草业学报 ›› 2023, Vol. 32 ›› Issue (6): 58-70.DOI: 10.11686/cyxb2022267
李思媛1(), 崔雨萱1, 孙宗玖1,2,3(), 刘慧霞1, 冶华薇1
收稿日期:
2022-06-20
修回日期:
2022-09-21
出版日期:
2023-06-20
发布日期:
2023-04-21
通讯作者:
孙宗玖
作者简介:
Corresponding author. E-mail: nmszj@21cn.com基金资助:
Si-yuan LI1(), Yu-xuan CUI1, Zong-jiu SUN1,2,3(), Hui-xia LIU1, Hua-wei YE1
Received:
2022-06-20
Revised:
2022-09-21
Online:
2023-06-20
Published:
2023-04-21
Contact:
Zong-jiu SUN
摘要:
为了厘清封育过程中退化荒漠草地土壤微生物生物量生态化学计量学特征、土壤有机碳积累特征及其关系,对天山北坡新源县、博乐市、玛纳斯县、呼图壁县、奇台县封育4~7年的蒿类荒漠草地0~50 cm土层土壤有机碳(SOC)、土壤微生物生物量碳(MBC)、氮(MBN)、磷(MBP)含量及其化学计量比进行了分析,并用结构方程模型解析了SOC与土壤MBC、MBN、MBP及其化学计量比间的关系。结果表明:1)封育后0~50 cm土层蒿类荒漠草地SOC含量较对照显著降低15.52%(P<0.05),而土壤MBC、MBN、MBP、MBC/MBN、MBC/MBP、MBN/MBP总体变化不显著。2)SOC与MBC、MBN、MBP均呈显著正相关(P<0.01),与MBC/MBN、MBC/MBP呈负相关,且封育后SOC与MBN/MBP间的关系由显著正相关转为负相关(P<0.01)。3)结构方程分析表明,土壤MBC、MBN、MBP及其计量比对SOC积累的直接解释率为46%,且MBN对土壤有机碳的作用效应最强(P<0.001),封育降低了土壤MBC、MBN对土壤有机碳积累的影响,增加了土壤MBP的直接影响。总之,封育4~7年对蒿类荒漠草地土壤微生物生物量生态化学计量特征影响不显著,且MBN是影响土壤有机碳积累的主要因素。
李思媛, 崔雨萱, 孙宗玖, 刘慧霞, 冶华薇. 封育对蒿类荒漠草地土壤有机碳及土壤微生物生物量生态化学计量特征的影响[J]. 草业学报, 2023, 32(6): 58-70.
Si-yuan LI, Yu-xuan CUI, Zong-jiu SUN, Hui-xia LIU, Hua-wei YE. Effect of grazing exclusion on soil organic carbon and stoichiometry characteristics of soil microbial biomass in sagebrush desert[J]. Acta Prataculturae Sinica, 2023, 32(6): 58-70.
样地 Site | 新源县 Xinyuan (XY) | 博乐市 Bole (BL) | 玛纳斯县 Manasi (MNS) | 呼图壁县 Hutubi (HTB) | 奇台县 Qitai (QT) |
---|---|---|---|---|---|
地理位置 Geographical position | 43°22′ N,82°36′ E | 44°50′ N,81°39′ E | 44°01′ N,86°09′ E | 43°58′ N,86°32′ E | 43°47′ N,89°25′ E |
年均降水量 Mean annual precipitation (mm) | 204 | 200 | 172 | 224 | 160 |
年均气温 Mean annual temperature (℃) | 7.13 | 6.10 | 8.18 | 6.79 | 7.17 |
海拔 Altitude (m) | 887 | 1110 | 1033 | 978 | 1227 |
封育开始时间Start time of grazing exclusion (Year/month) | 2012/6 | 2014/7 | 2015/7 | 2015/7 | 2012/6 |
土壤基质 Soil texture | 土质 Soil | 砾石质 Gravelly | 土质 Soil | 土质 Soil | 土质 Soil |
优势种 Dominant species | 伊犁绢蒿S. transiliense | 博洛塔绢蒿,木地肤S. borotalalense,K. prostrata | 伊犁绢蒿,叉毛蓬S. transiliense,P. sibirica | 伊犁绢蒿,叉毛蓬S. transiliense,P. sibirica | 伊犁绢蒿,木地肤,短柱苔草S. transiliense,K. prostrata,C. turkestanica |
表1 试验样地基本信息[12]
Table 1 The basic condition of experiment site
样地 Site | 新源县 Xinyuan (XY) | 博乐市 Bole (BL) | 玛纳斯县 Manasi (MNS) | 呼图壁县 Hutubi (HTB) | 奇台县 Qitai (QT) |
---|---|---|---|---|---|
地理位置 Geographical position | 43°22′ N,82°36′ E | 44°50′ N,81°39′ E | 44°01′ N,86°09′ E | 43°58′ N,86°32′ E | 43°47′ N,89°25′ E |
年均降水量 Mean annual precipitation (mm) | 204 | 200 | 172 | 224 | 160 |
年均气温 Mean annual temperature (℃) | 7.13 | 6.10 | 8.18 | 6.79 | 7.17 |
