草业学报 ›› 2022, Vol. 31 ›› Issue (10): 154-166.DOI: 10.11686/cyxb2021167
• 研究论文 • 上一篇
范玉洁(), 司华哲, 王晓旭, 杨乾龙, 张新宇, 钟伟, 王凯英()
收稿日期:
2021-04-28
修回日期:
2022-01-28
出版日期:
2022-10-20
发布日期:
2022-09-14
通讯作者:
王凯英
作者简介:
E-mail: tcswky@126.com基金资助:
Yu-jie FAN(), Hua-zhe SI, Xiao-xu WANG, Qian-long YANG, Xin-yu ZHANG, Wei ZHONG, Kai-ying WANG()
Received:
2021-04-28
Revised:
2022-01-28
Online:
2022-10-20
Published:
2022-09-14
Contact:
Kai-ying WANG
摘要:
为研究精氨酸水平对离乳期梅花鹿瘤胃发酵参数和微生物菌群结构的影响,试验选择3月龄,体重相近的12只健康雄性梅花鹿,随机分为3组,每组4只。仔鹿饲喂蛋白质水平为12.28%的低蛋白质饲粮,精氨酸水平分别为0.80%(A组)、1.08%(B组)、1.26%(C组), 试验期50 d。在试验期的最后1 d抽取仔鹿瘤胃液20 mL,一部分用于测定瘤胃发酵参数,一部分用于提取DNA分析瘤胃细菌多样性。结果表明:1) B组氨态氮含量极显著高于C组(P<0.01); B组乙酸、丁酸、异丁酸含量极显著低于A组(P<0.01),总挥发性脂肪酸含量显著低于A组(P<0.05);B组的乙丙比极显著低于A、C组(P<0.01)。2) B组ACE指数显著高于C组(P<0.05),Chao1指数显著高于A、C组(P<0.05),B组Simpson指数极显著高于A、C组(P<0.01),Shannon指数则极显著低于A、C组(P<0.01), A组细菌群落结构与B、C组差异显著(P<0.05)。3)在门水平上,B组拟杆菌门(Bacteroidetes)相对丰度极显著低于A组(P<0.01),而厚壁菌门(Firmicutes)相对丰度显著高于A组(P<0.05);B组变形菌门(Proteobacteria)相对丰度极显著高于A组(P<0.01),显著高于C组(P<0.05);在属水平上,未分类普雷沃氏菌科(unidentified_Prevotellaceae)相对丰度在3组之间无显著差异(P>0.05),A组甲烷短杆菌属(Methanobrevibacter)相对丰度极显著高于B、C组(P<0.01);B组琥珀酸弧菌属(Succinivibrio)相对丰度极显著高于A组(P<0.01),显著高于C组(P<0.05)。由此可见,精氨酸水平为1.08%时,能够显著提高梅花鹿仔鹿瘤胃菌群丰富度并改变细菌群落结构和优势菌比例,促使仔鹿瘤胃发酵方式向丙酸型发酵转变,增强机体供能。
范玉洁, 司华哲, 王晓旭, 杨乾龙, 张新宇, 钟伟, 王凯英. 精氨酸水平对梅花鹿仔鹿瘤胃发酵参数和菌群结构的影响[J]. 草业学报, 2022, 31(10): 154-166.
Yu-jie FAN, Hua-zhe SI, Xiao-xu WANG, Qian-long YANG, Xin-yu ZHANG, Wei ZHONG, Kai-ying WANG. Effects of arginine level on rumen flora population structure and fermentation in weaning sika deer[J]. Acta Prataculturae Sinica, 2022, 31(10): 154-166.
项目 Item | 组别Groups | ||
---|---|---|---|
A | B | C | |
原料 Ingredients | |||
玉米 Corn (%) | 49.80 | 50.90 | 51.70 |
酒糟蛋白Distillers dried grains with solubles (DDGS, %) | 3.00 | 2.80 | 2.00 |
苜蓿草粉 Alfalfa meal (%) | 36.00 | 36.00 | 36.00 |
豆粕 Soybean meal (%) | 0.00 | 1.00 | 1.00 |
玉米胚芽粕 Corn germ meal (%) | 5.00 | 2.50 | 2.20 |
糖蜜 Syrup (%) | 3.00 | 3.00 | 3.00 |
预混料 Premix1) | 1.80 | 1.80 | 1.80 |
食盐 NaCl (%) | 0.50 | 0.50 | 0.50 |
赖氨酸Lysine (Lys, %) | 0.48 | 0.48 | 0.48 |
蛋氨酸Methionine (Met, %) | 0.16 | 0.16 | 0.16 |
精氨酸Arginine (Arg, %) | 0.26 | 0.46 | 0.66 |
合计 Total | 100.00 | 100.00 | 100.00 |
营养水平 Nutrient levels | |||
干物质Dry matter (DM, %) | 92.55 | 91.94 | 92.26 |
有机物Organic matter (OM, %) | 88.42 | 88.33 | 88.65 |
粗蛋白质Crude protein (CP, %) | 12.28 | 12.28 | 12.28 |
总能Gross energy2) (GE, MJ·kg-1) | 11.60 | 10.99 | 11.19 |
粗脂肪Ether extract (EE, %) | 2.25 | 2.35 | 1.99 |
钙Calcium (Ca, %) | 0.85 | 0.85 | 0.88 |
磷Phosphorus (P, %) | 0.36 | 0.35 | 0.33 |
中性洗涤纤维Neutral detergent fiber (NDF, %) | 77.38 | 77.25 | 78.11 |
酸性洗涤纤维Acid detergent fiber (ADF, %) | 29.90 | 29.62 | 31.27 |
表1 试验饲粮组成及营养水平(风干基础)
Table 1 Composition and nutrient levels of experiment diets (air-dry basis)
项目 Item | 组别Groups | ||
---|---|---|---|
A | B | C | |
原料 Ingredients | |||
玉米 Corn (%) | 49.80 | 50.90 | 51.70 |
酒糟蛋白Distillers dried grains with solubles (DDGS, %) | 3.00 | 2.80 | 2.00 |
苜蓿草粉 Alfalfa meal (%) | 36.00 | 36.00 | 36.00 |
豆粕 Soybean meal (%) | 0.00 | 1.00 | 1.00 |
玉米胚芽粕 Corn germ meal (%) | 5.00 | 2.50 | 2.20 |
糖蜜 Syrup (%) | 3.00 | 3.00 | 3.00 |
预混料 Premix1) | 1.80 | 1.80 | 1.80 |
食盐 NaCl (%) | 0.50 | 0.50 | 0.50 |
