草业学报 ›› 2022, Vol. 31 ›› Issue (9): 129-138.DOI: 10.11686/cyxb2021379
• 研究论文 • 上一篇
陈卫东1(), 张玉霞1,2(), 张庆昕1, 刘庭玉1, 王显国3, 王东儒4
收稿日期:
2021-10-19
修回日期:
2021-12-06
出版日期:
2022-09-20
发布日期:
2022-08-12
通讯作者:
张玉霞
作者简介:
Corresponding author. E-mail: yuxiazhang685@163.com基金资助:
Wei-dong CHEN1(), Yu-xia ZHANG1,2(), Qing-xin ZHANG1, Ting-yu LIU1, Xian-guo WANG3, Dong-ru WANG4
Received:
2021-10-19
Revised:
2021-12-06
Online:
2022-09-20
Published:
2022-08-12
Contact:
Yu-xia ZHANG
摘要:
为探究不同末次刈割时间对科尔沁沙地生境下紫花苜蓿抗寒性的影响及其与低温冷冻胁迫下抗氧化系统变化的关系,以‘公农1号’紫花苜蓿为材料,于翌年秋季进行不同末次刈割时间处理,越冬前期挖取越冬器官并进行-10,-15,-20,-25和-30 ℃低温冷冻胁迫处理,以低温冷藏(4 ℃)为对照,测定紫花苜蓿根颈的相对电导率及丙二醛(MDA)含量、超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性的变化,利用相对电导率根据Logistic回归方程计算半致死温度,并对半致死温度与抗氧化特性进行相关分析。结果表明,未刈割和8月25日、9月5日、9月15日、9月25日、10月5日、10月15日、10月25日、11月5日末次刈割的苜蓿半致死温度分别为-18.03、-17.61、-17.03、-16.59、-15.80、-15.82、-16.83、-16.34、-17.12 ℃;紫花苜蓿根颈的半致死温度与-10 ℃低温冷冻胁迫条件下的POD活性呈显著负相关(P<0.05),与-20 ℃低温冷冻胁迫条件下的CAT活性呈显著负相关(P<0.05),与-15、-20、-25 ℃低温冷冻胁迫条件下的SOD活性呈显著或极显著负相关,与-15、-20、-25、-30 ℃低温冷冻胁迫条件下的MDA含量呈显著或极显著正相关。不同末次刈割时间的苜蓿抗寒性强弱为未刈割>8月25日>11月5日>9月5日>10月15日>9月15日>10月25日>10月5日>9月25日;末次刈割时间通过调控苜蓿根颈的SOD、POD、CAT活性,协同作用清除活性氧、过氧化物和过氧化氢,从而降低膜脂过氧化程度,提高抗寒性,因此在科尔沁沙地地区建议9月5日之前或11月5日之后进行末次刈割。
陈卫东, 张玉霞, 张庆昕, 刘庭玉, 王显国, 王东儒. 末次刈割时间对苜蓿根颈抗氧化系统及抗寒性的影响[J]. 草业学报, 2022, 31(9): 129-138.
Wei-dong CHEN, Yu-xia ZHANG, Qing-xin ZHANG, Ting-yu LIU, Xian-guo WANG, Dong-ru WANG. The effect of last cutting time on the antioxidant system and cold resistance of alfalfa root-neck[J]. Acta Prataculturae Sinica, 2022, 31(9): 129-138.
