草业学报 ›› 2023, Vol. 32 ›› Issue (2): 84-96.DOI: 10.11686/cyxb2022061
收稿日期:
2022-02-14
修回日期:
2022-03-14
出版日期:
2023-02-20
发布日期:
2022-12-01
通讯作者:
张凤华
作者简介:
E-mail: zfh2000@126.com基金资助:
Bian-bian LI(), Feng-hua ZHANG(), Ya-guang ZHAO
Received:
2022-02-14
Revised:
2022-03-14
Online:
2023-02-20
Published:
2022-12-01
Contact:
Feng-hua ZHANG
摘要:
为明晰不同留茬高度对油莎豆氮代谢及产量和品质的影响,揭示氮代谢与产量和品质之间的关系,进一步寻求适宜刈割高度。本研究以油莎豆为研究对象,比较6个不同留茬高度:留茬50 cm(R50)、留茬40 cm(R40)、留茬30 cm(R30)、留茬20 cm(R20)、留茬10 cm(R10)和未刈割(CK)下油莎豆株高、叶绿素含量以及氮代谢相关指标和块茎产量和品质的差异。结果表明:重度刈割(R10和R20)对植物的物质积累等有抑制作用,中度刈割(R30和R40)则对植物的生长发育有促进作用:刈割后R10和R20处理的叶绿素含量受到严重干扰,但R40处理(7,14和21 d)则促进叶绿素含量的增加。R30处理硝酸还原酶活性(7,14,21和28 d)、谷氨酸合成酶活性(5个时期)和谷氨酰胺合成酶活性(7,21和28 d)均高于其他处理;R40处理可溶性蛋白含量(21和28 d)和谷氨酰胺合成酶活性(1和14 d)均高于其他处理。适宜的刈割高度不仅能利于地上部分再生,通过“源-库”关系的调节,同时还会促进地下部分的生长发育:R30和R40处理的块茎产量显著高于其他处理,且两者间无显著差异,分别为12366.09和11506.62 kg·hm-2,R40处理的千粒重和粗脂肪含量显著高于其他处理,分别为597.53 g和27.85%,R30处理的总粒数、单穴粒数、粗蛋白和总糖含量分别为2699 万粒·hm-2、169粒·穴-1、8.01%和18.78%,均最高。相关性分析可知,刈割后5个时期油莎豆叶片中谷氨酸合成酶活性均与油莎豆地下块茎产量、块茎中粗蛋白和淀粉含量呈显著正相关关系。因此,刈割R30和R40处理较其他处理可以促进油莎豆叶片氮代谢,有利于地下块茎产量和品质改善,故留茬30~40 cm为相对适宜的留茬高度范围。
李变变, 张凤华, 赵亚光. 刈割高度对油莎豆氮代谢及产量和品质的影响[J]. 草业学报, 2023, 32(2): 84-96.
Bian-bian LI, Feng-hua ZHANG, Ya-guang ZHAO. Effects of stubble height on nitrogen metabolism, yield and quality of Cyperus esculentus[J]. Acta Prataculturae Sinica, 2023, 32(2): 84-96.
图1 不同留茬高度对油莎豆株高的影响不同小写字母表示各处理间差异显著(P<0.05)。下同。Different lowercase letters mean significant differences among different treatments (P<0.05). The same below.
Fig.1 The effect of different stubble heights on the plant height of C. esculentus
图3 不同留茬高度对油莎豆氮代谢相关产物和酶活性的影响
Fig.3 The effect of different stubble heights on the related products of nitrogen metabolism and enzyme activity of C. esculentus
留茬处理 Stubble treatment | 单穴粒数 Grains number per hole (粒·穴-1 Grain·hole-1) | 总粒数 Total grains (×104 grain·hm-2) | 千粒重 1000-grains weight (g) | 鲜豆重 Fresh beans weight (kg·hm-2) | 产量 Yield (kg·hm-2) |
---|---|---|---|---|---|
CK | 108±6.63b | 1731±56.24d | 541.99±36.76ab | 12437.85±2071.47c | 9205.43±1754.34cd |
R50 | 111±23.90b | 1770±21.80d | 538.16±39.33b | 15363.76±7208.68abc | 10284.73±3772.52bc |
R40 | 133±10.08ab | 2121±64.05b | 597.53±4.69a | 16693.79±2612.32a | 11506.62±2066.77ab |
R30 | 169±60.90a | 2699±64.82a | 582.16±34.77ab | 18496.42±7204.44a | 12366.09±1008.26a |
R20 | 125±17.30ab | 1998±82.01c | 563.22±9.93ab | 15948.64±1782.30ab | 9096.63±1618.78cd |
R10 | 103±18.43b | 1648±84.57e | 555.77±28.48ab | 13288.69±2693.63bc | 7385.74±2088.70d |
表1 不同留茬高度对油莎豆产量构成因子的影响
Table 1 Effects of different stubble height on yield components of C. esculentus
留茬处理 Stubble treatment | 单穴粒数 Grains number per hole (粒·穴-1 Grain·hole-1) | 总粒数 Total grains (×104 grain·hm-2) | 千粒重 1000-grains weight (g) | 鲜豆重 Fresh beans weight (kg·hm-2) | 产量 Yield (kg·hm-2) |
---|---|---|---|---|---|
CK | 108±6.63b | 1731±56.24d | 541.99±36.76ab | 12437.85±2071.47c | 9205.43±1754.34cd |
R50 | 111±23.90b | 1770±21.80d | 538.16±39.33b | 15363.76±7208.68abc | 10284.73±3772.52bc |
R40 | 133±10.08ab | 2121±64.05b | 597.53±4.69a | 16693.79±2612.32a | 11506.62±2066.77ab |
R30 | 169±60.90a | 2699±64.82a | 582.16±34.77ab | 18496.42±7204.44a | 12366.09±1008.26a |
R20 | 125±17.30ab | 1998±82.01c | 563.22±9.93ab | 15948.64±1782.30ab | 9096.63±1618.78cd |
R10 | 103±18.43b | 1648±84.57e | 555.77±28.48ab | 13288.69±2693.63bc | 7385.74±2088.70d |