赖氨酸Lysine (Lys, %) | 0.48 | 0.48 | 0.48 |
蛋氨酸Methionine (Met, %) | 0.16 | 0.16 | 0.16 |
精氨酸Arginine (Arg, %) | 0.26 | 0.46 | 0.66 |
合计 Total | 100.00 | 100.00 | 100.00 |
营养水平 Nutrient levels | |||
干物质Dry matter (DM, %) | 92.55 | 91.94 | 92.26 |
有机物Organic matter (OM, %) | 88.42 | 88.33 | 88.65 |
粗蛋白质Crude protein (CP, %) | 12.28 | 12.28 | 12.28 |
总能Gross energy2) (GE, MJ·kg-1) | 11.60 | 10.99 | 11.19 |
粗脂肪Ether extract (EE, %) | 2.25 | 2.35 | 1.99 |
钙Calcium (Ca, %) | 0.85 | 0.85 | 0.88 |
磷Phosphorus (P, %) | 0.36 | 0.35 | 0.33 |
中性洗涤纤维Neutral detergent fiber (NDF, %) | 77.38 | 77.25 | 78.11 |
酸性洗涤纤维Acid detergent fiber (ADF, %) | 29.90 | 29.62 | 31.27 |
氨基酸 Amino acid | 组别Groups | |||
---|---|---|---|---|
A | B | C | ||
赖氨酸 Lysine (Lys) | 0.65 | 0.65 | 0.65 | |
蛋氨酸 Methionine (Met) | 0.16 | 0.16 | 0.16 | |
精氨酸 Arginine (Arg) | 0.80 | 1.08 | 1.26 | |
苏氨酸 Threonine (Thr) | 0.33 | 0.35 | 0.35 | |
天冬氨酸 Aspartic acid (Asp) | 0.76 | 0.82 | 0.81 | |
丝氨酸 Serine (Ser) | 0.40 | 0.43 | 0.42 | |
谷氨酸 Glutamic acid (Glu) | 1.32 | 1.38 | 1.39 | |
甘氨酸 Glycine (Gly) | 0.37 | 0.39 | 0.38 | |
丙氨酸 Alanine (Ala) | 0.71 | 0.73 | 0.71 | |
半胱氨酸 Cysteine (Cys) | 0.05 | 0.04 | 0.05 | |
缬氨酸 Valine (Val) | 0.41 | 0.43 | 0.43 | |
异亮氨酸 Isoleucine (Ile) | 0.29 | 0.31 | 0.32 | |
亮氨酸 Leucine (Leu) | 0.87 | 0.91 | 0.90 | |
酪氨酸 Tyrosine (Tyr) | 0.25 | 0.26 | 0.25 | |
苯丙氨酸 Phenylalanine (Phe) | 0.40 | 0.42 | 0.43 | |
组氨酸 Histidine (His) | 0.20 | 0.20 | 0.20 | |
脯氨酸 Proline (Pro) | 0.63 | 0.64 | 0.63 |
表2 试验饲粮氨基酸含量(风干基础)
Table 2 Amino acid contents of experiment diets (air-dry basis, %)
氨基酸 Amino acid | 组别Groups | |||
---|---|---|---|---|
A | B | C | ||
赖氨酸 Lysine (Lys) | 0.65 | 0.65 | 0.65 | |
蛋氨酸 Methionine (Met) | 0.16 | 0.16 | 0.16 | |
精氨酸 Arginine (Arg) | 0.80 | 1.08 | 1.26 | |
苏氨酸 Threonine (Thr) | 0.33 | 0.35 | 0.35 | |
天冬氨酸 Aspartic acid (Asp) | 0.76 | 0.82 | 0.81 | |
丝氨酸 Serine (Ser) | 0.40 | 0.43 | 0.42 | |
谷氨酸 Glutamic acid (Glu) | 1.32 | 1.38 | 1.39 | |
甘氨酸 Glycine (Gly) | 0.37 | 0.39 | 0.38 | |
丙氨酸 Alanine (Ala) | 0.71 | 0.73 | 0.71 | |
半胱氨酸 Cysteine (Cys) | 0.05 | 0.04 | 0.05 | |
缬氨酸 Valine (Val) | 0.41 | 0.43 | 0.43 | |
异亮氨酸 Isoleucine (Ile) | 0.29 | 0.31 | 0.32 | |
亮氨酸 Leucine (Leu) | 0.87 | 0.91 | 0.90 | |
酪氨酸 Tyrosine (Tyr) | 0.25 | 0.26 | 0.25 | |
苯丙氨酸 Phenylalanine (Phe) | 0.40 | 0.42 | 0.43 | |
组氨酸 Histidine (His) | 0.20 | 0.20 | 0.20 | |
脯氨酸 Proline (Pro) | 0.63 | 0.64 | 0.63 |
项目 Item | 组别 Groups | P值 P-value | ||
---|---|---|---|---|
A | B | C | ||
pH | 7.35±0.07a | 7.28±0.03ab | 7.21±0.03b | 0.0298 |
氨态氮 (NH3-N, mg·dL-1) | 8.22±0.54ABa | 10.98±2.13Aa | 4.79±1.94Bb | 0.0120 |
总挥发性脂肪酸Total volatile fatty acids (TVFA, mmol·L-1) | 28.46±1.27a | 20.39±2.09b | 19.41±5.78b | 0.0420 |
乙酸 Acetic acid (ACE, mmol·L-1) | 19.82±1.08Aa | 14.05±1.49Bb | 12.03±2.47Bb | 0.0043 |
丙酸 Propanoic acid (PRO, mmol·L-1) | 3.84±0.98 | 4.46±0.25 | 4.10±0.57 | 0.5536 |
异丁酸Isobutyric acid (ISOB, mmol·L-1) | 0.15±0.03Aa | 0.02±0.01Bb | 0.11±0.05ABa | 0.0126 |
丁酸 Butyric acid (BUTY, mmol·L-1) | 2.43±0.50Aa | 1.02±0.24Bb | 1.18±0.12Bb | 0.0037 |
异戊酸Isovaleric acid (ISOV, mmol·L-1) | 0.30±0.12 | 0.02±0.01 | 0.17±0.20 | 0.1140 |
戊酸 Valeric acid (VAL, mmol·L-1) | 0.16±0.03a | 0.16±0.02a | 0.11±0.01b | 0.0649 |