刈割时间 Cutting time (Month-day) | Logistic回归方程 Logistic regression equation | 显著性 Significance | 半致死温度 Semi-lethal temperature (℃) |
---|---|---|---|
未刈割Uncut | y=1/(0.01352+0.11968×T1.13234) | 0.011 | -18.03 |
08-25 | y=1/(0.01360+0.09669×T1.12580) | 0.013 | -17.61 |
09-05 | y=1/(0.01340+0.08834×T1.12522) | 0.013 | -17.03 |
09-15 | y=1/(0.01331+0.09098×T1.13087) | 0.007 | -16.59 |
09-25 | y=1/(0.01239+0.05809×T1.11903) | 0.010 | -15.80 |
10-05 | y=1/(0.01295+0.06625×T1.12157) | 0.007 | -15.82 |
10-15 | y=1/(0.01338+0.09164×T1.12887) | 0.009 | -16.83 |
10-25 | y=1/(0.01324+0.09564×T1.13382) | 0.006 | -16.34 |
11-05 | y=1/(0.01302+0.09986×T1.13232) | 0.010 | -17.12 |
表1 不同末次刈割时间苜蓿根颈相对电导率拟合Logistic回归方程及LT50
Table 1 The Logistic regression equation and LT50 of relative conductivity of alfalfa root-neck under different last cutting time
刈割时间 Cutting time (Month-day) | Logistic回归方程 Logistic regression equation | 显著性 Significance | 半致死温度 Semi-lethal temperature (℃) |
---|---|---|---|
未刈割Uncut | y=1/(0.01352+0.11968×T1.13234) | 0.011 | -18.03 |
08-25 | y=1/(0.01360+0.09669×T1.12580) | 0.013 | -17.61 |
09-05 | y=1/(0.01340+0.08834×T1.12522) | 0.013 | -17.03 |
09-15 | y=1/(0.01331+0.09098×T1.13087) | 0.007 | -16.59 |
09-25 | y=1/(0.01239+0.05809×T1.11903) | 0.010 | -15.80 |
10-05 | y=1/(0.01295+0.06625×T1.12157) | 0.007 | -15.82 |
10-15 | y=1/(0.01338+0.09164×T1.12887) | 0.009 | -16.83 |
10-25 | y=1/(0.01324+0.09564×T1.13382) | 0.006 | -16.34 |
11-05 | y=1/(0.01302+0.09986×T1.13232) | 0.010 | -17.12 |
刈割时间 Cutting time (Month-day) | 处理温度 Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
未刈割Uncut | 0.46±0.02aD | 0.53±0.03abcD | 0.67±0.05bcdC | 0.90±0.04cdB | 1.00±0.08eAB | 1.05±0.01gA |
08-25 | 0.45±0.01aE | 0.46±0.03bcE | 0.62±0.03dD | 0.77±0.08dC | 1.13±0.03eB | 1.58±0.05eA |
09-05 | 0.41±0.03aD | 0.48±0.01bcD | 0.63±0.02cdC | 0.89±0.04cdB | 1.35±0.05dA | 1.42±0.04fA |
09-15 | 0.53±0.05aE | 0.54±0.03abcE | 0.79±0.04bD | 0.95±0.04abcC | 1.58±0.04bcB | 1.98±0.08cA |
09-25 | 0.50±0.03aD | 0.60±0.03abD | 0.96±0.02aC | 1.07±0.10aC | 1.59±0.05bB | 2.39±0.10bA |
10-05 | 0.48±0.01aF | 0.62±0.02aE | 0.76±0.03bcD | 1.04±0.07abC | 2.27±0.13aB | 2.90±0.10aA |
10-15 | 0.46±0.01aE | 0.47±0.02bcE | 0.71±0.03bcdD | 0.90±0.05cC | 1.44±0.05dB | 1.67±0.07eA |
10-25 | 0.44±0.02aE | 0.46±0.02cE | 0.69±0.02bcdD | 0.95±0.07abcC | 1.45±0.05cdB | 1.61±0.09eA |
11-05 | 0.50±0.04aE | 0.50±0.03abcE | 0.73±0.03bcdD | 0.92±0.03bcC | 1.41±0.04dB | 1.84±0.08dA |
表2 不同末次刈割时间苜蓿根颈在低温处理下MDA含量的变化
Table 2 Changes of MDA content in alfalfa root-neck at different last cutting times under low temperature treatment (nmol·g-1 FW)
刈割时间 Cutting time (Month-day) | 处理温度 Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
未刈割Uncut | 0.46±0.02aD | 0.53±0.03abcD | 0.67±0.05bcdC | 0.90±0.04cdB | 1.00±0.08eAB | 1.05±0.01gA |
08-25 | 0.45±0.01aE | 0.46±0.03bcE | 0.62±0.03dD | 0.77±0.08dC | 1.13±0.03eB | 1.58±0.05eA |
09-05 | 0.41±0.03aD | 0.48±0.01bcD | 0.63±0.02cdC | 0.89±0.04cdB | 1.35±0.05dA | 1.42±0.04fA |