留茬处理 Stubble treatment | 粗灰分 Coarse ash (CA,%) | 中性洗涤纤维 Neutral detergent fiber (NDF,%) | 酸性洗涤纤维 Acid detergent fiber (ADF,%) | 粗脂肪 Ether extract (EE,%) | 粗蛋白 Crude protein (CP,%) | 总糖 Total sugar (TS,%) | 淀粉 Starch (AS,%) |
---|---|---|---|---|---|---|---|
CK | 2.51±0.0011d | 58.15±0.0057ab | 8.39±0.0081ab | 25.99±0.0007b | 7.27±0.0036bc | 16.87±0.21bc | 24.92±1.03a |
R50 | 3.16±0.0003a | 55.97±0.0375b | 8.76±0.0047a | 24.91±0.0004c | 7.36±0.0003b | 15.29±1.98c | 24.19±1.85ab |
R40 | 2.55±0.0001d | 54.67±0.0202b | 8.12±0.0045ab | 27.85±0.0002a | 7.21±0.0006bc | 16.27±0.95c | 22.75±0.53b |
R30 | 3.05±0.0003b | 58.56±0.0316ab | 7.53±0.0006b | 24.74±0.0022c | 8.01±0.0018a | 18.78±0.47a | 24.76±0.29a |
R20 | 2.86±0.0001c | 61.17±0.0151a | 8.81±0.0065a | 25.00±0.0037c | 6.80±0.0047c | 16.87±0.35bc | 20.60±0.20c |
R10 | 2.97±0.0005b | 58.71±0.0140ab | 8.61±0.0028a | 23.79±0.0028d | 6.86±0.0021c | 18.24±0.98ab | 20.57±1.55c |
表2 不同留茬高度对油莎豆块茎品质的影响
Table 2 The effect of different stubble heights on the tuber quality of C. esculentus
留茬处理 Stubble treatment | 粗灰分 Coarse ash (CA,%) | 中性洗涤纤维 Neutral detergent fiber (NDF,%) | 酸性洗涤纤维 Acid detergent fiber (ADF,%) | 粗脂肪 Ether extract (EE,%) | 粗蛋白 Crude protein (CP,%) | 总糖 Total sugar (TS,%) | 淀粉 Starch (AS,%) |
---|---|---|---|---|---|---|---|
CK | 2.51±0.0011d | 58.15±0.0057ab | 8.39±0.0081ab | 25.99±0.0007b | 7.27±0.0036bc | 16.87±0.21bc | 24.92±1.03a |
R50 | 3.16±0.0003a | 55.97±0.0375b | 8.76±0.0047a | 24.91±0.0004c | 7.36±0.0003b | 15.29±1.98c | 24.19±1.85ab |
R40 | 2.55±0.0001d | 54.67±0.0202b | 8.12±0.0045ab | 27.85±0.0002a | 7.21±0.0006bc | 16.27±0.95c | 22.75±0.53b |
R30 | 3.05±0.0003b | 58.56±0.0316ab | 7.53±0.0006b | 24.74±0.0022c | 8.01±0.0018a | 18.78±0.47a | 24.76±0.29a |
R20 | 2.86±0.0001c | 61.17±0.0151a | 8.81±0.0065a | 25.00±0.0037c | 6.80±0.0047c | 16.87±0.35bc | 20.60±0.20c |
R10 | 2.97±0.0005b | 58.71±0.0140ab | 8.61±0.0028a | 23.79±0.0028d | 6.86±0.0021c | 18.24±0.98ab | 20.57±1.55c |
指标 Index | 硝酸还原酶 Nitrate reductase | 谷氨酸合成酶 Glutamate synthetase | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 d | 7 d | 14 d | 21 d | 28 d | 1 d | 7 d | 14 d | 21 d | 28 d | |
产量 Yield | 0.27 | 0.48* | 0.62** | 0.07 | 0.46 | 0.50* | 0.52* | 0.69** | 0.57* | 0.58* |
总粒数 Total grains | 0.00 | 0.61** | 0.73*** | 0.31 | 0.50* | 0.63** | 0.37 | 0.55* | 0.54* | 0.68** |
千粒重 1000-grains weight | -0.05 | -0.02 | 0.05 | -0.10 | 0.20 | 0.26 | -0.17 | 0.17 | 0.16 | 0.35 |
单穴粒数 Grains number per hole | 0.04 | 0.45 | 0.69** | 0.37 | 0.44 | 0.28 | 0.49* | 0.50* | 0.61** | 0.48* |
指标 Index | 可溶性蛋白 Soluble protein | 谷氨酰胺合成酶 Glutamine synthetase | ||||||||
1 d | 7 d | 14 d | 21 d | 28 d | 1 d | 7 d | 14 d | 21 d | 28 d | |
产量 Yield | 0.09 | 0.66** | 0.28 | 0.26 | 0.18 | 0.31 | 0.49* | 0.65** | 0.53* | 0.20 |
总粒数 Total grains | -0.23 | 0.80*** | 0.39 | 0.13 | 0.07 | 0.11 | 0.58* | 0.70** | 0.83*** | 0.40 |
千粒重 1000-grains weight | -0.32 | 0.47* | 0.42 | -0.11 | -0.03 | 0.06 | 0.01 | 0.58* | 0.50* | 0.37 |
单穴粒数 Grains number per hole | -0.08 | 0.52* | 0.12 | -0.05 | -0.08 | 0.15 | 0.72*** | 0.44 | 0.49* | 0.11 |
表3 不同留茬高度下油莎豆产量构成因子与氮代谢指标之间的相关性
Table 3 Correlations between the yield components and nitrogen metabolism indexes of C. esculentus at different stubble heights
指标 Index | 硝酸还原酶 Nitrate reductase | 谷氨酸合成酶 Glutamate synthetase | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 d | 7 d | 14 d | 21 d | 28 d | 1 d | 7 d | 14 d | 21 d | 28 d | |