乙丙比Acetic∶propanoic (A∶P, mmol·L-1) | 4.37±0.14Aa | 3.10±0.16Bc | 4.04±0.08Ab | <0.0001 |
表3 不同精氨酸水平对离乳期梅花鹿瘤胃发酵参数的影响
Table 3 Effects of arginine levels on rumen fermentation parameters of weaning sika deer
项目 Item | 组别 Groups | P值 P-value | ||
---|---|---|---|---|
A | B | C | ||
pH | 7.35±0.07a | 7.28±0.03ab | 7.21±0.03b | 0.0298 |
氨态氮 (NH3-N, mg·dL-1) | 8.22±0.54ABa | 10.98±2.13Aa | 4.79±1.94Bb | 0.0120 |
总挥发性脂肪酸Total volatile fatty acids (TVFA, mmol·L-1) | 28.46±1.27a | 20.39±2.09b | 19.41±5.78b | 0.0420 |
乙酸 Acetic acid (ACE, mmol·L-1) | 19.82±1.08Aa | 14.05±1.49Bb | 12.03±2.47Bb | 0.0043 |
丙酸 Propanoic acid (PRO, mmol·L-1) | 3.84±0.98 | 4.46±0.25 | 4.10±0.57 | 0.5536 |
异丁酸Isobutyric acid (ISOB, mmol·L-1) | 0.15±0.03Aa | 0.02±0.01Bb | 0.11±0.05ABa | 0.0126 |
丁酸 Butyric acid (BUTY, mmol·L-1) | 2.43±0.50Aa | 1.02±0.24Bb | 1.18±0.12Bb | 0.0037 |
异戊酸Isovaleric acid (ISOV, mmol·L-1) | 0.30±0.12 | 0.02±0.01 | 0.17±0.20 | 0.1140 |
戊酸 Valeric acid (VAL, mmol·L-1) | 0.16±0.03a | 0.16±0.02a | 0.11±0.01b | 0.0649 |
乙丙比Acetic∶propanoic (A∶P, mmol·L-1) | 4.37±0.14Aa | 3.10±0.16Bc | 4.04±0.08Ab | <0.0001 |
项目 Item | 组别 Groups | P值 P-value | ||
---|---|---|---|---|
A | B | C | ||
ACE | 1231.11±140.96ab | 1362.68±38.10a | 1161.67±36.24b | 0.0741 |
Chao1 | 1376.45±214.72b | 1653.30±90.57a | 1319.85±23.80b | 0.0486 |
Simpson | 0.0153±0.003Bb | 0.0730±0.009Aa | 0.0210±0.011Bb | 0.0003 |
Shannon | 7.316±0.147Aa | 5.657±0.195Bb | 6.751±0.479Aa | 0.0017 |
Goods_coverage | 0.99 | 0.99 | 0.99 | 0.4576 |
表4 精氨酸水平对离乳期梅花鹿瘤胃微生物α多样性的影响
Table 4 Effects of different arginine levels on rumen microbial alpha diversity of weaning sika deer
项目 Item | 组别 Groups | P值 P-value | ||
---|---|---|---|---|
A | B | C | ||
ACE | 1231.11±140.96ab | 1362.68±38.10a | 1161.67±36.24b | 0.0741 |
Chao1 | 1376.45±214.72b | 1653.30±90.57a | 1319.85±23.80b | 0.0486 |
Simpson | 0.0153±0.003Bb | 0.0730±0.009Aa | 0.0210±0.011Bb | 0.0003 |
Shannon | 7.316±0.147Aa | 5.657±0.195Bb | 6.751±0.479Aa | 0.0017 |
Goods_coverage | 0.99 | 0.99 | 0.99 | 0.4576 |
组别 Groups | 总方差 Total square deviation (SS) | P值 P-value |
---|---|---|
A-B | 0.530264 | 0.021* |
A-C | 0.207164 | 0.026* |
B-C | 0.111877 | 0.185 |
表5 Amova 组间差异分析
Table 5 Analysis by Amova group differences analysis
组别 Groups | 总方差 Total square deviation (SS) | P值 P-value |
---|---|---|
A-B | 0.530264 | 0.021* |
A-C | 0.207164 | 0.026* |
B-C | 0.111877 | 0.185 |
门 Phylum | 组别 Groups | P值 P-value | ||
---|---|---|---|---|
A | B | C | ||
拟杆菌门Bacteroidetes | 75.77±4.04Aa | 51.96±7.05Bb | 58.93±7.03ABb | 0.0064 |
厚壁菌门Firmicutes | 18.39±2.15b | 31.50±8.26a | 25.12±6.39ab | 0.0948 |
变形菌门Proteobacteria | 1.08±0.37Bb | 24.34±6.93Aa | 10.32±8.03ABb | 0.0032 |
放线菌门Actinobacteria | 0.72±0.23Bb | 4.38±1.64Aa | 1.82±0.69Bb | 0.0022 |
广古菌门Euryarchaeota | 3.84±1.82Aa | 0.13±0.07Bb | 2.23±1.10ABab | 0.0210 |
螺旋菌门Spirochaetes | 0.51±0.18Aa | 0.07±0.02Bb | 0.14±0.10Bb | 0.0081 |
纤维杆菌门Fibrobacteres | 0.32±0.02Aa | 0.05±0.01Bc | 0.11±0.03Bb | <0.0001 |
互养菌门Synergistetes | 0.14±0.08 | 0.06±0.01 | 0.07±0.04 | 0.1953 |
软壁菌门Tenericutes | 0.09±0.01Bb | 0.14±0.03ABb | 0.25±0.08Aa | 0.0076 |
表6 各组仔鹿瘤胃液细菌门水平群落组成
Table 6 Rumen bacteria composition on phylum level in three groups of weaning sika deer (%)
门 Phylum | 组别 Groups | P值 P-value | ||