09-15 | 0.53±0.05aE | 0.54±0.03abcE | 0.79±0.04bD | 0.95±0.04abcC | 1.58±0.04bcB | 1.98±0.08cA |
09-25 | 0.50±0.03aD | 0.60±0.03abD | 0.96±0.02aC | 1.07±0.10aC | 1.59±0.05bB | 2.39±0.10bA |
10-05 | 0.48±0.01aF | 0.62±0.02aE | 0.76±0.03bcD | 1.04±0.07abC | 2.27±0.13aB | 2.90±0.10aA |
10-15 | 0.46±0.01aE | 0.47±0.02bcE | 0.71±0.03bcdD | 0.90±0.05cC | 1.44±0.05dB | 1.67±0.07eA |
10-25 | 0.44±0.02aE | 0.46±0.02cE | 0.69±0.02bcdD | 0.95±0.07abcC | 1.45±0.05cdB | 1.61±0.09eA |
11-05 | 0.50±0.04aE | 0.50±0.03abcE | 0.73±0.03bcdD | 0.92±0.03bcC | 1.41±0.04dB | 1.84±0.08dA |
刈割时间 Cutting time (Month-day) | 处理温度 Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
未刈割Uncut | 109.87±1.90aF | 126.69±6.06aE | 162.05±2.36aD | 194.72±4.88abC | 235.08±7.61aB | 261.62±11.13abA |
08-25 | 110.20±4.78aF | 127.63±3.43aE | 153.35±7.23abD | 205.06±4.37aC | 229.83±10.31aB | 249.36±8.47bcA |
09-05 | 108.09±4.16aD | 118.14±5.88aD | 148.32±3.17abcC | 192.83±2.78abB | 205.23±11.04bB | 236.28±10.58cA |
09-15 | 116.38±10.24aE | 123.46±7.98aE | 143.08±4.96bcD | 182.61±1.89bC | 204.92±3.91bB | 238.92±10.94cA |
09-25 | 106.33±2.33aD | 126.14±5.68aC | 131.50±3.36cC | 160.17±3.49cB | 202.45±6.09bA | 204.48±10.44dA |
10-05 | 104.39±2.65aE | 113.62±5.96aE | 143.53±6.16bcD | 181.92±4.21bC | 209.20±8.57bB | 273.26±7.04aA |
10-15 | 103.37±7.42aE | 119.10±5.18aE | 148.63±4.15abcD | 186.65±2.40bC | 229.71±8.09aB | 257.07±12.29abA |
10-25 | 109.68±2.08aD | 112.21±5.66aD | 146.00±3.09abcC | 191.85±4.13abB | 207.41±10.53bAB | 211.57±10.31dA |
11-05 | 115.56±3.70aD | 114.19±1.20aD | 134.83±5.97cC | 191.49±3.60abB | 227.29±9.80aA | 239.51±8.77cA |
表3 不同末次刈割时间苜蓿根颈在低温处理下SOD活性的变化
Table 3 Changes of superoxide dismutase activity in alfalfa root-neck with different last cutting time under low temperature treatment (U·g-1 FW)
刈割时间 Cutting time (Month-day) | 处理温度 Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
未刈割Uncut | 109.87±1.90aF | 126.69±6.06aE | 162.05±2.36aD | 194.72±4.88abC | 235.08±7.61aB | 261.62±11.13abA |
08-25 | 110.20±4.78aF | 127.63±3.43aE | 153.35±7.23abD | 205.06±4.37aC | 229.83±10.31aB | 249.36±8.47bcA |
09-05 | 108.09±4.16aD | 118.14±5.88aD | 148.32±3.17abcC | 192.83±2.78abB | 205.23±11.04bB | 236.28±10.58cA |
09-15 | 116.38±10.24aE | 123.46±7.98aE | 143.08±4.96bcD | 182.61±1.89bC | 204.92±3.91bB | 238.92±10.94cA |
09-25 | 106.33±2.33aD | 126.14±5.68aC | 131.50±3.36cC | 160.17±3.49cB | 202.45±6.09bA | 204.48±10.44dA |
10-05 | 104.39±2.65aE | 113.62±5.96aE | 143.53±6.16bcD | 181.92±4.21bC | 209.20±8.57bB | 273.26±7.04aA |
10-15 | 103.37±7.42aE | 119.10±5.18aE | 148.63±4.15abcD | 186.65±2.40bC | 229.71±8.09aB | 257.07±12.29abA |
10-25 | 109.68±2.08aD | 112.21±5.66aD | 146.00±3.09abcC | 191.85±4.13abB | 207.41±10.53bAB | 211.57±10.31dA |
11-05 | 115.56±3.70aD | 114.19±1.20aD | 134.83±5.97cC | 191.49±3.60abB | 227.29±9.80aA | 239.51±8.77cA |
刈割时间 Cutting time (Month-day) | 处理温度 Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