产量 Yield | 0.27 | 0.48* | 0.62** | 0.07 | 0.46 | 0.50* | 0.52* | 0.69** | 0.57* | 0.58* |
总粒数 Total grains | 0.00 | 0.61** | 0.73*** | 0.31 | 0.50* | 0.63** | 0.37 | 0.55* | 0.54* | 0.68** |
千粒重 1000-grains weight | -0.05 | -0.02 | 0.05 | -0.10 | 0.20 | 0.26 | -0.17 | 0.17 | 0.16 | 0.35 |
单穴粒数 Grains number per hole | 0.04 | 0.45 | 0.69** | 0.37 | 0.44 | 0.28 | 0.49* | 0.50* | 0.61** | 0.48* |
指标 Index | 可溶性蛋白 Soluble protein | 谷氨酰胺合成酶 Glutamine synthetase | ||||||||
1 d | 7 d | 14 d | 21 d | 28 d | 1 d | 7 d | 14 d | 21 d | 28 d | |
产量 Yield | 0.09 | 0.66** | 0.28 | 0.26 | 0.18 | 0.31 | 0.49* | 0.65** | 0.53* | 0.20 |
总粒数 Total grains | -0.23 | 0.80*** | 0.39 | 0.13 | 0.07 | 0.11 | 0.58* | 0.70** | 0.83*** | 0.40 |
千粒重 1000-grains weight | -0.32 | 0.47* | 0.42 | -0.11 | -0.03 | 0.06 | 0.01 | 0.58* | 0.50* | 0.37 |
单穴粒数 Grains number per hole | -0.08 | 0.52* | 0.12 | -0.05 | -0.08 | 0.15 | 0.72*** | 0.44 | 0.49* | 0.11 |
指标 Index | 硝酸还原酶 Nitrate reductase | 谷氨酸合成酶 Glutamate synthetase | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 d | 7 d | 14 d | 21 d | 28 d | 1 d | 7 d | 14 d | 21 d | 28 d | |
中性洗涤纤维 Neutral detergent fiber | -0.57* | -0.09 | -0.18 | 0.06 | -0.09 | -0.20 | -0.56* | -0.54* | -0.40 | -0.21 |
粗脂肪 Ether extract | 0.68** | 0.11 | -0.09 | -0.52* | 0.25 | 0.11 | 0.17 | 0.50* | 0.31 | 0.38 |
淀粉 Starch | 0.13 | 0.64** | 0.40 | -0.30 | 0.64** | 0.51* | 0.67** | 0.72*** | 0.69** | 0.54* |
总糖 Total sugar | -0.61** | 0.14 | 0.09 | 0.16 | 0.11 | 0.00 | -0.11 | -0.21 | 0.02 | 0.07 |
酸性洗涤纤维 Acid detergent fiber | 0.26 | 0.22 | -0.46 | 0.00 | -0.57* | -0.48* | -0.30 | -0.53* | -0.40 | -0.67** |
粗蛋白 Crude protein | 0.06 | 0.81** | 0.60** | 0.20 | 0.54* | 0.79*** | 0.65** | 0.67** | 0.68** | 0.64** |
粗灰分 Coarse ash | -0.29 | 0.07 | 0.51* | 0.65** | -0.04 | 0.25 | 0.12 | -0.11 | 0.01 | -0.08 |
指标 Index | 可溶性蛋白 Soluble protein | 谷氨酰胺合成酶 Glutamine synthetase | ||||||||
1 d | 7 d | 14 d | 21 d | 28 d | 1 d | 7 d | 14 d | 21 d | 28 d | |
中性洗涤纤维 Neutral detergent fiber | -0.50* | 0.30 | 0.00 | -0.48* | -0.43 | -0.35 | -0.11 | -0.33 | 0.00 | -0.18 |
粗脂肪 Ether extract | 0.47* | 0.46 | -0.02 | 0.48* | 0.46 | 0.61** | 0.13 | 0.53* | 0.00 | 0.29 |
淀粉 Starch | 0.34 | 0.37 | -0.07 | 0.41 | 0.37 | 0.27 | 0.32 | 0.44 | 0.47* | 0.50 |
总糖 Total sugar | -0.62** | 0.10 | 0.31 | -0.44 | -0.41 | -0.28 | 0.20 | 0.02 | 0.43 | -0.02 |
酸性洗涤纤维 Acid detergent fiber | 0.06 | -0.63** | -0.19 | -0.12 | -0.26 | -0.20 | -0.32 | -0.51* | -0.67** | -0.65** |
粗蛋白 Crude protein | 0.08 | 0.62** | 0.17 | 0.32 | 0.26 | -0.01 | 0.52* | 0.67** | 0.80*** | 0.45 |
粗灰分 Coarse ash | -0.35 | -0.08 | 0.31 | -0.13 | -0.21 | -0.38 | 0.26 | -0.13 | 0.19 | -0.07 |
表4 不同留茬高度下油莎豆品质指标与氮代谢指标之间的相关性
Table 4 Correlations between quality indexes and nitrogen metabolism indexes of C. esculentus at different stubble heights
指标 Index | 硝酸还原酶 Nitrate reductase | 谷氨酸合成酶 Glutamate synthetase | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 d | 7 d | 14 d | 21 d | 28 d | 1 d | 7 d | 14 d | 21 d | 28 d | |
中性洗涤纤维 Neutral detergent fiber | -0.57* | -0.09 | -0.18 | 0.06 | -0.09 | -0.20 | -0.56* | -0.54* | -0.40 | -0.21 |
粗脂肪 Ether extract | 0.68** | 0.11 | -0.09 | -0.52* | 0.25 | 0.11 | 0.17 | 0.50* | 0.31 | 0.38 |
淀粉 Starch | 0.13 | 0.64** | 0.40 | -0.30 | 0.64** | 0.51* | 0.67** | 0.72*** | 0.69** | 0.54* |
总糖 Total sugar | -0.61** | 0.14 | 0.09 | 0.16 | 0.11 | 0.00 | -0.11 | -0.21 | 0.02 | 0.07 |
