草业学报 ›› 2023, Vol. 32 ›› Issue (2): 201-209.DOI: 10.11686/cyxb2022055
• 综合评述 • 上一篇
许留兴(), 蒙元燕, 罗昌芬, 祁启望, 郑晋静, 张继王, 刘丽, 张小龙, 唐玉凤, 武丹(), 蔡荣靖()
收稿日期:
2022-01-30
修回日期:
2022-03-21
出版日期:
2023-02-20
发布日期:
2022-12-01
通讯作者:
武丹,蔡荣靖
作者简介:
E-mail: 834487291@qq.com, 592497332@qq.com基金资助:
Liu-xing XU(), Yuan-yan MENG, Chang-fen LUO, Qi-wang QI, Jin-jing ZHENG, Ji-wang ZHANG, Li LIU, Xiao-long ZHANG, Yu-feng TANG, Dan WU(), Rong-jin CAI()
Received:
2022-01-30
Revised:
2022-03-21
Online:
2023-02-20
Published:
2022-12-01
Contact:
Dan WU,Rong-jin CAI
摘要:
随着经济发展和收入水平的提高,居民对粮食消费量出现降低和对畜产品需求量出现增加的现象并存,但优质饲料的缺乏阻碍了畜牧业的发展。两用(粮用和饲用)作物增加了冬季饲料供应,其已成为一些国家或地区农业生产系统中的重要组成部分(主要分布于农牧交错区)。梳理近年来国内外关于两用作物生产和利用的现状及发展趋势,重点概述的内容有:1)两用作物的利用背景;2)两用作物的概念;3)代表性地区;4)饲草、籽粒产量和经济收益;5)动物利用和畜产品等。同时,对当前两用作物生产系统中面临的问题和应对举措进行了展望,包括:1)播种时间和播种量的选择;2)放牧或刈割后的氮肥管理;3)作物放牧或刈割的适宜生育期;4)种质资源的选择等。总体而言,两用作物生产管理(包括放牧时间、施氮量、播种量和放牧强度等)不当增加了籽粒产量降低的风险,但基于农业生产系统的综合效益,作物以两用的形式进行生产和利用是有利可图的。
许留兴, 蒙元燕, 罗昌芬, 祁启望, 郑晋静, 张继王, 刘丽, 张小龙, 唐玉凤, 武丹, 蔡荣靖. 两用(粮食和饲料)作物研究现状及发展前景[J]. 草业学报, 2023, 32(2): 201-209.
Liu-xing XU, Yuan-yan MENG, Chang-fen LUO, Qi-wang QI, Jin-jing ZHENG, Ji-wang ZHANG, Li LIU, Xiao-long ZHANG, Yu-feng TANG, Dan WU, Rong-jin CAI. Research status and development prospects of dual-purpose crops (grain and forage)[J]. Acta Prataculturae Sinica, 2023, 32(2): 201-209.
国家 Countries | 代表性地区 Representative regions | 作物类型 Crop type | 经济效益 Economic benefits |
---|---|---|---|
中国 China | 黄土高原和内蒙古地区 Loess Plateau and Inner Mongolia | 小麦Wheat | 延迟播种(10月2日)导致饲草产量降低33.4%,但额外获取1.6 t·hm-2的饲草,春季刈割导致籽粒减产[ |
澳大利亚 Australia | 高降水地区 High-rainfall zones | 小麦和油菜 Wheat and canola | 小麦推迟刈割导致作物减产40%,但提早刈割对籽粒产量和品质无影响[ |
肯尼亚Kenya | 维希加地区 Visiga region | 红薯 Ipomoea batatas | 使用率在55%~80%[ |
印度 India | 喜马拉雅山区Himalayas region | 小麦 Wheat | 两用小麦提供2.63~3.77 t·hm-2的鲜草[ |
埃及 Egypt | 地中海地区Mediterranean region | 小麦、大麦、燕麦和小黑麦Wheat, barley, oats and triticale | 当播种60 d后刈割,谷类作物获取的饲草资源能替代20%的商业饲草来源[ |
土耳其Turkey | 科尼亚地区 Konya region | 小麦和大麦 Wheat and barley | 两用大麦管理能增加44.6%~61.1%的经济收益[ |
伊朗 Iran | 卡拉杰地区 Karaj region | 大麦 Barley | 增加23.9%~43.6%的经济收益[ |
美国America | 得克萨斯州地区 Texas region | 小麦 Wheat | 视田间管理而定[ |
巴西 Brazil | 巴拉那高原地区 Parana Plateau region | 小麦 Wheat | 尽管奶牛的增重视放牧天数而定[ |
表1 种植两用作物代表性国家和经济效益
Table 1 Representative countries of dual-purpose crop cultivation and economic benefits
国家 Countries | 代表性地区 Representative regions | 作物类型 Crop type | 经济效益 Economic benefits |
---|---|---|---|
中国 China | 黄土高原和内蒙古地区 Loess Plateau and Inner Mongolia | 小麦Wheat | 延迟播种(10月2日)导致饲草产量降低33.4%,但额外获取1.6 t·hm-2的饲草,春季刈割导致籽粒减产[ |
澳大利亚 Australia | 高降水地区 High-rainfall zones | 小麦和油菜 Wheat and canola | 小麦推迟刈割导致作物减产40%,但提早刈割对籽粒产量和品质无影响[ |
肯尼亚Kenya | 维希加地区 Visiga region | 红薯 Ipomoea batatas | 使用率在55%~80%[ |
印度 India | 喜马拉雅山区Himalayas region | 小麦 Wheat | 两用小麦提供2.63~3.77 t·hm-2的鲜草[ |
埃及 Egypt | 地中海地区Mediterranean region | 小麦、大麦、燕麦和小黑麦Wheat, barley, oats and triticale | 当播种60 d后刈割,谷类作物获取的饲草资源能替代20%的商业饲草来源[ |
土耳其Turkey | 科尼亚地区 Konya region | 小麦和大麦 Wheat and barley | 两用大麦管理能增加44.6%~61.1%的经济收益[ |