未刈割Uncut | 516.70±29.41aD | 654.90±37.23aC | 637.60±20.65bcC | 746.30±23.49abB | 827.60±24.51aA | 692.40±25.78bcBC |
08-25 | 494.00±19.08abD | 525.80±11.22cdD | 727.70±17.32aB | 655.70±11.39dC | 836.60±20.24aA | 795.00±41.52aAB |
09-05 | 414.45±46.80cD | 601.00±32.82abC | 737.50±20.46aB | 729.60±13.23abcdB | 853.70±15.38aA | 753.60±35.54abB |
09-15 | 417.00±24.72cD | 501.80±24.25cdC | 668.40±16.27abB | 766.00±15.91aA | 795.30±28.57aA | 775.80±30.67aA |
09-25 | 406.75±40.49cD | 466.00±30.80dD | 648.70±22.27bcC | 762.00±21.65abB | 847.10±29.98aA | 742.80±9.20abB |
10-05 | 463.20±17.55abcE | 521.50±35.37cdDE | 581.70±53.95cCD | 732.20±18.85abcB | 803.40±18.18aA | 636.50±16.52cC |
10-15 | 410.00±42.94cE | 531.00±15.88bcdD | 623.20±19.84bcC | 755.02±34.90abAB | 806.90±25.36aA | 697.60±14.66bcB |
10-25 | 423.55±41.72bcD | 545.30±16.59bcC | 663.60±21.61abB | 671.00±81.99cdB | 833.90±3.97aA | 656.90±12.16cB |
11-05 | 501.40±27.92aC | 637.50±15.79aB | 647.00±26.86bcB | 691.20±57.01bcdB | 803.80±32.30aA | 684.70±23.07bcB |
表4 不同末次刈割时间苜蓿根颈在低温处理下POD活性的变化
Table 4 Changes of peroxidase activity in alfalfa root-neck with different last cutting time under low temperature treatment (U·min-1·g-1 FW)
刈割时间 Cutting time (Month-day) | 处理温度 Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
未刈割Uncut | 516.70±29.41aD | 654.90±37.23aC | 637.60±20.65bcC | 746.30±23.49abB | 827.60±24.51aA | 692.40±25.78bcBC |
08-25 | 494.00±19.08abD | 525.80±11.22cdD | 727.70±17.32aB | 655.70±11.39dC | 836.60±20.24aA | 795.00±41.52aAB |
09-05 | 414.45±46.80cD | 601.00±32.82abC | 737.50±20.46aB | 729.60±13.23abcdB | 853.70±15.38aA | 753.60±35.54abB |
09-15 | 417.00±24.72cD | 501.80±24.25cdC | 668.40±16.27abB | 766.00±15.91aA | 795.30±28.57aA | 775.80±30.67aA |
09-25 | 406.75±40.49cD | 466.00±30.80dD | 648.70±22.27bcC | 762.00±21.65abB | 847.10±29.98aA | 742.80±9.20abB |
10-05 | 463.20±17.55abcE | 521.50±35.37cdDE | 581.70±53.95cCD | 732.20±18.85abcB | 803.40±18.18aA | 636.50±16.52cC |
10-15 | 410.00±42.94cE | 531.00±15.88bcdD | 623.20±19.84bcC | 755.02±34.90abAB | 806.90±25.36aA | 697.60±14.66bcB |
10-25 | 423.55±41.72bcD | 545.30±16.59bcC | 663.60±21.61abB | 671.00±81.99cdB | 833.90±3.97aA | 656.90±12.16cB |
11-05 | 501.40±27.92aC | 637.50±15.79aB | 647.00±26.86bcB | 691.20±57.01bcdB | 803.80±32.30aA | 684.70±23.07bcB |
刈割时间 Cutting time (Month-day) | 处理温度 Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
未刈割Uncut | 60.94±4.20aD | 72.96±1.99aC | 83.17±6.54aB | 116.50±2.76aA | 65.07±3.55bcD | 67.18±2.07bcCD |
08-25 | 57.47±1.71aD | 70.12±1.24abC | 77.33±10.96abBC | 122.55±3.60aA | 71.59±2.72abBC | 78.19±3.28aB |
09-05 | 54.14±2.17aE | 61.65±4.29cDE | 79.74±2.11abB | 118.00±5.42aA | 68.74±2.10abCD | 74.23±1.94abBC |
09-15 | 56.89±2.68aD | 68.97±4.48abcBC | 73.83±2.38bcB | 98.67±3.74deA | 56.63±1.81deD | 61.54±3.88cdCD |
09-25 | 58.88±3.22aD | 68.33±1.97abcC | 77.25±1.79abB | 98.67±0.82deA | 75.47±1.78aBC | 58.19±2.13dD |
10-05 | 57.58±2.82aCD | 61.17±2.57cBC | 67.96±2.77cB | 96.55±2.09eA | 53.33±3.05eD | 65.02±2.05cdBC |