---|---|---|---|---|
A | B | C | ||
拟杆菌门Bacteroidetes | 75.77±4.04Aa | 51.96±7.05Bb | 58.93±7.03ABb | 0.0064 |
厚壁菌门Firmicutes | 18.39±2.15b | 31.50±8.26a | 25.12±6.39ab | 0.0948 |
变形菌门Proteobacteria | 1.08±0.37Bb | 24.34±6.93Aa | 10.32±8.03ABb | 0.0032 |
放线菌门Actinobacteria | 0.72±0.23Bb | 4.38±1.64Aa | 1.82±0.69Bb | 0.0022 |
广古菌门Euryarchaeota | 3.84±1.82Aa | 0.13±0.07Bb | 2.23±1.10ABab | 0.0210 |
螺旋菌门Spirochaetes | 0.51±0.18Aa | 0.07±0.02Bb | 0.14±0.10Bb | 0.0081 |
纤维杆菌门Fibrobacteres | 0.32±0.02Aa | 0.05±0.01Bc | 0.11±0.03Bb | <0.0001 |
互养菌门Synergistetes | 0.14±0.08 | 0.06±0.01 | 0.07±0.04 | 0.1953 |
软壁菌门Tenericutes | 0.09±0.01Bb | 0.14±0.03ABb | 0.25±0.08Aa | 0.0076 |
属 Genus | 组别 Groups | P值 P-value | ||
---|---|---|---|---|
A | B | C | ||
琥珀酸弧菌属Succinivibrio | 0.260±0.135Bb | 17.678±1.198Aa | 7.483±6.939ABb | 0.0070 |
未分类普雷沃氏菌科Unidentified_Prevotellaceae | 3.071±0.287 | 7.138±4.097 | 7.160±2.687 | 0.2071 |
未分类韦荣氏球菌科Unidentified_Veillonellaceae | 1.642±0.682 | 1.015±0.436 | 1.020±0.250 | 0.2723 |
欧陆森氏菌属Olsenella | 0.189±0.097 | 2.046±2.073 | 1.030±0.494 | 0.1407 |
甲烷短杆菌属Methanobrevibacter | 3.767±1.808Aa | 0.086±0.053Bb | 0.471±0.387Bb | 0.0103 |
未分类疣微菌科Unidentified_Ruminococcaceae | 2.640±0.444 | 2.005±0.810 | 2.791±0.528 | 0.2472 |
戴阿利斯特杆菌属Dialister | 0.042±0.084b | 2.282±2.320a | 0.309±0.030ab | 0.0826 |
解琥珀酸菌属Succiniclasticum | 1.240±0.028Bb | 1.797±0.087Bb | 3.015±0.508Aa | 0.0009 |
Agathobacter | 0.005±0.005Bb | 0.474±0.182Aa | 0.258±0.036ABa | 0.0045 |
未分类毛螺菌科Unidentified_Lachnospiraceae | 1.002±0.034Bb | 0.993±0.097Bb | 1.458±0.051Aa | 0.0002 |
奎因氏菌属Quinella | 0.744±0.132Aa | 0.206±0.137Bb | 0.213±0.142Bb | 0.0008 |
双歧杆菌属Bifidobacterium | 0.227±0.126 | 0.312±0.089 | 0.241±0.038 | 0.5224 |
Kandleria | 0.009±0.011 | 0.223±0.273 | 0.127±0.051 | 0.2328 |
未分类理研菌科Unidentified_Rikenellaceae | 0.270±0.045b | 0.285±0.069b | 0.481±0.167a | 0.0664 |
未分类拟杆菌目Unidentified_Bacteroidales | 0.270±0.052 | 0.258±0.164 | 0.192±0.087 | 0.6218 |
互营球菌属Syntrophococcus | 0.100±0.032Bb | 0.263±0.102Aa | 0.223±0.034ABa | 0.0137 |
纤维杆菌属Fibrobacter | 0.326±0.020Aa | 0.054±0.010Bb | 0.105±0.047Bb | <0.0001 |
未分类螺旋体科Unidentified_Spirochaetaceae | 0.437±0.156Aa | 0.047±0.008Bb | 0.132±0.089ABb | 0.0085 |
聚乙酸菌属Acetitomaculum | 0.250±0.065Bb | 0.157±0.026Bb | 0.492±0.055Aa | 0.0005 |
厌氧弧菌属Anaerovibrio | 0.642±0.218 | 0.323±0.226 | 0.636±0.187 | 0.1582 |
表7 各组仔鹿瘤胃液细菌属水平群落组成
Table 7 Rumen bacteria composition on genus level in three groups of weaning sika deer (%)
属 Genus | 组别 Groups | P值 P-value | ||
---|---|---|---|---|
A | B | C | ||
琥珀酸弧菌属Succinivibrio | 0.260±0.135Bb | 17.678±1.198Aa | 7.483±6.939ABb | 0.0070 |
未分类普雷沃氏菌科Unidentified_Prevotellaceae | 3.071±0.287 | 7.138±4.097 | 7.160±2.687 | 0.2071 |
未分类韦荣氏球菌科Unidentified_Veillonellaceae | 1.642±0.682 | 1.015±0.436 | 1.020±0.250 | 0.2723 |
欧陆森氏菌属Olsenella | 0.189±0.097 | 2.046±2.073 | 1.030±0.494 | 0.1407 |
甲烷短杆菌属Methanobrevibacter | 3.767±1.808Aa | 0.086±0.053Bb | 0.471±0.387Bb | 0.0103 |
未分类疣微菌科Unidentified_Ruminococcaceae | 2.640±0.444 | 2.005±0.810 | 2.791±0.528 | 0.2472 |
戴阿利斯特杆菌属Dialister | 0.042±0.084b | 2.282±2.320a | 0.309±0.030ab | 0.0826 |
解琥珀酸菌属Succiniclasticum | 1.240±0.028Bb | 1.797±0.087Bb | 3.015±0.508Aa | 0.0009 |