酸性洗涤纤维 Acid detergent fiber | 0.26 | 0.22 | -0.46 | 0.00 | -0.57* | -0.48* | -0.30 | -0.53* | -0.40 | -0.67** |
粗蛋白 Crude protein | 0.06 | 0.81** | 0.60** | 0.20 | 0.54* | 0.79*** | 0.65** | 0.67** | 0.68** | 0.64** |
粗灰分 Coarse ash | -0.29 | 0.07 | 0.51* | 0.65** | -0.04 | 0.25 | 0.12 | -0.11 | 0.01 | -0.08 |
指标 Index | 可溶性蛋白 Soluble protein | 谷氨酰胺合成酶 Glutamine synthetase | ||||||||
1 d | 7 d | 14 d | 21 d | 28 d | 1 d | 7 d | 14 d | 21 d | 28 d | |
中性洗涤纤维 Neutral detergent fiber | -0.50* | 0.30 | 0.00 | -0.48* | -0.43 | -0.35 | -0.11 | -0.33 | 0.00 | -0.18 |
粗脂肪 Ether extract | 0.47* | 0.46 | -0.02 | 0.48* | 0.46 | 0.61** | 0.13 | 0.53* | 0.00 | 0.29 |
淀粉 Starch | 0.34 | 0.37 | -0.07 | 0.41 | 0.37 | 0.27 | 0.32 | 0.44 | 0.47* | 0.50 |
总糖 Total sugar | -0.62** | 0.10 | 0.31 | -0.44 | -0.41 | -0.28 | 0.20 | 0.02 | 0.43 | -0.02 |
酸性洗涤纤维 Acid detergent fiber | 0.06 | -0.63** | -0.19 | -0.12 | -0.26 | -0.20 | -0.32 | -0.51* | -0.67** | -0.65** |
粗蛋白 Crude protein | 0.08 | 0.62** | 0.17 | 0.32 | 0.26 | -0.01 | 0.52* | 0.67** | 0.80*** | 0.45 |
粗灰分 Coarse ash | -0.35 | -0.08 | 0.31 | -0.13 | -0.21 | -0.38 | 0.26 | -0.13 | 0.19 | -0.07 |
1 | Aljuhaimi F, Ghafoor K, Oezcan M M, et al. The effect of solvent type and roasting rocesses on physico-chemical properties of tigernut (Cyperus esculentus L.) tuber oil. Journal of Oleo Science, 2018, 67(7): 823-828. |
2 | Zhang X Q, Fang J, Lu Z Y, et al. The effect of photosynthesis characteristics and light response of summer planting Cyperus esculentus L. was studied. Journal of Northern Agriculture, 2019, 47(5): 9-15. |
张向前, 方静, 路战远, 等. 种植密度对夏播油莎豆光合特征及光响应影响的研究初报. 北方农业学报, 2019, 47(5): 9-15. | |
3 | Zhong P, Miao L L, Liu J, et al. Effects of densities and planting mode on photosynthetic characteristics and yield of Cyperus esculentus during tuber growth stage. Chinese Journal of Oil Crop Sciences, 2021, 43(6): 1099-1107. |
钟鹏, 苗丽丽, 刘杰, 等. 种植密度和方式对油莎豆块茎生长期光合特性和产量的影响. 中国油料作物学报, 2021, 43(6): 1099-1107. | |
4 | Liu Y L, Zhao Y, Xu M Q, et al. Effect of row spacing on the growth of Cyperus esculentus and soil properties in extremely arid region. Acta Agrestia Sinica, 2021, 29(11): 2486-2493. |
刘亚兰, 赵月, 徐梦琦, 等. 极端干旱区种植行距对油莎豆生长及土壤特性的影响. 草地学报, 2021, 29(11): 2486-2493. | |
5 | Zhang X Y, Aysirahun G L N G E, Wan J C, et al. Effects of summer moving on Cyperus esculentus biomass and nutrient quality. Tianjin Agricultural Sciences, 2021, 27(4): 14-18. |
张修业, 古丽尼尕尔·艾依斯热洪, 万江春, 等. 夏季刈割对油莎豆产量及品质的影响. 天津农业科学, 2021, 27(4): 14-18. | |
6 | Zhang S W, Li J A, Liu B Y, et al. Effects of topping method on nitrogen accumulation and quality of cigar tobacco leaf. Crops, 2022(1): 184-189. |
张思唯, 李金奥, 刘博远, 等. 打顶方式对雪茄烟烟叶氮素积累及品质的影响.作物杂志, 2022(1): 184-189. | |
7 | Su J S, Jing G H, Jin J W, et al. Identifying drivers of root community compositional changes in semiarid grassland on the Loess Plateau after long term grazing exclusion. Ecological Engineering, 2017, 99: 13-21. |
8 | Bo L I, Shibuya T, Yogo Y, et al. Effects of ramet clipping and nutrient availability on growth and biomass allocation of yellow nutsedge. Ecological Research, 2010, 19(6): 603-612. |
9 | Wei Z, Chen S P, Lin G H. Compensatory growth responses to clipping defoliation in Leymus chinensis (Poaceae) under nutrient addition and water deficiency conditions. Plant Ecology, 2008, 196(1): 85-99. |
10 | Zhang X N, Ha D C L, Pan Q M. Adaptive regulation in reproductive strategy of two bunchgrasses under mowing disturbance in Inner Mongolia grassland. Chinese Journal of Plant Ecology, 2010, 34(3): 253-262. |