10-15 | 58.00±2.00aD | 71.99±1.77abC | 80.41±3.37abB | 107.55±3.90bcA | 55.72±1.60deD | 79.47±2.19aBC |
10-25 | 53.33±2.62aD | 72.63±1.37abBC | 77.79±1.92abB | 114.72±2.96abA | 57.00±4.74cdeD | 68.57±1.18bcC |
11-05 | 52.92±1.67aD | 64.55±1.48bcC | 73.68±1.49bcB | 106.26±2.36cdA | 63.52±1.66bcdD | 46.35±2.44eD |
表5 不同末次刈割时间苜蓿根颈在低温处理下CAT活性的变化
Table 5 Changes of catalase activity in alfalfa root-neck with different last cutting time under low temperature treatment (U·min-1·g-1 FW)
刈割时间 Cutting time (Month-day) | 处理温度 Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
未刈割Uncut | 60.94±4.20aD | 72.96±1.99aC | 83.17±6.54aB | 116.50±2.76aA | 65.07±3.55bcD | 67.18±2.07bcCD |
08-25 | 57.47±1.71aD | 70.12±1.24abC | 77.33±10.96abBC | 122.55±3.60aA | 71.59±2.72abBC | 78.19±3.28aB |
09-05 | 54.14±2.17aE | 61.65±4.29cDE | 79.74±2.11abB | 118.00±5.42aA | 68.74±2.10abCD | 74.23±1.94abBC |
09-15 | 56.89±2.68aD | 68.97±4.48abcBC | 73.83±2.38bcB | 98.67±3.74deA | 56.63±1.81deD | 61.54±3.88cdCD |
09-25 | 58.88±3.22aD | 68.33±1.97abcC | 77.25±1.79abB | 98.67±0.82deA | 75.47±1.78aBC | 58.19±2.13dD |
10-05 | 57.58±2.82aCD | 61.17±2.57cBC | 67.96±2.77cB | 96.55±2.09eA | 53.33±3.05eD | 65.02±2.05cdBC |
10-15 | 58.00±2.00aD | 71.99±1.77abC | 80.41±3.37abB | 107.55±3.90bcA | 55.72±1.60deD | 79.47±2.19aBC |
10-25 | 53.33±2.62aD | 72.63±1.37abBC | 77.79±1.92abB | 114.72±2.96abA | 57.00±4.74cdeD | 68.57±1.18bcC |
11-05 | 52.92±1.67aD | 64.55±1.48bcC | 73.68±1.49bcB | 106.26±2.36cdA | 63.52±1.66bcdD | 46.35±2.44eD |
指标 Index | 处理温度Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
丙二醛Malondialdehyde (MDA) | 0.33 | 0.58 | 0.71* | 0.83** | 0.84** | 0.85** |
过氧化物酶Peroxidase (POD) | -0.65* | -0.71* | -0.42 | 0.27 | -0.10 | -0.30 |
过氧化氢酶Catalase (CAT) | -0.16 | -0.34 | -0.61 | -0.75* | -0.25 | -0.25 |
超氧化物歧化酶Superoxide dismutase (SOD) | -0.34 | -0.41 | -0.73* | -0.77** | -0.78** | -0.37 |
表6 不同末次刈割时间苜蓿根颈的半致死温度与其抗氧化系统的相关性
Table 6 Correlation between the semi-lethal temperature of alfalfa root-neck and its antioxidant system in different last cutting times
指标 Index | 处理温度Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
丙二醛Malondialdehyde (MDA) | 0.33 | 0.58 | 0.71* | 0.83** | 0.84** | 0.85** |
过氧化物酶Peroxidase (POD) | -0.65* | -0.71* | -0.42 | 0.27 | -0.10 | -0.30 |
过氧化氢酶Catalase (CAT) | -0.16 | -0.34 | -0.61 | -0.75* | -0.25 | -0.25 |
超氧化物歧化酶Superoxide dismutase (SOD) | -0.34 | -0.41 | -0.73* | -0.77** | -0.78** | -0.37 |
1 | Mccallum M H, Connor D J, O’leary G J. Water use by lucerne and effect on crops in the Victoria Wimmera. Australian Journal of Agricultural Research, 2001, 52(2): 193-201. |
2 | Wang X, Liu X J, Zhao Y J, et al. Nitrogen utilization and interspecific feedback characteristics of intercropped alfalfa/oat with different root barriers. Acta Prataculturae Sinica, 2021, 30(8): 73-85. |
汪雪, 刘晓静, 赵雅姣, 等. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究. 草业学报, 2021, 30(8): 73-85. | |