海拔 Altitude (m) | 887 | 1110 | 1033 | 978 | 1227 |
封育开始时间Start time of grazing exclusion (Year/month) | 2012/6 | 2014/7 | 2015/7 | 2015/7 | 2012/6 |
土壤基质 Soil texture | 土质 Soil | 砾石质 Gravelly | 土质 Soil | 土质 Soil | 土质 Soil |
优势种 Dominant species | 伊犁绢蒿S. transiliense | 博洛塔绢蒿,木地肤S. borotalalense,K. prostrata | 伊犁绢蒿,叉毛蓬S. transiliense,P. sibirica | 伊犁绢蒿,叉毛蓬S. transiliense,P. sibirica | 伊犁绢蒿,木地肤,短柱苔草S. transiliense,K. prostrata,C. turkestanica |
图1 封育对蒿类荒漠草地土壤有机碳含量的影响*P<0.05,**P<0.01;a:0~50 cm土层;b:新源样地;c:博乐样地;d:玛纳斯样地;e:呼图壁样地;f:奇台样地;图a右上角为封育对5个样地的总体影响。下同。*P<0.05, **P<0.01. a: 0-50 cm soil layer. b: Xinyuan site. c: Bole site. d: Manasi site. e: Hutubi site. f: Qitai site. The total effect of grazing exclusion on the five sites is shown in the top-right corner of Figure a. The same below.
Fig.1 Effect of grazing exclusion on soil organic carbon in sagebrush desert
封育 Grazing exclusion | 对照Control | ||||||
---|---|---|---|---|---|---|---|
SOC | MBC | MBN | MBP | MBC/MBN | MBC/MBP | MBN/MBP | |
SOC | 1.000 | 0.628** | 0.745** | 0.647** | -0.182* | -0.135 | 0.206** |
MBC | 0.428** | 1.000 | 0.838** | 0.746** | -0.217** | -0.068 | 0.187* |
MBN | 0.572** | 0.798** | 1.000 | 0.871** | -0.392** | -0.182* | 0.283** |
MBP | 0.553** | 0.730** | 0.847** | 1.000 | -0.319** | -0.305** | 0.017 |
MBC/MBN | -0.274** | -0.259** | -0.408** | -0.348** | 1.000 | 0.279** | -0.449** |
MBC/MBP | -0.245** | -0.181* | -0.237** | -0.291** | 0.793** | 1.000 | 0.442** |
MBN/MBP | -0.102 | -0.021 | 0.067 | -0.151 | -0.073 | 0.415** | 1.000 |
表2 封育对荒漠草地土壤有机碳与MBC、MBN、MBP及其化学计量特征的皮尔逊相关性分析
Table 2 Pearson correlation analysis of soil organic carbon (SOC) with soil microbial biomass carbon (MBC), nitrogen (MBN), phosphorus (MBP) and their stoichiometric characteristics in grazing exclusion sagebrush desert grassland
封育 Grazing exclusion | 对照Control | ||||||
---|---|---|---|---|---|---|---|
SOC | MBC | MBN | MBP | MBC/MBN | MBC/MBP | MBN/MBP | |
SOC | 1.000 | 0.628** | 0.745** | 0.647** | -0.182* | -0.135 | 0.206** |
MBC | 0.428** | 1.000 | 0.838** | 0.746** | -0.217** | -0.068 | 0.187* |
MBN | 0.572** | 0.798** | 1.000 | 0.871** | -0.392** | -0.182* | 0.283** |
MBP | 0.553** | 0.730** | 0.847** | 1.000 | -0.319** | -0.305** | 0.017 |
MBC/MBN | -0.274** | -0.259** | -0.408** | -0.348** | 1.000 | 0.279** | -0.449** |
MBC/MBP | -0.245** | -0.181* | -0.237** | -0.291** | 0.793** | 1.000 | 0.442** |
MBN/MBP | -0.102 | -0.021 | 0.067 | -0.151 | -0.073 | 0.415** | 1.000 |