Agathobacter | 0.005±0.005Bb | 0.474±0.182Aa | 0.258±0.036ABa | 0.0045 |
未分类毛螺菌科Unidentified_Lachnospiraceae | 1.002±0.034Bb | 0.993±0.097Bb | 1.458±0.051Aa | 0.0002 |
奎因氏菌属Quinella | 0.744±0.132Aa | 0.206±0.137Bb | 0.213±0.142Bb | 0.0008 |
双歧杆菌属Bifidobacterium | 0.227±0.126 | 0.312±0.089 | 0.241±0.038 | 0.5224 |
Kandleria | 0.009±0.011 | 0.223±0.273 | 0.127±0.051 | 0.2328 |
未分类理研菌科Unidentified_Rikenellaceae | 0.270±0.045b | 0.285±0.069b | 0.481±0.167a | 0.0664 |
未分类拟杆菌目Unidentified_Bacteroidales | 0.270±0.052 | 0.258±0.164 | 0.192±0.087 | 0.6218 |
互营球菌属Syntrophococcus | 0.100±0.032Bb | 0.263±0.102Aa | 0.223±0.034ABa | 0.0137 |
纤维杆菌属Fibrobacter | 0.326±0.020Aa | 0.054±0.010Bb | 0.105±0.047Bb | <0.0001 |
未分类螺旋体科Unidentified_Spirochaetaceae | 0.437±0.156Aa | 0.047±0.008Bb | 0.132±0.089ABb | 0.0085 |
聚乙酸菌属Acetitomaculum | 0.250±0.065Bb | 0.157±0.026Bb | 0.492±0.055Aa | 0.0005 |
厌氧弧菌属Anaerovibrio | 0.642±0.218 | 0.323±0.226 | 0.636±0.187 | 0.1582 |
1 | Diao Q Y, Zhang R. Growth and digestive physiology characteristies of young ruminants in China. Chinese Journal of Animal Science, 2017, 53(7): 4-8. |
刁其玉, 张蓉. 我国幼龄反刍动物生长与消化生理发育特点.中国畜牧杂志, 2017, 53(7): 4-8. | |
2 | Saro C, Hohenester U M, Bernard M, et al. Effectiveness of interventions to modulate the rumen microbiota composition and function in pre-ruminant and ruminant lambs. Fronties in Microbiology, 2018, 9: 1273. |
3 | Abecia L, Ramos-Morales E, Martínez-Fernandez G, et al. Feeding management in early life influences microbial colonisation and fermentation in the rumen of newborn goat kids. Animal Production Science, 2014, 54(9): 1449-1454. |
4 | Rey M, Enjalbert F, Combes S, et al. Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential. Journal of Applied Microbiology, 2014, 116(2): 245-257. |
5 | Zhang Y, Cheng J, Zheng N, et al. Different milk replacers alter growth performance and rumen bacterial diversity of dairy bullcalves. Livestock Science, 2020, 231: 103862. |
6 | Kim J, Erikson D W, Burghardt R C, et al. Secreted phosphoprotein 1 binds integrins to initiate multiple cell signaling pathways, including FRAP1/mTOR, to support attachment and force-generated migration of trophectoderm cells. Matrix Biology, 2010, 29(5): 369-382. |
7 | Yao K, Yin Y L, Chu W, et al. Dietary arginine supplementation increases m-tor signaling activity in skeletal muscle of neonatal pigs. The Journal of Nutrition, 2008, 138(5): 867-872. |
8 | Li Z P, Wrighta D G, Liu H L, et al. Response of the rumen microbiota of sika deer (Cervus nippon) fed different concentrations of tannin rich plants. PLoS One, 2015, 10(5): e0123481. |
9 | Feng Z C, Gao M. Improvement of colorimetric method for determination of ammonia nitrogen in rumen fluid. Animal Husbandry and Feed Science, 2010, 31(6/7): 37. |
冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进. 畜牧与饲料科学, 2010, 31(6/7): 37. | |
10 | Kleen J L, Cannizzo C. Incidence, prevalence and impact of SARA in dairy herds. Animal Feed Science and Technology, 2012, 172(s1/2): 4-8. |
11 | Liu J, Diao Q Y, Zhao Y G, et al. Effects of dietary NFC/NDF ratios on rumen pH, NH3-N and VFA of meat sheep. Chinese Journal of Animal Nutrition, 2012(6): 1069-1077. |
刘洁, 刁其玉, 赵一广, 等. 饲粮不同NFC/NDF对肉用绵羊瘤胃pH、氨态氮和挥发性脂肪酸的影响. 动物营养学报, 2012(6): 1069-1077. | |
