏北高寒草地牧草营养品质对放牧的响应机制[J]. 草业学报, 2021, 30(9): 38-50. |
[11] | 赵京东, 乌云娜, 宋彦涛. 短期围封对辽西北退化草地群落牧草品质的影响[J]. 草业学报, 2021, 30(9): 51-61. |
[12] | 马婧婧, 刘耘华, 盛建东, 李宁, 武红旗, 贾宏涛, 孙宗玖, 程军回. 新疆草地优势种植物相对生物量沿海拔梯度变化特征[J]. 草业学报, 2021, 30(8): 25-35. |
[13] | 赵京东, 宋彦涛, 徐鑫磊, 乌云娜. 施氮和刈割对辽西北退化草地牧草产量和品质的影响[J]. 草业学报, 2021, 30(8): 36-48. |
[14] | 孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征[J]. 草业学报, 2021, 30(4): 34-45. |
[15] | 张金青, 牛奎举, 李玉珠, 马晖玲. 植物无融合生殖发生因素解析及其在草地早熟禾育种中的应用前景展望[J]. 草业学报, 2021, 30(4): 205-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||