图8 土壤微生物生物量及其化学计量比与有机碳拟合的结构方程模型a:总体;b:封育;c:对照。红色路径表示正效应,蓝色路线表示负效应。箭头的宽度表示因果效应的强度。*P<0.05、**P<0.01、***P<0.001。a: Total; b: Grazing exclusion; c: Control. Red paths show positive effects and blue paths show negative effects. The width of arrows indicates the strength of the causal effect. * P<0.05, ** P<0.01, *** P<0.001.
Fig.8 SEM fitting soil microbial biomass and its stoichiometric ratio with soil organic carbon
1 | Millard P, Singh B K. Does grassland vegetation drive soil microbial diversity? Nutrient Cycling in Agroecosystems, 2010, 88(2): 147-158. |
2 | Yang Y, Li H, Zhang L, et al. Characteristics of soil water percolation and dissolved organic carbon leaching and their response to long-term fencing in an alpine meadow on the Tibetan Plateau. Environmental Earth Sciences, 2016, 75(23): 1-10. |
3 | Martensson L M, Olsson P A. Reductions in microbial biomass along disturbance gradients in a semi-natural grassland. Applied Soil Ecology, 2012, 62: 8-13. |
4 | Chu H Y. Microbial communities in high latitudes and high altitudes ecosystems. Microbiology China, 2013, 40(1): 123-136. |
褚海燕. 高寒生态系统微生物群落研究进展. 微生物学通报, 2013, 40(1): 123-136. | |
5 | Peng X Q, Wang W. Spatial pattern of soil microbial biomass carbon and its driver in temperate grasslands of Inner Mongolia. Microbiology China, 2016, 43(9): 1918-1930. |
彭晓茜, 王娓. 内蒙古温带草原土壤微生物生物量碳的空间分布及驱动因素. 微生物学通报, 2016, 43(9): 1918-1930. | |
6 | Liu S L, Su Y R, Huang D Y, et al. Response of Cmic-to-Corg to land use and fertilization in subtropical region of China. Scientia Agricultura Sinica, 2006, 39(7): 1411-1418. |
刘守龙, 苏以荣, 黄道友, 等. 微生物商对亚热带地区土地利用及施肥制度的响应. 中国农业科学, 2006, 39(7): 1411-1418. | |
7 | Manzoni S, Trofymow J A, Jackson R B, et al. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 2010, 80(1): 89-106. |
8 | Heuch C, Weig A, Spohn M. Soil microbial biomass C∶N∶P stoichiometry and microbial use of organic phosphorus. Soil Biology & Biochemistry, 2015, 85: 119-129. |
9 | Oduor C O, Karanja N K, Onwonga R N, et al. Enhancing soil organic carbon, particulate organic carbon and microbial biomass in semi-arid rangeland using pasture enclosures. BMC Ecology, 2018, 18(1): 1-9. |
10 | Zhang W L, Kolbe H, Zhang R L. Research progress of SOC functions and transformation mechanisms. Scientia Agricultura Sinica,2020, 53(2): 317-331. |
张维理, Kolbe H, 张认连. 土壤有机碳作用及转化机制研究进展. 中国农业科学, 2020, 53(2): 317-331. | |
11 | Xu P. Grassland resources and their utilization in Xinjiang. Urumqi: Xinjiang Science and Technology Health Press, 1993. |
许鹏. 新疆草地资源及其利用. 乌鲁木齐: 新疆科技卫生出版社, 1993. | |
12 | Cui Y X, Sun Z J, Liu H X, et al. Effects of short-term grazing exclusion on standing biomass and plant community diversity in sagebrush desert. Acta Prataculturae Sinica, 2020, 29(12): 17-26. |