伊朗 Iran | 卡拉杰地区 Karaj region | 大麦 Barley | 增加23.9%~43.6%的经济收益[ |
美国America | 得克萨斯州地区 Texas region | 小麦 Wheat | 视田间管理而定[ |
巴西 Brazil | 巴拉那高原地区 Parana Plateau region | 小麦 Wheat | 尽管奶牛的增重视放牧天数而定[ |
1 | Gao H X. Empirical study on planting decision behavior of forage grass producers in China. Beijing: Chinese Academy of Agricultural Sciences, 2021. |
高海秀. 中国牧草生产者种植决策行为研究. 北京: 中国农业科学院, 2021. | |
2 | Hu C, Sadras V O, Lu G, et al. Dual-purpose winter wheat: Interactions between crop management, availability of nitrogen and weather conditions. Field Crops Research, 2019, 241: 1-11. |
3 | Randby A T, Nadeau E, Karlsson L, et al. Effect of maturity stage at harvest and kernel processing of whole crop wheat silage on digestibility by dairy cows. Animal Feed Science and Technology, 2019, 253: 141-152. |
4 | Bell L W, Moore A D, Kirkegaard J A. Evolution in crop-livestock integration systems that improve farm productivity and environmental performance in Australia. European Journal of Agronomy, 2014, 57: 10-20. |
5 | Cadeddu F, Motzo R, Mureddu F, et al. Ancient wheat species are suitable to grain-only and grain plus herbage utilisations in marginal Mediterranean environments. Agronomy for Sustainable Development, 2021, 41(2): 1-13. |
6 | Salama H S A, Badry H H. Forage and grain yields of dual-purpose triticale as influenced by the integrated use of Azotobacter chroococcum and mineral nitrogen fertilizer. Italian Journal of Agronomy, 2021, 16(2): 1719. |
7 | Moustafa E S A, El-Sobky E S E A, Farag H I A, et al. Sowing date and genotype influence on yield and quality of dual-purpose barley in a salt-affected arid region. Agronomy, 2021, 11(4): 1-14. |
8 | Sprague S J, Kirkegaard J A, Dove H, et al. Integrating dual-purpose wheat and canola into high-rainfall livestock systems in south-eastern Australia. 1. Crop forage and grain yield. Crop and Pasture Science, 2015, 66(4): 365-376. |
9 | Food and Agriculture Organization (FAO). The future of food and agriculture: Trends and challenges. Rome, FAO, 2017. |
10 | IPCC. AR6 climate change: The physical science basis. New York, IPCC, 2021. |
11 | Ward F A. Enhancing climate resilience of irrigated agriculture: A review. Journal of Environmental Management, 2022, 302: 1-15. |
12 | Food and Agriculture Organization (FAO). Optimization of feed efficiency in ruminant production systems. Bangkok, FAO, 2012. |
13 | Ashbell G, Weinberg Z G, Bruckental I, et al. Wheat silage: Effect of cultivar and stage of maturity on yield and degradability in situ. Journal of Agricultural and Food Chemistry, 1997, 45(3): 709-712. |
14 | Ren H, Han G, Schönbach P, et al. Forage nutritional characteristics and yield dynamics in a grazed semiarid steppe ecosystem of Inner Mongolia, China. Ecological Indicators, 2016, 60: 460-469. |
15 | Wu X F. The effects of forage type and season on the microbiota of muskoxen rumen through metatranscriptomic approaches. Ya’an: Sichuan Agricultural University, 2017. |