张晓娜, 哈达朝鲁, 潘庆民. 刈割干扰下内蒙古草原两种丛生禾草繁殖策略的适应性调节. 植物生态学报, 2010, 34(3): 253-262. | |
11 | Dong S K, Kang M Y, Hu Z Z, et al. Performance of cultivated perennial grass mixtures under different grazing intensities in the alpine region of the Qinghai-Tibetan Plateau. Grass & Forage Science, 2010, 59(3): 298-306. |
12 | Zhu A M, Zhang Y X, Wang X G, et al. Effects of autumn cutting on the non-structural carbon and nitrogen content in the root collar of alfalfa. Acta Prataculturae Sinica, 2018, 27(1): 86-96. |
朱爱民, 张玉霞, 王显国, 等. 秋末刈割处理对沙地苜蓿冬季根颈非结构碳氮的影响. 草业学报, 2018, 27(1): 86-96. | |
13 | Sun Z J, Li P Y, An S Z. Physiological response of Seriphidium transiliense to different defoliation intensities. Xinjiang Agricultural Sciences, 2011, 48(11): 2102-2108. |
孙宗玖, 李培英, 安沙舟. 伊犁绢蒿种群对不同刈割干扰的生理响应. 新疆农业科学, 2011, 48(11): 2102-2108. | |
14 | Nzunda E F, Griffiths M E, Lawes M J. Sprouting by remobilization of above-ground resources ensures persistence after disturbance of coastal dune forest trees. Functional Ecology, 2008, 22(4): 577-582. |
15 | Zhang Y, Shao X, Chen C, et al. Morphological characteristics and biomass allocation of Leymus chinensis (Poaceae) (Trin.) responses to long-term overgrazing in agro-pastoral ecotone of Northern China. Journal of Animal & Plant Sciences, 2013, 23(3): 933-938. |
16 | Dovel R L. Cutting height effects on wetland meadow forage yield and quality. Rangeland Ecology & Management/Journal of Range Management Archives, 1996, 49(2): 151-156. |
17 | Hou F J. Effect of grazing on photosynthesis and respiration of herbage and on its absorption and transporation of nitrogen and carbon. Chinese Journal of Applied Ecology, 2001(6): 938-942. |
侯扶江. 放牧对牧草光合作用、呼吸作用和氮、碳吸收与转运的影响. 应用生态学报, 2001(6): 938-942. | |
18 | Yang H M, Wang Z N, Ji C R. Research progress in the dynamics of carbon and nitrogen in forages after cutting and grazing. Chinese Journal of Grassland, 2013, 35(4): 102-109, 120. |
杨惠敏, 王振南, 吉春荣. 刈割和放牧后牧草碳氮动态研究进展. 中国草地学报, 2013, 35(4): 102-109, 120. | |
19 | Song Z F, An S Z, Sun Z J. Biomass allocation patterns of Seriphidium transiliense under clipping and grazing conditions. Pratacultural Science, 2009, 26(12): 118-123. |
宋智芳, 安沙舟, 孙宗玖. 刈割和放牧条件下伊犁绢蒿生物量分配特点. 草业科学, 2009, 26(12): 118-123. | |
20 | Wang H R, Zhang Y, Yu C M, et al. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.). Acta Agronomica Sinica, 2022, 48(4): 791-800. |
王好让, 张勇, 于春淼, 等. 大豆突变体ygl2黄绿叶基因的精细定位.作物学报, 2022, 48(4): 791-800. | |
21 | Li H S. Plant physiological and biochemical experiment principles and techniques. Beijing: Higher Education Press, 2000. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. | |
22 | Cordovilla M, Pérez J, Ligero F, et al. Partial purification and characterization of NADH-glutamate synthase from faba bean (Vicia faba) root nodules. Plant Science, 2000, 150(2): 121-128. |
23 | Haghighat N. Estrogen (17β-Estradiol) enhances glutamine synthetase activity in C6-glioma cells. Neurochemical Research, 2005, 30(5): 661-667. |
24 | Li X, Ying S H, Hao X C. Animal and vegetable fats and oils-analysis by gas chromatography of methyl esters of fatty acids, GB/T17377-1998. Beijing: Institute of Cereal Oil Chemistry, Ministry of Domestic Trade, 1998. |
李歆, 应闪红, 郝希成. 动植物油脂脂肪酸甲酯的气相色谱分析, GB/T17377-1998. 北京: 国内贸易部谷物油脂化学研究所, 1998. | |