崔雨萱, 孙宗玖, 刘慧霞, 等. 短期封育对蒿类荒漠草地现存生物量及植物群落多样性的影响. 草业学报, 2020, 29(12): 17-26. | |
13 | Zhu H, Ke M, Li X S, et al. Effect of grazing on plant communities and soil physical and chemical properties of Artemisia desert grassland. Grassland and Turf, 2017, 37(4): 68-73. |
朱昊, 柯梅, 李学森, 等. 放牧对蒿类荒漠草地植物群落和土壤理化性质的影响. 草原与草坪, 2017, 37(4): 68-73. | |
14 | Dong Y Q, An S Z, Sun Z J, et al. Effects of grazing exclusion times on soil organic carbon storage and microbial biomass carbon and nitrogen in degraded Seriphidium transiliense desert. Xinjiang Agricultural Sciences, 2017, 54(5): 961-968. |
董乙强, 安沙舟, 孙宗玖, 等. 禁牧年限对退化伊犁绢蒿荒漠土壤有机碳库和微生物碳, 氮的影响. 新疆农业科学, 2017, 54(5): 961-968. | |
15 | Li J H, Li Z Q, Ren J Z. The effects of grazing on grassland plants. Acta Prataculturae Sinica, 2002, 11(1): 4-11. |
李金花, 李镇清, 任继周. 放牧对草原植物的影响. 草业学报, 2002, 11(1): 4-11. | |
16 | Liu F C, Li H L, Dong Z, et al. Advances in research on enclosure effects on vegetation restoration and soil physicochemical property of degraded grassland. Science of Soil and Water Conservation, 2012, 10(5): 116-122. |
刘凤婵, 李红丽, 董智, 等. 封育对退化草原植被恢复及土壤理化性质影响的研究进展. 中国水土保持科学, 2012, 10(5): 116-122. | |
17 | Qin L P, Bai W L, Zheng T J. Research progress on the effect of fencing on grassland soil nutrient improvement. China Cattle Science, 2020, 46(6): 20-23. |
秦丽萍, 白文丽, 郑廷杰. 围栏封育对草地土壤养分改良效果的研究进展. 中国牛业科学, 2020, 46(6): 20-23. | |
18 | Cheng Y T. Research on grassland vegetation and soil recover after fencing in China: A meta-analvsis. Shanghai: East China Normal University, 2020. |
程雨婷. 围栏封育后我国草地植被与土壤恢复的Meta分析研究. 上海: 华东师范大学, 2020. | |
19 | Li X L, Zhang D, Yin H L, et al. Effects of short-term enclosure on soil carbon, nitrogen and phosphorus contents in sandy elm sparse forest steppe. Journal of Chifeng University (Natural Science), 2021, 37(7): 40-45. |
李晓兰, 张丹, 尹慧来, 等. 短期围封对沙地榆树疏林草原土壤碳氮磷含量的影响. 赤峰学院学报 (自然科学版), 2021, 37(7): 40-45. | |
20 | Asitaiken J L H T, Dong Y Q, Li J, et al. Effects of grazing exclusion on nutrition and stoichiometry characteristics of Artemisia desert vegetation and soil. Journal of Arid Land Resources and Environment, 2021, 35(11): 157-164. |
阿斯太肯·居力海提, 董乙强, 李靖, 等. 禁牧对不同气候区蒿类荒漠植被和土壤养分及化学计量特征的影响. 干旱区资源与环境, 2021, 35(11): 157-164. | |
21 | Reeder J, Schuman G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, 2002, 116(3): 457-463. |
22 | Fan Y M, Wu H Q, Sun Z J, et al. Effects of fencing on the soil organic carbon of desert grassland in the northern slope of Tianshan. Acta Agrestia Sinica, 2014, 22(1): 65-69. |
范燕敏, 武红旗, 孙宗玖, 等. 围封对天山北坡荒漠草地土壤有机碳的影响. 草地学报, 2014, 22(1): 65-69. | |