吴小峰. 基于宏转录组学技术研究饲草类型和季节对麝牛瘤胃微生物组的影响. 雅安: 四川农业大学, 2017. | |
16 | Vandermeulen S, Ramírez-Restrepo C A, Marche C, et al. Behaviour and browse species selectivity of heifers grazing in a temperate silvopastoral system. Agroforestry Systems, 2018, 92(3): 705-716. |
17 | Ni Y F, Wang M L. The characteristics and influencing factors of geographical agglomeration of forage industry in China. Economic Geography, 2018, 38(6): 142-150. |
倪印锋, 王明利. 中国牧草产业地理集聚特征及影响因素. 经济地理, 2018, 38(6): 142-150. | |
18 | Yang J, Lai X, Shen Y. Response of dual-purpose winter wheat yield and its components to sowing date and cutting timing in a semiarid region of China. Crop Science, 2021, 62(1): 425-440. |
19 | Hu C, Ding M, Qu C, et al. Yield and water use efficiency of wheat in the Loess Plateau: Responses to root pruning and defoliation. Field Crops Research, 2015, 179: 6-11. |
20 | Bell L W, Kirkegaard J A, Tian L, et al. Interactions of spring cereal genotypic attributes and recovery of grain yield after defoliation. Frontiers in Plant Science, 2020, 11: 1-15. |
21 | Moore A D. Opportunities and trade-offs in dual-purpose cereals across the southern Australian mixed-farming zone: A modelling study. Animal Production Science, 2009, 49(10): 759-768. |
22 | Claessens L, Stoorvogel J J, Antle J M. Exante assessment of dual-purpose sweet potato in the crop-livestock system of western Kenya: A minimum-data approach. Agricultural Systems, 2008, 99(1): 13-22. |
23 | Mondal T, Yadav R P, Meena V S, et al. Biomass yield and nutrient content of dual purpose wheat in the fruit based cropping system in the North-Western mid-Himalaya ecosystem, India. Field Crops Research, 2020, 247: 1-9. |
24 | Bhavya M R, Palled Y B, Kumar B T, et al. Influence of seed rate and fertilizer levels on nutrient content. Uptake and soil fertility status in fodder cowpea production. BIOINFOLET-A Quarterly Journal of Life Sciences, 2014, 13(3): 787-792. |
25 | Salama H S A, Safwat A M, Elghalid O H, et al. Agronomic and in vitro quality evaluation of dual-purpose cereals clipped at variable ages and their utilization in rabbit feeding. Agronomy, 2021, 11(6): 1106-1147. |
26 | Salama H S A. Dual purpose barley production in the mediterranean climate: Effect of seeding rate and age at forage cutting. International Journal of Plant Production, 2019, 13(4): 285-295. |
27 | Ates S, Cicek H, Gultekin I, et al. Bio-economic analysis of dual-purpose management of winter cereals in high and low input production systems. Field Crops Research, 2018, 227: 56-66. |
28 | Khalil I H, Carver B F, Krenzer E G, et al. Genetic trends in winter wheat grain quality with dual-purpose and grain-only management systems. Crop Science, 2002, 42(4): 1112-1116. |
29 | Hajighasemi S, Keshavarz‐Afshar R, Chaichi M R. Nitrogen fertilizer and seeding rate influence on grain and forage yield of dual-purpose barley. Agronomy Journal, 2016, 108(4): 1486-1494. |