25 | Wu R X, Yang L, He Y F, et al. Animal feeding stuffs-determination of crude ash, GB/T6438-2007. Wuhan: National Feed Quality Supervision and Inspection Center, 2007. |
吴润仙, 杨林, 何一帆, 等. 饲料中粗灰分的测定, GB/T6438-2007. 武汉: 国家饲料质量监督检测中心, 2007. | |
26 | Zhao S J, Shi G A, Dong X C. Plant physiological guidance. Beijing: China Agricultural Science and Technology Press, 2022: 132-133. |
赵世杰, 史国安, 董新纯. 植物生理指导. 北京: 中国农业科技出版社, 2002: 132-133. | |
27 | Filya I, Ashbell G, Hen Y, et al. The effect of bacterial inoculants on the fermentation and aerobic stability of whole crop wheat silage. Animal Feed Science & Technology, 2000, 88(1/2): 39-46. |
28 | Yan Y H, Li J L, Guo X S, et al. A study on fermentation quality of Italian ryegrass and soybean straw mixed silage. Acta Prataculturae Sinica, 2014, 23(4): 94-99. |
闫艳红, 李君临, 郭旭生, 等. 多花黑麦草与大豆秸秆混合青贮发酵品质的研究. 草业学报, 2014, 23(4): 94-99. | |
29 | Zhao Y L. A novel micro-amount method with spectrophotometer to determine amylose and total starch content of wheat seeds. Food and Fermentation Industries, 2005, 31(8): 23-26. |
赵永亮. 一种同时测定小麦种子中直链淀粉、总淀粉含量的新方法—微量分光光度法. 食品与发酵工业, 2005, 31(8): 23-26. | |
30 | Zhang L Y. Feed analysis and feed quality testing technology. Beijing: China Agricultural University Press, 2007: 49-74. |
张丽英. 饲料分析及饲料质量检测技术. 北京: 中国农业大学出版社, 2007: 49-74. | |
31 | Lasekan O, Abdulkarim S M. Extraction of oil from tiger nut (Cyperus esculentus L.) with supercritical carbon dioxide (SC-CO2). LWT-Food Science and Technology, 2012, 47(2): 287-292. |
32 | Sun C Q, Yang Y J, Guo Z L, et al. Effects of fertilization and density on soluble sugar and protein and nitrate reductase of hybrid foxtail millet. Journal of Plant Nutrition and Fertilizers, 2015, 21(5): 1169-1177. |
孙常青, 杨艳君, 郭志利, 等. 施肥和密度对杂交谷可溶性糖、可溶性蛋白及硝酸还原酶的影响. 植物营养与肥料学报, 2015, 21(5): 1169-1177. | |
33 | Zhang Z M, Zhang W, Hu W G, et al.Study on enzymatic activity correlative with nitrogen metabolism in high-yield peanut. Journal of Peanut Science, 2006(1): 8-12. |
张智猛, 张威, 胡文广, 等. 高产花生氮素代谢相关酶活性变化的研究. 花生学报, 2006(1): 8-12. | |
34 | Cao B, Huang Z H, Wu G L, et al. Impact of controlled release blended on yield, nitrogen use efficiency and leaf enzyme activity of nitrogen metabolism of summer maize under single basal reduction application. Soil and Fertilizer Sciences in China, 2021(3): 127-133. |
曹兵, 黄志浩, 吴广利, 等. 控释掺混肥一次性减量施用对夏玉米产量、氮肥利用和叶片氮代谢酶活性的影响. 中国土壤与肥料, 2021(3): 127-133. | |
35 | Pang R Y, Kong J, Yang F J, et al. Study on the effects of cultivation modes on nitrogen metabolism in functional leaves of summer direct seeding peanut. Journal of Peanut Science, 2021, 50(3): 34-39. |
庞茹月, 孔洁, 杨富军, 等. 栽培方式对夏直播花生功能叶片氮素代谢的影响. 花生学报, 2021, 50(3): 34-39. | |
36 | Yoneyama T, Suzuki A. Exploration of nitrate-to-glutamate assimilation in non-photosynthetic roots of higher plants by studies of 15 N-tracing, enzymes involved, reductant supply, and nitrate signaling: A review and synthesis. Plant Physiology & Biochemistry, 2019, 136: 245-254. |
37 | Nichol C J, Huemmrich K F, Black T A, et al. Remote sensing of photosynthetic-light-use efficiency of boreal forest. Agricultural and Forest Meteorology, 2000, 101(2/3): 131-142. |
38 | Funk J L, Vitousek P M. Resource-use efficiency and plant invasion in low-resource systems. Nature, 2007, 446(7139): 1079-1081. |
39 | Jiao N Y, Ning T Y, Yang M K, et al. Effects of maize on peanut intercropping on photosynthetic characters and yield forming of intercropped maize. Acta Ecologica Sinica, 2013, 33(14): 4324-4330. |