23 | Jing J, Zhang M Y, Gao Y H. Effects of enclosure on soil microbial carbon utilization in an alpine steppe. Ecological Science, 2021, 40(3): 25-32. |
敬洁, 张梦瑶, 高永恒. 围栏禁牧对高寒草原土壤微生物碳源利用的影响. 生态科学, 2021, 40(3): 25-32. | |
24 | Dong Y Q, Sun Z J, An S Z, et al. Effects of grazing exclusion on soil nutrition in moderate degraded desert grassland of Seriphidium transiliense. Pratacultural Science, 2016, 33(8): 1460-1468. |
董乙强, 孙宗玖, 安沙舟, 等. 禁牧对中度退化伊犁绢蒿荒漠草地土壤养分的影响. 草业科学, 2016, 33(8): 1460-1468. | |
25 | He Y T, Dong Y S, Qi Y C, et al. Advances in researches on soil microbial biomass of grassland ecosystems and its influencing factors. Progress in Geography, 2010, 29(11): 1350-1359. |
何亚婷, 董云社, 齐玉春, 等. 草地生态系统土壤微生物量及其影响因子研究进展. 地理科学进展, 2010, 29(11): 1350-1359. | |
26 | Bao S D. Soil and agricultural chemistry analysis (Third Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
27 | Brookes P C, Powlson D S, Jenkinson D S. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry, 1982, 14(4): 319-329. |
28 | Shi F, Li Y E, Gao Q Z, et al. Effects of managements on soil organic carbon of grassland in China. Pratacultural Science, 2009, 26(3): 9-15. |
石锋, 李玉娥, 高清竹, 等. 管理措施对我国草地土壤有机碳的影响. 草业科学, 2009, 26(3): 9-15. | |
29 | Xue K, Zhang B, Zhou S T, et al. Soil microbial communities in alpine grasslands on the Tibetan Plateau and their influencing factors. Chinese Science Bulletin, 2019, 64(27): 2915-2927. |
薛凯, 张彪, 周姝彤, 等. 青藏高原高寒草地土壤微生物群落及影响因子. 科学通报, 2019, 64(27): 2915-2927. | |
30 | Hu Y L, Wu X F. Discussion on soil microbial biomass as a bio-indicator of soil quality for latosol earth. Journal of Central South Forestry University, 2002, 22(3): 51-53. |
胡曰利, 吴晓芙. 土壤微生物生物量作为土壤质量生物指标的研究. 中南林学院学报, 2002, 22(3): 51-53. | |
31 | Liu Y F, Tian Y W. Ecological stoichiometry characteristics of soil and microbial biomass C, N and P in vineyards with different planting years. Journal of Henan Agricultural Sciences, 2021, 50(8): 57-65. |
刘谊锋, 田耀武. 不同种植年限葡萄园土壤及微生物量碳, 氮, 磷生态化学计量特征. 河南农业科学, 2021, 50(8): 57-65. | |
32 | Cao C Y, Shao J F, Jiang D M, et al. Effects of fence enclosure on soil nutrients and biological activities in highly degraded grasslands. Journal of Northeastern University (Natural Science), 2011, 32(3): 427-430. |
曹成有, 邵建飞, 蒋德明, 等. 围栏封育对重度退化草地土壤养分和生物活性的影响. 东北大学学报(自然科学版), 2011, 32(3): 427-430. | |
33 | Yin Y L, Wang Y Q, Li S X, et al. Effects of enclosing on soil microbial community diversity and soil stoichiometric characteristics in a degraded alpine meadow. Chinese Journal of Applied Ecology, 2019, 30(1): 127-136. |
尹亚丽, 王玉琴, 李世雄, 等. 围封对退化高寒草甸土壤微生物群落多样性及土壤化学计量特征的影响. 应用生态学报, 2019, 30(1): 127-136. | |