30 | Broumand P, Rezaei A, Soleymani A, et al. Influence of forage clipping and top dressing of nitrogen fertilizer on grain yield of cereal crops in dual purpose cultivation system. Research on Crops, 2010, 11(3): 603-613. |
31 | Woli P, Rouquette Jr F M, Smith G R, et al. Simulating winter wheat forage production in the southern United States using a forage wheat model. Agronomy Journal, 2019, 111(3): 1141-1154. |
32 | Da Silva F L, Carvalho I R, Barbosa M H, et al. Sowing density and clipping management: Effects on the architecture and yield of dual-purpose wheat. Bioscience Journal, 2020, 36(6): 2060-2067. |
33 | Bartmeyer T N, Dittrich J R, da Silva H A, et al. Double purpose wheat under beef cattle grazing in Campos Gerais, Paraná State, Brazil. Pesquisa Agropecuária Brasileira, 2011, 46(10): 1247-1253. |
34 | Rodolfo G R, Souza C A, Stefen D L V, et al. Agronomic traits of dual-purpose wheat with different plant architectures under defoliation strategies. Bioscience Journal, 2019, 35(6): 1758-1772. |
35 | Harrison M T, Evans J R, Dove H, et al. Recovery dynamics of rainfed winter wheat after livestock grazing 1. Growth rates, grain yields, soil water use and water-use efficiency. Crop and Pasture Science, 2011, 62(11): 947-959. |
36 | Kelman W M, Dove H. Effects of a spring-sown brassica crop on lamb performance and on subsequent establishment and grain yield of dual-purpose winter wheat and oat crops. Australian Journal of Experimental Agriculture, 2007, 47(7): 815-824. |
37 | Virgona J M, Gummer F A J, Angus J F. Effects of grazing on wheat growth, yield, development, water use, and nitrogen use. Australian Journal of Agricultural Research, 2006, 57(12): 1307-1319. |
38 | Nicholson C. Effect of grazing on the grain yield and quality of seven cereals-Inverleigh//Proceedings of the 13th Australian Agronomy Conference. Perth: Australian Agronomy Conference, 2006, 184-186. |
39 | Scott W R, Hines S E. Effects of grazing on grain yield of winter barley and triticale: The position of the apical dome relative to the soil surface. New Zealand Journal of Agricultural Research, 1991, 34(2): 177-184. |
40 | Fischer R A. Understanding the physiological basis of yield potential in wheat. The Journal of Agricultural Science, 2007, 145(2): 99-113. |
41 | Giuntaa F, Cabiglieraa A, Virdisb A, et al. Dual-purpose use affects phenology of triticale. Field Crops Research, 2015, 183: 111-116. |
42 | Zadoks J C. A decimal code for the growth stages of cereals. Weed Research, 1974, 14: 415-421. |
43 | Tian L H, Bell L W, Shen Y Y, et al. Dual-purpose use of winter wheat in western China: Cutting time and nitrogen application effects on phenology, forage production, and grain yield. Crop and Pasture Science, 2012, 63(6): 520-528. |
44 | Pandey A K. Effect of agronomic practices on green fodder, grain yield and economics of dual-purpose wheat (Triticum aestivum). The Indian Journal of Agricultural Sciences, 2005, 75(1): 27-29. |