12 | Ren C Y, Bi Y L, Du H C, et al. Effects of different starter NDF levels on the growth performance, rumen environments and serum biochemical parameters of calves. Acta Prataculturae Sinica, 2018, 27(5): 210-218. |
任春燕, 毕研亮, 杜汉昌, 等. 开食料中不同NDF水平对犊牛生长性能、瘤胃内环境及血清生化指标的影响. 草业学报, 2018, 27(5): 210-218. | |
13 | Liu Y J, Wang C, Liu Q, et al. Effects of isobutyrate supplementation on growth performance, ruminal fermentation and cellulolytic bacterial abundance in calves. Acta Prataculturae Sinica, 2019, 28(7): 151-158. |
刘永嘉, 王聪, 刘强, 等. 日粮补充异丁酸对犊牛生长性能、瘤胃发酵和纤维分解菌菌群的影响. 草业学报, 2019, 28(7): 151-158. | |
14 | Aschenbach J R, Penner G B, Stumpff F, et al. Ruminant nutrition symposium: Role of fermentation acid absorption in the regulation of ruminal pH. Journal of Animal Science, 2011, 89(4): 1092-1107. |
15 | Li W. The study on the effect of rumen liquid pH, osmotic pressure, volatile fatty acids (VFAs) concentration on the absorption of VFAs across ruminal epithelium of sheep. Qingdao: Shandong Agricultural University, 2014. |
李文. 瘤胃液pH值, 渗透压, 挥发性脂肪酸(VFAs)浓度对绵羊瘤胃上皮VFAs吸收影响的研究. 青岛: 山东农业大学, 2014. | |
16 | Melo L Q, Costa S F, Lopes F, et al. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption. Journal of Animal Science, 2013, 91(4): 1775-1783. |
17 | Jia Y D. Effects of forage to concentrate ration on rumen anaerobic bacterial, volatile fatty acids and blood indexes in dairy cows. Tai’an: Shandong Agricultural University, 2008. |
贾玉东. 日粮精粗比对奶牛瘤胃厌氧细菌和挥发性脂肪酸及血液指标的影响. 泰安: 山东农业大学, 2008. | |
18 | Yan L, Zhang B, Shen Z. Dietary modulation of the expression of genes involved in short-chain fatty acid absorption in the rumen epithelium is related to short-chain fatty acid concentration and pH in the rumen of goats. Journal of Dairy Science, 2014, 97(9): 5668-5675. |
19 | Ryle M, Orskov E R. Energy nutrition in ruminants. Berlin: Springer Netherlands, 1990. |
20 | Shabat S K, Sasson G, Doron-Faigenboim A, et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME Journal, 2016, 10(12): 2958-2972. |
21 | Li Z J. The ruminal manipulation strategies for enhancing propionate fermentation and their dynamic effects on carbohydrate metabolism. Xianyang: Northwest A & F University, 2018. |
李宗军. 瘤胃丙酸发酵的增强策略及其对碳水化合物代谢的动态影响. 咸阳: 西北农林科技大学, 2018. | |
22 | Dong C X, Lv J Y, Niu X L, et al. Effects of dietary roughage sources on the rumen microflora and muscle fatty acids in finishing Hu lambs. Pratacultural Science, 2019, 36(11): 2926-2936. |
董春晓, 吕佳颖, 牛骁麟, 等. 粗饲料来源对育肥湖羊瘤胃微生物区系及肌肉脂肪酸组成的影响. 草业科学, 2019, 36(11): 2926-2936. | |
23 | Russell J B, Wilson D B. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? Journal of Dairy Science, 1996, 79(8): 1503-1509. |
24 | Broderick G A, Muck R E. Effect of alfalfa silage storage structure and rumen-protected methionine on production in lactating dairy cows. Journal of Dairy Science, 2009, 92(3): 1281-1289. |
25 | Dai Z L, Li X L, Xi P B, et al. Regulatory role for l-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids, 2012, 43(1): 233-244. |
26 | Wu G, Bazer F W, Dai Z, et al. Amino acid nutrition in animals: Protein synthesis and beyond. Annual Review of Animal Biosciences, 2014, 2: 387-417. |