3 | Wang Y F, Zhang J Q, Ma Q Y, et al. Response of aeolian desertification to regional climate change in Horqin sandy land at begining of 21st century. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 177-185. |
王永芳, 张继权, 马齐云, 等. 21世纪初科尔沁沙地沙漠化对区域气候变化的响应. 农业工程学报, 2016, 32(S2): 177-185. | |
4 | Zhao X Y, Zhang C M, Zuo X A, et al. Challenge to the desertification reversion in Horqin Sandy Land. Chinese Journal of Applied Ecology, 2009, 20(7): 1559-1564. |
赵学勇, 张春民, 左小安, 等. 科尔沁沙地沙漠化土地恢复面临的挑战. 应用生态学报, 2009, 20(7): 1559-1564. | |
5 | Meng L L, Hu J H, Wan P, et al. Desertification issue caused by three productive modes in the Horqin regions. Pratacultural Science, 2011, 28(1): 39-46. |
孟利利, 胡敬华, 万平, 等. 科尔沁地区3类生产方式下的荒漠化问题研究. 草业科学, 2011, 28(1): 39-46. | |
6 | Liang Q W, Yang X F, Narisu, et al. SWOT analysis and suggestions on development of alfalfa industry in Ar Horqin Banner. Heilongjiang Animal Science and Veterinary Medicine, 2019(22): 7-12. |
梁庆伟, 杨秀芳, 娜日苏, 等. 阿鲁科尔沁旗紫花苜蓿产业发展的SWOT分析与建议. 黑龙江畜牧兽医, 2019(22): 7-12. | |
7 | Chu J M, Wang Q, Fan Z P, et al. Effects of soil moisture condition and freeze-thaw cycle on soil respiration of different land-use types in Horqin Sandy Land. Chinese Journal of Ecology, 2013, 32(6): 1399-1404. |
褚建民, 王琼, 范志平, 等. 水分条件和冻融循环对科尔沁沙地不同土地利用方式土壤呼吸的影响. 生态学杂志, 2013, 32(6): 1399-1404. | |
8 | Zhang Y X, Wang X G, Tian Y L, et al. Effect of sowing date on cold resistance of different alfalfa varieties in Horqin sandy land. Acta Prataculturae Sinica, 2020, 29(4): 73-80. |
张玉霞, 王显国, 田永雷, 等. 科尔沁沙地播种时期对不同紫花苜蓿品种抗寒性的影响. 草业学报, 2020, 29(4): 73-80. | |
9 | Zhu A M, Han G D, Zhang Y X, et al. Influence and analysis of different sowing time on overwintering rate of alfalfa. Acta Agrestia Sinica, 2020, 28(2): 446-453. |
朱爱民, 韩国栋, 张玉霞, 等. 不同播种时期对紫花苜蓿越冬率影响及分析. 草地学报, 2020, 28(2): 446-453. | |
10 | Li X L, Wan L Q. Alfalfa fall dormancy and its relationship to winter hardiness and yield. Acta Prataculturae Sinica, 2004, 13(3): 57-61. |
李向林, 万里强. 苜蓿秋眠性及其与抗寒性和产量的关系. 草业学报, 2004, 13(3): 57-61. | |
11 | Mckenzie J S, Mclean G E. Some factors associated with injury to alfalfa during the 1977-1978 winter at Beaverlodge, Alberta. Canadian Journal of Plant Science, 1980, 60(1): 103-112. |
12 | Paquin R, Mehugs G R. Influence of soil moisture on cold tolerance of alfalfa. Canadian Journal of Plant Science, 1980(60): 139-147. |
13 | Bélanger G, Kunelius T, McKenzie D, et al. Fall cutting management affects yield and persistence of alfalfa in Atlantic Canada. Canadian Journal of Plant Science, 1999, 79: 57-63. |
14 | SchWab P M, Burner D K, Sheaffer C C, et al. Factor affecting a laboratory evaluation of alfalfa cold tolerance. Crop Science, 1996(36): 318-324. |
15 | Silkett V W, Megee C R, Rather H C. The effect of late summer and early fall cutting on crown bud formation and winter hardiness of alfalfa. Agronomy Journal, 1937, 29(1): 53-62. |
16 | Hanson C H. Alfalfa science and technology. Wisconsin: American Society of Agronomy, 1972: 489-490. |
17 | Tesar M B, Yager J L. Fall cutting of alfalfa in the North Central USA. Agronomy Journal, 1985, 77: 774-778. |