焦念元, 宁堂原, 杨萌珂, 等. 玉米花生间作对玉米光合特性及产量形成的影响. 生态学报, 2013, 33(14): 4324-4330. | |
40 | Yang F J, Zhao C X, Yan M M, et al. Effects of cultivation methods on plant growth and yield of summer-planting peanut. Chinese Agricultural Science Bulletin, 2013, 29(3): 141-146. |
杨富军, 赵长星, 闫萌萌, 等. 栽培方式对夏直播花生植株生长及产量的影响. 中国农学通报, 2013, 29(3): 141-146. | |
41 | Wang X, Liu X J, Zhao Y J, et al. Effects of alfalfa/oat intercropping on carbon and nitrogen metabolism and matter accumulation of oat. Acta Agrestia Sinica, 2021, 29(10): 2258-2264. |
汪雪, 刘晓静, 赵雅姣, 等. 紫花苜蓿/燕麦间作对燕麦碳、氮代谢及其物质积累的影响研究. 草地学报, 2021, 29(10): 2258-2264. | |
42 | Gao Y T, Zhang R, Li H X, et al. Effect of water stress on sugar accumulation and sucrose metabolism enzyme activities of greenhouse grape fruit. Arid Zone Research, 2021, 38(6): 1713-1721. |
高彦婷, 张芮, 李红霞, 等. 水分胁迫对葡萄糖分及其蔗糖代谢酶活性的影响. 干旱区研究, 2021, 38(6): 1713-1721. | |
43 | Yang S L, Zhang J, Chen L H. Growth and physiological responses of Pennisetum sp. to cadmium stress under three different soils. Environmental Science and Pollution Research, 2021, 28(12): 14867-14881. |
44 | Haider F U, Liqun C, Coulter J A, et al. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 2021, 211: 111887-111909. |
45 | Zhao G D, Liu S R, Ma Q L. Ecophysiologicial responses of two xerophytes Atraphaxis frutescens and Elaeagnus angustifolia to the change of groundwater depth in arid area I. changes in leaf nutrient chlorophyll, soluble sugar and starch contents. Chinese Journal of Plant Ecology, 2003(2): 228-234. |
赵广东, 刘世荣, 马全林. 沙木蓼和沙枣对地下水位变化的生理生态响应I. 叶片养分、叶绿素、可溶性糖和淀粉的变化. 植物生态学报, 2003(2): 228-234. | |
46 | Carpita N, Sabularse D, Montezinos D, et al. Determination of the pore size of cell walls of living plant cells. Science, 1979, 205(4411): 1144-1147. |
47 | Chen D, Li B Q, Yang Y P, et al. Cadmium accumulation characteristics of four herbs. Environmental Science, 2021, 42(2): 960-966. |
陈迪, 李伯群, 杨永平, 等. 4种草本植物对镉的富集特征. 环境科学, 2021, 42(2): 960-966. | |
48 | Gao Y Z, Jing X, Wang X Y. Impact of grazing and clipping on grassland belowground net primary productivity and root turnover. Journal of Southwest Minzu University (Natural Science Edition), 2017, 43(2): 111-117. |
高英志, 景馨, 王新宇. 放牧和刈割对草原地下净生产力和根系周转的影响. 西南民族大学学报(自然科学版), 2017, 43(2): 111-117. | |
49 | Zhang J E, Liu W G, Chen J Q, et al. Effects of different cutting intensities on above- and underground growth of Stylosanthes guianensis. Chinese Journal of Applied Ecology, 2005, 16(9): 1740-1744. |
章家恩, 刘文高, 陈景青, 等. 不同刈割强度对牧草地上部和地下部生长性状的影响. 应用生态学报, 2005, 16(9): 1740-1744. | |
50 | Brouwer R. Some aspects of the equilibrium between overground and underground plant parts. Jaarboek van het Instituut voor Biologisch en Scheikundig onderzoek aan Landbouwgewassen, 1963, 213: 31-39. |
51 | Huhta A P, Hellströom K, Rautio P, et al. Grazing tolerance of Gentianella amarella and other monocarpic herbs: Why is tolerance highest at low damage levels? Plant Ecology, 2003, 166: 49-61. |
52 | Ma H B, Xie Y Z. Plant compensatory growth under different grazing intensities in desert steppe. Scientia Agricultura Sinica, 2008(11): 3645-3650. |
马红彬, 谢应忠. 不同放牧强度下荒漠草原植物的补偿性生长. 中国农业科学, 2008(11): 3645-3650. | |
53 | Schönbach P, Wan H, Gierus M, et al. Grassland responses to grazing: effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant and Soil, 2011, 340(1): 103-115. |