34 | Wang C Y, Zhang J J, Lv Y L, et al. Effects of long-term grazing exclusion on soil organic carbon fractions in the grasslands of Inner Mongolia. Acta Prataculturae Sinica, 2014, 23(5): 31-39. |
王春燕, 张晋京, 吕瑜良, 等. 长期封育对内蒙古羊草草地土壤有机碳组分的影响. 草业学报, 2014, 23(5): 31-39. | |
35 | Zhu X Y, Li Z H, Zhao X R, et al. Differences of soil microbial biomass C, N and P contents in typical grasslands of Inner Mongolia under different grazing intensities. Journal of China Agricultural University, 2020, 25(9): 121-130. |
朱晓亚, 李子豪, 赵小蓉, 等. 连续4年不同放牧强度内蒙古典型草原土壤微生物量碳, 氮, 磷含量差异. 中国农业大学学报, 2020, 25(9): 121-130. | |
36 | Chen H. Impact of water status on soil microbial biomass and community structure in typical grasslands of Inner Mongolia. Beijing: China Agricultural University, 2018. |
陈昊. 水分状况对内蒙古典型草原土壤微生物量及群落结构的影响. 北京: 中国农业大学, 2018. | |
37 | Liu N, Zhang Y, Chang S, et al. Impact of grazing on soil carbon and microbial biomass in typical steppe and desert steppe of Inner Mongolia. PLoS One, 2012, 7(5): e36434. |
38 | Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 2007, 85(3): 235-252. |
39 | Liu M Q, Hu F, He Y Q, et al. Seasonal dynamics of soil microbial biomass and its significance to indicate soil quality under different vegetations restored on degraded red soils. Acta Pedologica Sinica, 2003, 40(6): 937-944. |
刘满强, 胡锋, 何园球, 等. 退化红壤不同植被恢复下土壤微生物量季节动态及其指示意义. 土壤学报, 2003, 40(6): 937-944. | |
40 | Xu X, Thornton P E, Post W M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 2013, 22(6): 737-749. |
41 | Zheng H, Xue J B, Gui J H, et al. Short-term effects of grazing intensity on soil stoichiometric characteristics of typical grass-land in the agro-pastoral ecotone of Northern China. Chinese Journal of Applied Ecology, 2021, 32(7): 2433-2439. |
郑慧, 薛江博, 桂建华, 等. 放牧强度对华北农牧交错带典型草地土壤化学计量特征的短期影响. 应用生态学报, 2021, 32(7): 2433-2439. | |
42 | Wang C J, Wang Q Q, Xu H, et al. Carbon, nitrogen, and phosphorus stoichiometry characteristics of bulk soil, organic matter, and soil microbial biomass under long-term fertilization in cropland. Acta Ecologica Sinica, 2018, 38(11): 3848-3858. |
王传杰, 王齐齐, 徐虎, 等. 长期施肥下农田土壤-有机质-微生物的碳氮磷化学计量学特征. 生态学报, 2018, 38(11): 3848-3858. | |
43 | Pan Y, Fang F, Tang H. Patterns and internal stability of carbon, nitrogen, and phosphorus in soils and soil microbial biomass in terrestrial ecosystems in China: A data synthesis. Forests, 2021, 12(11): 1544. |
44 | Chen Y L, Chen L Y, Peng Y F, et al. Linking microbial C∶N∶P stoichiometry to microbial community and abiotic factors along a 3500‐km grassland transect on the Tibetan Plateau. Global Ecology and Biogeography, 2016, 25(12): 1416-1427. |