45 | Mcgrath S R, Pinares-Patino C S, Mcdonald S E, et al. Utilising dual-purpose crops in an Australian high-rainfall livestock production system to increase meat and wool production 2. Production from breeding ewe flocks. Animal Production Science, 2021, 61(11): 1-12. |
46 | McCormick J I, Paulet J W, Bell L W, et al. Dual-purpose crops: the potential to increase cattle liveweight gains in winter across Southern Australia. Animal Production Science, 2021, 61: 1189-1201. |
47 | Gunter S A, Combs G F. Efficacy of mineral supplementation to growing cattle grazing winter-wheat pasture in Northwestern Oklahoma. Translational Animal Science, 2019, 3: 1119-1132. |
48 | Dove H, Kirkegaard J. Using dual-purpose crops in sheep-grazing systems. Journal of the Science of Food and Agriculture, 2014, 94(7): 1276-1283. |
49 | Fletcher A L, Chakwizira E. Nitrate accumulation in forage brassicas. New Zealand Journal of Agricultural Research, 2012, 55: 413-419. |
50 | Munsif F, Arif M, Khan A, et al. Dual-purpose wheat technology: A tool for ensuring food security and livestock sustainability in cereal-based cropping pattern. Archives of Agronomy and Soil Science, 2021, 67(13): 1889-1900. |
51 | Royo C, Lopez A, Serra J, et al. Effect of sowing date and cutting stage on yield and quality of irrigated barley and triticale used for forage and grain. Journal of Agronomy and Crop Science, 1997, 179(4): 227-234. |
52 | Edwards J T, Carver B F, Horn G W, et al. Impact of dual-purpose management on wheat grain yield. Crop Science, 2011, 51(5): 2181-2185. |
53 | Khalil S K, Khan F, Rehman A, et al. Dual-purpose wheat for forage and grain yield in response to cutting, seed rate and nitrogen. Pakistan Journal of Botany, 2011, 43(2): 937-947. |
54 | Pan L, Yang Z, Wang J, et al. Comparative proteomic analyses reveal the proteome response to short-term drought in Italian ryegrass (Lolium multiflorum L.). PLoS One, 2017, 12(9): e0184289. |
55 | Timm L C, Haygert-velho I, Maria P, et al. Production of nutrients in dual-purpose wheat pastures managed with different doses of nitrogen as topdressing-exponential model. Anais da Academia Brasileira de Ciências, 2020, 92(3): 1-15. |
56 | Tylutki T P, Fox D G, Durbal V M, et al. Cornell net carbohydrate and protein system: A model for precision feeding of dairy cattle. Animal Feed Science and Technology, 2008, 143(4): 174-202. |
57 | Sij J, Belew M, Pinchak W. Nitrogen management in no-till and conventional-till dual-use wheat/stocker systems. Texas Journal of Agriculture and Natural Resources, 2011, 24: 38-49. |
58 | Harrison M T, Evans J R, Dove H, et al. Dual-purpose cereals: can the relative influences of management and environment on crop recovery and grain yield be dissected? Crop and Pasture Science, 2011, 62(11): 930-946. |
59 | Martiniello P, De Santis G, Iannucci A. Effect of phenological stages on plant dry matter partitioning and seed production in berseem (Trifolium alexandrinum L.). Journal of Agronomy and Crop Science, 1996, 177: 39-48. |