54 | Hou Y R, An S Z, Hou Y L, et al. Season change and response on stored nutrition matter and osmosis regulating substances of mowing intensities on roots in Seriphidum trasiliense. Xinjiang Agricultural Sciences, 2011,48(5): 923-930. |
侯钰荣, 安沙舟, 侯玉林, 等. 伊犁绢蒿根系贮存性营养物质和渗透调节物质季节变化及对刈割强度的响应. 新疆农业科学, 2011, 48(5): 923-930. | |
55 | Gong X W, Han H K, Zhang D Z, et al. Effects of nitrogen fertilizer on dry matter accumulation, transportation and nitrogen metabolism in functional leaves of broomcorn millet at late growth stage. Scientia Agricultura Sinica, 2018, 51(6): 1045-1056. |
宫香伟, 韩浩坤, 张大众, 等. 氮肥运筹对糜子生育后期干物质积累与转运及叶片氮素代谢的调控效应. 中国农业科学, 2018, 51(6): 1045-1056. | |
56 | Fan C, Zhao B F, Fu Y P, et al. Influences of nitrogen application rates on key enzyme activities of carbon-nitrogen metabolism and quality of dark sun-cured tobacco in Jiaohe. Tobacco Science & Technology, 2019, 52(8): 30-36. |
凡聪, 赵兵飞, 符云鹏, 等. 氮用量对蛟河晒红烟碳氮代谢关键酶活性及品质的影响. 烟草科技, 2019, 52(8): 30-36. | |
57 | Yang F J, Zhao C X, Yan M M, et al. Effects of different cultivation modes on the leaf photosynthetic characteristics and yield of summer-sowing peanut. Chinese Journal of Applied Ecology, 2013, 24(3): 747-752. |
杨富军, 赵长星, 闫萌萌, 等. 栽培方式对夏直播花生叶片光合特性及产量的影响. 应用生态学报, 2013, 24(3): 747-752. | |
58 | Shi S Y, Xue Q H, Lian X M, et al. Comparison of activities of key enzymes during N metabolism in maize and soybean. Jiangsu Journal of Agricultural Sciences, 2000(3): 191-192. |
师素云, 薛启汉, 练兴明, 等. 玉米与大豆氮代谢关键酶活性比较. 江苏农业学报, 2000(3): 191-192. | |
59 | Ning Y, Ai X Z, Li Q M, et al. Effects of light quality on carbon-nitrogen metabolism,growth,and quality of Chinese chives. Chinese Journal of Applied Ecology, 2019, 30(1): 251-258. |
宁宇, 艾希珍, 李清明, 等. 光质对韭菜碳氮代谢、生长和品质的影响. 应用生态学报, 2019, 30(1): 251-258. | |
60 | Beatty P, Klein M, Fischer J, et al. Understanding plant nitrogen metabolism through metabolomics and computational approaches. Plants, 2016, 5(5): 39. |
[1] | 许留兴, 蒙元燕, 罗昌芬, 祁启望, 郑晋静, 张继王, 刘丽, 张小龙, 唐玉凤, 武丹, 蔡荣靖. 两用(粮食和饲料)作物研究现状及发展前景[J]. 草业学报, 2023, 32(2): 201-209. |
[2] | 王琪, 郑佳华, 赵萌莉, 张军. 刈割强度对大针茅草原植物群落特征和土壤理化性质的影响[J]. 草业学报, 2023, 32(2): 26-34. |
[3] | 郭丽珠, 孟慧珍, 范希峰, 滕珂, 滕文军, 温海峰, 岳跃森, 张辉, 武菊英. 野牛草雌雄株对不同形态氮素的生理响应差异[J]. 草业学报, 2023, 32(2): 65-74. |
[4] | 王珊珊, 谷海涛, 谢慧芳, 何绍冬, 甘长波, 卫小勇, 孔广超. 113份饲草型六倍体小黑麦种质饲草产量与品质性状的评价[J]. 草业学报, 2023, 32(1): 192-202. |
[5] | 陈卫东, 张玉霞, 张庆昕, 刘庭玉, 王显国, 王东儒. 末次刈割时间对苜蓿根颈抗氧化系统及抗寒性的影响[J]. 草业学报, 2022, 31(9): 129-138. |
[6] | 张耀, 黄小云, 陈鑫珠, 黄勤楼, 黄秀声, 韩海东. 海鲜菇菌糠发酵饲料对山羊屠宰性能及肉品质的影响[J]. 草业学报, 2022, 31(9): 195-205. |
[7] | 银敏华, 马彦麟, 康燕霞, 贾琼, 齐广平, 汪精海. 氮素添加对中国苜蓿产量与品质效应的Meta分析[J]. 草业学报, 2022, 31(9): 36-49. |
[8] | 孙延亮, 赵俊威, 刘选帅, 李生仪, 马春晖, 王旭哲, 张前兵. 施氮对苜蓿初花期光合日变化、叶片形态及干物质产量的影响[J]. 草业学报, 2022, 31(9): 63-75. |
[9] | 王星, 黄薇, 余淑艳, 李小云, 高雪芹, 伏兵哲. 宁夏地区地下滴灌水肥耦合对紫花苜蓿种子产量及构成因素的影响[J]. 草业学报, 2022, 31(9): 76-85. |
[10] | 付东青, 贾春英, 张力, 张凡凡, 马春晖. 南疆干旱灌溉区青贮玉米农艺性状和发酵品质动态分析及评价[J]. 草业学报, 2022, 31(8): 111-125. |
[11] | 李影正, 程榆林, 徐璐璐, 李万松, 严旭, 李晓锋, 何如钰, 周阳, 郑军军, 汪星宇, 张德龙, 程明军, 夏运红, 何建美, 唐祈林. 不同玉米品种(系)的全株、果穗与秸秆青贮特性比较[J]. 草业学报, 2022, 31(8): 144-156. |
[12] | 吴永杰, 丁浩, 邵涛, 赵杰, 董东, 代童童, 尹雪敬, 宗成, 李君风. 酶制剂对水稻秸秆青贮发酵品质及体外消化特性的影响[J]. 草业学报, 2022, 31(8): 167-177. |
[13] | 齐昊昊, 庞晓攀, 周俗, 郭正刚. 高原鼠兔刈割对青海湖流域高寒草甸植物种间关联的影响[J]. 草业学报, 2022, 31(8): 61-71. |
[14] | 戈建珍, 傅文慧, 张露, 蔺宝珺, 赵帅, 白玛噶翁, 寇建村. 多菌灵在果园白三叶青贮中的降解及其对微生物群落的影响[J]. 草业学报, 2022, 31(7): 64-75. |
[15] | 李君风, 赵杰, 唐小月, 代童童, 董东, 宗成, 邵涛. 瘤胃纤维素降解菌系对灭菌水稻秸秆结构性碳水化合物降解的影响[J]. 草业学报, 2022, 31(7): 85-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||