27 | Thao N T, Wanapat M, Cherdthong A, et al. Effects of eucalyptus crude oils supplementation on rumen fermentation, microorganism and nutrient digestibility in swamp buffaloes. Asian-Australasian Journal of Animal Sciences, 2014, 27(1): 46-54. |
28 | Lv X K. Effects of different diets on rumen development of 20-60 day-old goat kids. Beijing: Chinese Academy of Agricultural Sciences, 2019. |
吕小康. 不同饲粮对20~60日龄山羊羔羊瘤胃发育的影响. 北京: 中国农业科学院, 2019. | |
29 | Hulbert L E, Moisá S J. Stress, immunity, and the management of calves. Journal of Dairy Science, 2016, 99(4): 3199-3216. |
30 | Xiao J X, Guo L Y, Alugongo G M, et al. Effects of different feed type exposure in early life on performance, rumen fermentation, and feed preference of dairy calves. Journal of Dairy Science, 2018, 101(9): 8169-8181. |
31 | Stewart C S, Fonty G, Gouet P. The establishment of rumen microbial communities. Animal Feed Science & Technology, 1988, 21(2/3/4): 69-97. |
32 | Dias J, Marcondes M I, Motta de Souza S, et al. Bacterial community dynamics across the gastrointestinal tracts of dairy calves during preweaning development. Applied and Environmental Microbiology, 2018, 84(9): e02675-17. |
33 | Jami E, Israel A, Kotser A, et al. Exploring the bovine rumen bacterial community from birth to adulthood. The ISME Journal, 2013, 7(6): 1069-1079. |
34 | Koringa P G, Thakkar J R, Pandit R J, et al. Metagenomic characterisation of ruminal bacterial diversity in buffaloes from birth to adulthood using 16S rRNA gene amplicon sequencing. Functional & Integrative Genomics, 2019, 19(2): 237-247. |
35 | Dehority B A, Orpin C G. Development of, and natural fluctuations in, rumen microbial populations. Rumen Microbial Ecosystem, 1997, https://doi.org/10.1007/978-94-009-1453-7_5. |
36 | Tajima K, Arai S, Ogata K, et al. Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe, 2000, 6(5): 273-284. |
37 | Meale S J, Li S, Azevedo P, et al. Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves. Frontiers in Microbiology, 2016, 7: 582. |
38 | Thoetkiattikul H, Mhuantong W, Laothanachareon T, et al. Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Current Microbiology, 2013, 67(2): 130-137. |
39 | Mao S, Zhang M, Liu J, et al. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: Membership and potential function. Scientific Reports, 2015, 5: 16116. |
40 | Zened A, Combes S, Cauquil L, et al. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiology Ecology, 2013, 83(2): 504-514. |
41 | Turnbaugh P J, Ley R E, Mahowald M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122): 1027-1031. |
42 | Stenzel U, Hofreiter M, Meyer M. Parallel tagged sequencing on the 454 platform. Nature Protocols, 2008, 3(2): 267-278. |
43 | Wu S, Baldwin R L, Li W, et al. The bacterial community composition of the bovine rumen detected using pyrosequencing of 16S rRNA genes. Metagenomics, 2012, 1(1): 1-11. |
44 | Pitta D W, Pinchak W E, Dowd S, et al. Longitudinal shifts in bacterial diversity and fermentation pattern in the rumen of steers grazing wheat pasture. Anaerobe, 2014, 30: 11-17. |
45 | Si H, Liu H, Nan W, et al. Effects of arginine supplementation on serum metabolites and the rumen bacterial community of sika deer (Cervus nippon). Frontiers in Veterinary Science, 2021, 8: 630686. |