60 | Ortiz-Monasterio J I, Dhillon S S, Fischer R A. Date of sowing effects on grain yield and yield components of irrigated spring wheat cultivars and relationships with radiation and temperature in Ludhiana, India. Field Crops Research, 1994, 37: 169-184. |
61 | Christiansen S, Svejcar T, Phillips W A. Spring and fall cattle grazing effects on components and total grain-yield of winter wheat. Agronomy Journal, 1989, 81: 145-150. |
62 | Blümmel M, Updahyay S R, Gautam N, et al. Comparative assessment of food-fodder traits in a wide range of wheat germplasm for diverse biophysical target domains in South Asia. Field Crops Research, 2019, 236: 68-74. |
63 | Blümmel M, Duncan A J, Lenné J M. Recent advances in dual purpose rice and wheat research: A synthesis. Field Crops Research, 2020, 253: 1-5. |
64 | Bezabih M, Adie A, Ravi D, et al. Variations in food-fodder traits of bread wheat cultivars released for the Ethiopian highlands. Field Crops Research, 2018, 229: 1-7. |
65 | Joshi A K, Barma N C D, Hakim M A, et al. Opportunities for wheat cultivars with superior straw quality traits targeting the semi-arid tropics. Field Crops Research, 2019, 231: 51-56. |
66 | Liu B H, Cui G B, Wang J H, et al. Screening and evaluation of forage wheat germplasms in Guanzhong area of Shannxi Province. Acta Agrestia Sinica, 2018, 26(6): 1435-1443. |
刘博浩, 崔桂宾, 王京宏, 等. 陕西省关中地区饲草型小麦种质资源筛选与评价. 草地学报, 2018, 26(6): 1435-1443. |
[1] | 王珊珊, 谷海涛, 谢慧芳, 何绍冬, 甘长波, 卫小勇, 孔广超. 113份饲草型六倍体小黑麦种质饲草产量与品质性状的评价[J]. 草业学报, 2023, 32(1): 192-202. |
[2] | 银敏华, 马彦麟, 康燕霞, 贾琼, 齐广平, 汪精海. 氮素添加对中国苜蓿产量与品质效应的Meta分析[J]. 草业学报, 2022, 31(9): 36-49. |
[3] | 孙延亮, 赵俊威, 刘选帅, 李生仪, 马春晖, 王旭哲, 张前兵. 施氮对苜蓿初花期光合日变化、叶片形态及干物质产量的影响[J]. 草业学报, 2022, 31(9): 63-75. |
[4] | 王星, 黄薇, 余淑艳, 李小云, 高雪芹, 伏兵哲. 宁夏地区地下滴灌水肥耦合对紫花苜蓿种子产量及构成因素的影响[J]. 草业学报, 2022, 31(9): 76-85. |
[5] | 张铎, 李岚涛, 林迪, 郑龙辉, 耿赛男, 石纹碹, 盛开, 苗玉红, 王宜伦. 施磷水平对菊芋块茎产量、品质、植株生理特性与磷利用率的影响[J]. 草业学报, 2022, 31(6): 139-149. |
[6] | 李满有, 李东宁, 王斌, 李小云, 沈笑天, 曹立娟, 倪旺, 王腾飞, 兰剑. 不同苜蓿品种混播和播种量对牧草产量及品质的影响[J]. 草业学报, 2022, 31(5): 61-75. |
[7] | 刘春增, 郑春风, 聂良鹏, 张琳, 张济世, 吕玉虎, 李本银, 曹卫东. 现蕾期叶面喷素对紫云英籽粒数和籽粒重的影响[J]. 草业学报, 2022, 31(5): 76-83. |
[8] | 高丽敏, 陈春, 沈益新. 氮磷肥对季节性栽培紫花苜蓿生长及再生的影响[J]. 草业学报, 2022, 31(4): 43-52. |
[9] | 李满有, 杨彦军, 王斌, 沈笑天, 曹立娟, 李小云, 倪旺, 兰剑. 宁夏干旱区滴灌条件下燕麦与光叶紫花苕不同混播模式的生产性能、品质及综合评价研究[J]. 草业学报, 2022, 31(4): 62-71. |
[10] | 吴海艳, 曲尼, 曲珍, 同桑措姆, 达娃卓嘎, 德央, 尼玛卓嘎, 刘昭明, 马玉寿. 6个燕麦品种在昂仁县的生产性能及饲草品质比较[J]. 草业学报, 2022, 31(4): 72-80. |
[11] | 刘启宇, 云岚, 陈逸凡, 郭宏宇, 李珍, 高志琦, 王俊, 石凤翎. 苜蓿—禾草混播草地牧草产量及种间竞争关系的动态研究[J]. 草业学报, 2022, 31(3): 181-191. |
[12] | 王斌, 杨雨琦, 李满有, 倪旺, 海艺蕊, 张顺香, 董秀, 兰剑. 不同播种量下行距配置对紫花苜蓿产量及品质的影响[J]. 草业学报, 2022, 31(2): 147-158. |
[13] | 张辉辉, 师尚礼, 武蓓, 李自立, 李小龙. 苜蓿与3种多年生禾草混播效应研究[J]. 草业学报, 2022, 31(2): 159-170. |
[14] | 王海娣, 张勇, 高玉红, 吴兵, 剡斌, 崔政军, 王一帆, 张雪. 胡麻籽粒产量及相关农艺性状对多元化轮作模式的响应[J]. 草业学报, 2022, 31(12): 52-65. |
[15] | 尉春雪, 何飞, 许蕾, 李霄, 张立霞, 李明娜, 陈林, 康俊梅, 杨青川, 龙瑞才. 紫花苜蓿甘氨酸脱羧酶H-蛋白基因MsGDC-H1功能分析[J]. 草业学报, 2022, 31(12): 95-105. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||