45 | Zhou C N, Ma H P. Distribution of labile organic carbon in soil as affected by vegetation typical of Sygera mountains, Tibet, China. Acta Pedologica Sinica, 2013, 50(6): 1246-1251. |
周晨霓, 马和平. 西藏色季拉山典型植被类型土壤活性有机碳分布特征. 土壤学报, 2013, 50(6): 1246-1251. | |
46 | Fierer N, Schimel J P, Holden P A. Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry, 2003, 35(1): 167-176. |
47 | Zhou Z H, Wang C K. Soil-microbe-mineralization carbon and nitrogen stoichiometry under different land-uses in the Maoershan region. Acta Ecologica Sinica, 2017, 37(7): 2428-2436. |
周正虎, 王传宽. 帽儿山地区不同土地利用方式下土壤-微生物-矿化碳氮化学计量特征. 生态学报, 2017, 37(7): 2428-2436. | |
48 | Wang Y, Sun J, Ye C C, et al. Climatic factors drive the aboveground ecosystem functions of alpine grassland via soil microbial biomass nitrogen on the Qingzang Plateau. Chinese Journal of Plant Ecology, 2021, 45(5): 434-443. |
王毅, 孙建, 叶冲冲, 等. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能. 植物生态学报, 2021, 45(5): 434-443. |
[1] | 郭鑫, 罗欢, 许雪梅, 马爱霞, 尚振艳, 韩天虎, 牛得草, 文海燕, 李旭东. 不同品质凋落物分解对黄土高原草地土壤有机碳及其稳定性的影响[J]. 草业学报, 2023, 32(5): 83-93. |
[2] | 何光熊, 史正涛, 闫帮国, 杨淏舟, 孙毅, 王艳丹, 余建琳, 和润莲, 史亮涛, 方海东. 封育对干热河谷Savanna植物群落种间关联性的影响[J]. 草业学报, 2023, 32(2): 1-14. |
[3] | 许爱云, 张丽华, 王晓佳, 马冲, 李元景, 曹兵. 蒙古冰草非结构性碳水化合物及碳氮磷化学计量特征对氮添加的响应[J]. 草业学报, 2023, 32(2): 35-43. |
[4] | 牛伟玲, 陈辉, 侯慧新, 郭晨睿, 马娇林, 武建双. 10年禁牧未改变藏西北高寒荒漠植物水氮利用效率[J]. 草业学报, 2022, 31(8): 35-48. |
[5] | 韩小雨, 郭宁, 李冬冬, 谢明阳, 焦峰. 氮添加对内蒙古不同草原生物量及土壤碳氮变化特征的影响[J]. 草业学报, 2022, 31(1): 13-25. |
[6] | 王星, 于双, 许冬梅, 宋珂辰. 不同恢复措施对退化荒漠草原土壤碳氮及其组分特征的影响[J]. 草业学报, 2022, 31(1): 26-35. |
[7] | 顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57. |
[8] | 刘帅楠, 李广, 吴江琪, 马维伟, 杨传杰, 张世康, 姚瑶, 陆燕花, 魏星星, 张娟. 黄土丘陵区不同土地类型下土壤养分特征—基于生态化学计量学[J]. 草业学报, 2021, 30(3): 200-207. |
[9] | 熊梅, 乔荠瑢, 杨阳, 张峰, 郑佳华, 吴建新, 赵萌莉. 不同载畜率下短花针茅和土壤生态化学计量特征研究[J]. 草业学报, 2021, 30(2): 212-219. |
[10] | 聂莹莹, 陈金强, 辛晓平, 徐丽君, 杨桂霞, 王旭. 呼伦贝尔草甸草原区主要植物种群生态位特征与物种多样性对封育年限响应[J]. 草业学报, 2021, 30(10): 15-25. |
[11] | 刘慧霞, 董乙强, 崔雨萱, 刘星宏, 何盘星, 孙强, 孙宗玖. 新疆阿勒泰地区荒漠草地土壤有机碳特征及其环境影响因素分析[J]. 草业学报, 2021, 30(10): 41-52. |
[12] | 周诗晶, 罗佳宁, 刘仲淼, 董超, 秦燕, 吴淑娟, 甘红军, 谢菲, 庄光辉, 伏兵哲, 牛得草. 箭筈豌豆种植密度对土壤微生物养分代谢的影响[J]. 草业学报, 2021, 30(10): 63-72. |
[13] | 季波, 何建龙, 吴旭东, 王占军, 谢应忠, 蒋齐. 宁夏典型天然草地土壤有机碳及其活性组分变化特征[J]. 草业学报, 2021, 30(1): 24-35. |
[14] | 别尔达吾列提·希哈依, 董乙强, 安沙舟, 魏鹏. 短期封育对白梭梭荒漠和盐生假木贼荒漠土壤营养成分的影响[J]. 草业学报, 2020, 29(9): 56-62. |
[15] | 谢莉, 宋乃平, 孟晨, 吴婷, 陈晓莹, 李敏岚, 岳健敏. 不同封育年限对宁夏荒漠草原土壤粒径及碳氮储量的影响[J]. 草业学报, 2020, 29(2): 1-10. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 233
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 234
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||