46 | Aguilar-Marin S B, Betancur-Murillo C L, Isaza G A, et al. Lower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalos. BMC Microbiology, 2020, 20(1): 364. |
47 | McCabe M S, Cormican P, Keogh K, et al. Illumina miSeq phylogenetic amplicon sequencing shows a large reduction of an uncharacterised succinivibrionaceae and an increase of the Methanobrevibacter gottschalkii clade in feed restricted cattle. PLoS One, 2015, 10(7): e0133234. |
48 | Pope P B, Smith W, Denman S E, et al. Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science, 2011, 333(6042): 646-648. |
49 | St-Pierre B, Wright A D. Diversity of gut methanogens in herbivorous animals. Animal, 2013, 1: 49-56. |
50 | Yanagita K, Kamagata Y, Kawaharasaki M, et al. Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Bioscience Biotechnology Biochemistry, 2000, 64(8): 1737-1742. |
51 | Yang S. Effects of feeding types and breeds on rumen methanogens and related microflora in Inner Mongolia cashmere goats. Hohhot: Inner Mongolia Agricultural University, 2018. |
杨硕. 养殖方式和绒山羊类型对瘤胃产甲烷菌及相关微生物区系的影响. 呼和浩特: 内蒙古农业大学, 2018. | |
52 | Sakamoto M, Ikeyama N, Toyoda A, et al. Dialister hominis sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(1): 589-595. |
53 | Cui Z, Wu S, Li J, et al. Effect of alfalfa hay and starter feeding intervention on gastrointestinal microbial community, growth and immune performance of yak calves. Frontiers in Microbiology, 2020, 11: 994. |
54 | Watanabe Y, Nagai F, Morotomi M. Characterization of Phascolarctobacterium succinatutens sp. nov., an asaccharolytic, succinate-utilizing bacterium isolated from human feces. Applied Environmental Microbiology, 2012, 78(2): 511-518. |
[1] | 戴东文, 庞凯悦, 王迅, 杨英魁, 柴沙驼, 王书祥. 精料补饲水平对暖季放牧牦牛瘤胃发酵和菌群结构的影响[J]. 草业学报, 2022, 31(5): 169-177. |
[2] | 邹诗雨, 陈思葵, 唐启源, 陈东, 陈元伟, 邓攀, 黄胥莱, 李付强. 青贮剂对再生稻头季全株青贮品质和体外瘤胃发酵特性的影响[J]. 草业学报, 2021, 30(7): 122-132. |
[3] | 霍俊宏, 詹康, 黄秋生, 钟小军, 占今舜, 严学兵. 不同精粗比日粮对山羊生产性能、血清生化指标和瘤胃发酵的影响[J]. 草业学报, 2021, 30(6): 151-161. |
[4] | 李晨, Ahmad Anum Ali, 张剑搏, 梁泽毅, 丁学智, 阎萍. 冷季牦牛和黄牛采食行为、血清生化指标与瘤胃发酵参数的比较研究[J]. 草业学报, 2021, 30(6): 162-169. |
[5] | 蔡元, 罗玉柱, 臧荣鑫, 李春阳, 扎西英派. 妊娠早期饲粮中添加N-氨甲酰谷氨酸对母羊早期胚胎存活及相关血液指标的影响[J]. 草业学报, 2021, 30(6): 170-179. |
[6] | 董利锋, 杨修竹, 高彦华, 李斌昌, 王贝, 刁其玉. 日粮不同NDF/NFC水平对周岁后荷斯坦奶牛生产性能、营养物质消化率、瘤胃发酵特征和甲烷排放的影响[J]. 草业学报, 2021, 30(2): 156-165. |
[7] | 李雄雄, 焦婷, 赵生国, 秦伟娜, 高雪梅, 王正文, 吴建平, 雷赵民. 牛至精油与有机钴协同对青贮玉米秸秆降解及绵羊瘤胃发酵特性的影响[J]. 草业学报, 2021, 30(11): 191-202. |
[8] | 占今舜, 杨群, 胡耀, 武艳平, 霍俊宏. 日粮精粗比对湖羊瘤胃发酵和菌群结构的影响[J]. 草业学报, 2020, 29(7): 122-130. |
[9] | 刘永嘉, 王聪, 刘强, 郭刚, 霍文婕, 张静, 裴彩霞, 张延利. 日粮补充异丁酸对犊牛生长性能、瘤胃发酵和纤维分解菌菌群的影响[J]. 草业学报, 2019, 28(7): 151-158. |
[10] | 王超, 康翠翠, 冯江银, 县怡涵, 虞德夫, 朱伟云, 杭苏琴. L-精氨酸对大鼠胃肠激素分泌及食欲的影响[J]. 草业学报, 2019, 28(6): 167-174. |
[11] | 陈雅坤,王建平,卜登攀,刘宁,刘威. 复合酶制剂对瘤胃发酵及泌乳早期奶牛生产性能的影响[J]. 草业学报, 2018, 27(4): 170-177. |
[12] | 张毕阳, 赵桂琴, 焦婷, 柴继宽, 苟智强, 许兴泽, 闫车太. 饲粮中添加燕麦干草对绵羊体外发酵的影响[J]. 草业学报, 2018, 27(2): 182-191. |
[13] | 邓凯平, 王锋, 马铁伟, 王震, 于晓青, 丁立人, 陶晓强, 樊懿萱. 日粮中添加不同水平紫苏籽对湖羊生长性能、瘤胃发酵及养分表观消化率的影响[J]. 草业学报, 2017, 26(5): 205-212. |
[14] | 陈志远, 马婷婷, 方伟, 左晓昕, 林淼, 赵国琦. 日粮硝酸盐水平对湖羊瘤胃硝态氮动态消失率、发酵参数及血液高铁血红蛋白含量的影响[J]. 草业学报, 2016, 25(2): 95-104. |
[15] | 胡江, 王毅, 赵芳芳, 刘秀, 权金鹏, 牛晓亮, 韩向敏. 秸秆制粒对肉牛反刍、消化、瘤胃发酵及体增重的影响[J]. 草业学报, 2016, 25(10): 163-170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||