18 | Sheaffer C C, Wiersma J V, Warnes D D, et al. Fall cutting and alfalfa yield, persistence and quality. Canadian Journal of Plant Science, 1986, 66: 329-338. |
19 | Zha X, Mimaqiongla. Observation on the root system of four legumes. Pratacultural Science, 1987, 4(4): 56-57. |
扎西, 米玛穷拉. 四种豆科牧草根系的观测. 草业科学, 1987, 4(4): 56-57. | |
20 | Zhang Y X, Cong B M, Wang X G, et al. Correlation analysis of cold resistance and antioxidant enzyme activity in alfalfa roots. Acta Agrestia Sinica, 2021, 29(2): 244-249. |
张玉霞, 丛百明, 王显国, 等. 苜蓿抗寒性与根系抗氧化酶活性相关性分析. 草地学报, 2021, 29(2): 244-249. | |
21 | Sun H, Wang X G, Zhang Y X, et al. Study on the optimal fall harvesting period of alfalfa in Ar Horqin//Proceedings of Chinese grassland society. Beijing: China Agriculture Press, 2016: 1-8. |
孙浩, 王显国, 张玉霞, 等. 阿鲁科尔沁旗苜蓿适宜末次刈割期的研究//中国草学会论文集. 北京: 中国农业出版社, 2016: 1-8. | |
22 | Zou Q. Experimental guidance of plant physiology. Beijing: Higher Education Press, 2009: 129-174. |
邹琦. 植物生理学实验指导. 北京: 高等教育出版社, 2009: 129-174. | |
23 | Liu J, Xiang D Y, Chen J B, et al. Low temperature LT50 of three eucalyptus seedlings with electrical conductivity method and Logistic equation. Guangxi Forestry Science, 2009, 38(2): 75-78. |
刘建, 项东云, 陈健波, 等. 应用Logistic方程确定三种桉树的低温半致死温度. 广西林业科学, 2009, 38(2): 75-78. | |
24 | Liu Y P, Zhu Y L, Kang X Y, et al. Cold resistance determination of different type Magnolia grandiflora with synergistic electrical conductivity method and Logistic equation. Journal of Central South University of Forestry & Technology, 2012, 32(10): 69-71, 78. |
刘艳萍, 朱延林, 康向阳, 等. 电导法协同Logistic方程确定不同类型广玉兰的抗寒性. 中南林业科技大学学报, 2012, 32(10): 69-71, 78. | |
25 | Shen X H, Jiang C, Feng P, et al. Comparison of MDA content and antioxidant enzymes activity of several alfalfa roots in cold region. Crops, 2015(4): 88-91. |
申晓慧, 姜成, 冯鹏, 等. 寒区6个紫花苜蓿品种根系中MDA含量及抗氧化酶活性的比较研究. 作物杂志, 2015(4): 88-91. | |
26 | Zhu A M, Zhang Y X, Wang X G, et al. Comparison of cold resistance of 8 alfalfa varieties. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(1): 45-52. |
朱爱民, 张玉霞, 王显国, 等. 8个苜蓿品种抗寒性的比较. 西北农林科技大学学报(自然科学版), 2019, 47(1): 45-52. | |
27 | Theocharis A, Clément C, Barka E A. Physiological and molecular changes in plants grown at low temperatures. Planta, 2012, 235(6): 1091-1105. |
28 | Janská A, Maršík P, Zelenková S, et al. Cold stress and acclimation-what is important for metabolic adjustment? Plant Biology, 2010, 12(3): 395-405. |
29 | Hu Y, Cao J J, Liu P, et al. Protective role of tea polyphenols in combination against radiation-induced haematopoietic and biochemical alterations in mice. Phytotherapy Research, 2011, 25(12): 1761-1769. |
30 | Munnik T, Ligterink W, Meskiene I, et al. Distinct osmo‐sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant Journal, 1999, 20(3): 381-388. |
31 | Xu H Y, Zhen L L, Li Y Y, et al. Effect of freeze-drying environment on freezing tolerance of alfalfa crowns. Acta Agrestia Sinica, 2021, 29(4): 724-733. |
徐洪雨, 甄莉丽, 李钰莹, 等. 低温干旱环境对紫花苜蓿根颈耐寒性的影响. 草地学报, 2021, 29(4): 724-733. | |
32 | Cheng J H, Zhang M L, Wang C, et al. Effect of low temperature stress on physiological index of four strawberry varieties. Journal of Northeast Agricultural Sciences, 2021, 46(1): 85-88, 113. |
程嘉惠, 张梅丽, 王超, 等. 低温胁迫对4个草莓品种生理指标的影响. 东北农业科学, 2021, 46(1): 85-88, 113. | |
33 | Zhang X F, She M Z, Li H Y, et al. Growth promotion mechanisms of Flavobacterium succinicans and their physiological regulation on the growth and stress tolerance in Lolium perenne. Acta Agrestia Sinica, 2021, 29(8): 1704-1711. |
张新飞, 佘木子, 李晗玉, 等. 琥珀酸黄杆菌促生机理及其对多年生黑麦草生长和抗逆性的生理调控作用. 草地学报, 2021, 29(8): 1704-1711. | |
34 | Zhang X, Yang Y, Liu X Y, et al. Effect of exogenous salicylic acid on the antioxidant enzyme activities and fatty acid profiles in seashore paspalum under low temperature stress. Acta Prataculturae Sinica, 2020, 29(1): 117-124. |
张翔, 杨勇, 刘学勇, 等. 外源水杨酸对低温胁迫下海滨雀稗抗寒生理特征的影响. 草业学报, 2020, 29(1): 117-124. | |
35 | Li C Y, Xu W, Liu L W, et al. Changes of endogenous hormones contents and antioxidative enzyme activities in wheat leaves under low temperature stress at jointing stage. Chinese Journal of Applied Ecology, 2015, 26(7): 2015-2022. |
李春燕, 徐雯, 刘立伟, 等. 低温条件下拔节期小麦叶片内源激素含量和抗氧化酶活性的变化. 应用生态学报, 2015, 26(7): 2015-2022. | |
36 | Qi C Y, Liu F Q, Liu J L, et al. Cluster analysis of antioxidant enzymes and soluble protein of alfalfa hybrid under low temperature stress. Chinese Journal of Grassland, 2017, 39(2): 53-58, 70. |
亓春宇, 刘凤歧, 刘杰淋, 等. 低温胁迫下紫花苜蓿杂交代抗氧化酶及可溶性蛋白的动态聚类分析. 中国草地学报, 2017, 39(2): 53-58, 70. |
[1] | 苗阳阳, 张艳蕊, 宋标, 刘旭桐, 张安琪, 吕金泽, 张浩, 张小华, 欧阳佳慧, 李旺, 曲善民. 碱蓬根际和内生细菌菌株对盐碱胁迫下苜蓿生长的影响[J]. 草业学报, 2022, 31(9): 107-117. |
[2] | 赵俊威, 李生仪, 孙延亮, 刘选帅, 马春晖, 张前兵. 不同氮磷水平下不同土层中紫花苜蓿细根周转特征[J]. 草业学报, 2022, 31(9): 118-128. |
[3] | 赵建涛, 岳亚飞, 张前兵, 马春晖. 不同秋眠级紫花苜蓿品种抗寒性对新疆北疆地区覆雪厚度的响应[J]. 草业学报, 2022, 31(8): 24-34. |
[4] | 田骄阳, 王秋霞, 郑淑文, 刘文献. 全基因组水平蒺藜苜蓿CPP基因家族的鉴定及表达模式分析[J]. 草业学报, 2022, 31(7): 111-121. |
[5] | 刘彩婷, 毛丽萍, 阿依谢木, 于应文, 沈禹颖. 紫花苜蓿与垂穗披碱草混播比例对其抗寒生长生理特征的影响[J]. 草业学报, 2022, 31(7): 133-143. |
[6] | 王雪萌, 何欣, 张涵, 宋瑞, 毛培胜, 贾善刚. 基于多光谱成像技术快速无损检测紫花苜蓿人工老化种子[J]. 草业学报, 2022, 31(7): 197-208. |
[7] | 刘亚男, 于人杰, 高燕丽, 康俊梅, 杨青川, 武志海, 王珍. 蒺藜苜蓿膜联蛋白MtANN2基因的表达模式及盐胁迫下的功能分析[J]. 草业学报, 2022, 31(5): 124-134. |
[8] | 李满有, 李东宁, 王斌, 李小云, 沈笑天, 曹立娟, 倪旺, 王腾飞, 兰剑. 不同苜蓿品种混播和播种量对牧草产量及品质的影响[J]. 草业学报, 2022, 31(5): 61-75. |
[9] | 张欢, 牟怡晓, 张桂杰. 添加枸杞副产物对紫花苜蓿青贮发酵品质及微生物多样性的影响[J]. 草业学报, 2022, 31(4): 136-144. |
[10] | 孙洪仁, 王显国, 卜耀军, 乔楠, 任波. 黄土高原紫花苜蓿土壤氮素丰缺指标和推荐施氮量初步研究[J]. 草业学报, 2022, 31(4): 32-42. |
[11] | 高丽敏, 陈春, 沈益新. 氮磷肥对季节性栽培紫花苜蓿生长及再生的影响[J]. 草业学报, 2022, 31(4): 43-52. |
[12] | 欧成明, 赵美琦, 孙铭, 毛培胜. 抗坏血酸和水杨酸丸衣对NaCl胁迫下紫花苜蓿种子发芽特性的影响[J]. 草业学报, 2022, 31(4): 93-101. |
[13] | 童长春, 刘晓静, 吴勇, 赵雅姣, 王静. 内源异黄酮对紫花苜蓿结瘤固氮及氮效率的调控研究[J]. 草业学报, 2022, 31(3): 124-135. |
[14] | 吴玉环, 王自奎, 刘亚男, 马千虎. 带幅设计对玉米/苜蓿间作群体光环境特征及光能利用效率的影响[J]. 草业学报, 2022, 31(3): 144-155. |
[15] | 刘丽英, 贾玉山, 范文强, 尹强, 成启明, 王志军. 影响苜蓿自然干燥的主要环境因子研究[J]. 草业学报, 2022, 31(2): 121-132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||