草业学报 ›› 2023, Vol. 32 ›› Issue (7): 188-205.DOI: 10.11686/cyxb2022326
• 研究论文 • 上一篇
张浩(), 胡海英(), 李惠霞, 贺海明, 马霜, 马风华, 宋柯辰
收稿日期:
2022-08-10
修回日期:
2022-09-21
出版日期:
2023-07-20
发布日期:
2023-05-26
通讯作者:
胡海英
作者简介:
E-mail: haiying@nxu.edu.cn基金资助:
Hao ZHANG(), Hai-ying HU(), Hui-xia LI, Hai-ming HE, Shuang MA, Feng-hua MA, Ke-chen SONG
Received:
2022-08-10
Revised:
2022-09-21
Online:
2023-07-20
Published:
2023-05-26
Contact:
Hai-ying HU
摘要:
干旱是草地植物面对的最大威胁,对耐旱草地植物的研究将促进人们更好地理解植物对干旱适应性反应背后的调控机制。牛枝子是优质的多年生强旱生牧草,分布于广袤的荒漠草原地区。目前对牛枝子抗旱研究主要集中在渗透调节物质变化、功能基因序列分析,但其抗旱性的内在机制尚不清楚。本研究采用单因素控水试验,土壤水分含量为田间持水量的70%~80%设为对照组(CK),田间持水量的20%~30%为严重干旱胁迫组(Tr),处理4周后,开展牛枝子生物量分配、水分利用、渗透调节、根系分布等生理生化指标测定,同时采集叶片和幼根进行转录组测序分析。结果表明,干旱胁迫条件下,牛枝子通过增加脯氨酸(Pro)、可溶性蛋白(SP)、可溶性糖(Ss)、K+等含量进行渗透调节来保持体内水分,增加同位素碳13(δ13C)和丙二醛(MDA)含量以提高水分利用效率和抗氧化能力,降低相对含水量(RWC)、胞间二氧化碳浓度(Ci)、气孔导度(Cond),减少生物量,增加根冠比等响应干旱胁迫。通过RNA-Seq差异基因表达分析,在叶中发现4058个差异基因,在根中发现2172个差异基因,叶和根中共有差异基因744个。这些差异基因(DEG)能够对干旱做出积极(上调)或消极(下调)的反应。叶中上调差异基因主要富集在植物-病原体相互作用、植物激素信号转导,而下调差异基因主要富集在光合代谢包括碳固定、光合作用天线蛋白合成、光合过程产物代谢。在根中上调差异基因主要富集在精氨酸与脯氨酸代谢、内质网中的蛋白质加工,下调差异基因主要富集在淀粉和蔗糖代谢、异黄酮生物合成、类黄酮生物合成。在牛枝子叶中差异表达的转录因子主要有AP2/ERF-ERF、NAC、bHLH、WRKY、C2H2,根中主要有 HSF、MYB、AP2/ERF-ERF、WRKY。其中bHLH特异性下调表达,HSF特异性上调表达。根与叶中的吡咯啉-5-羧酸还原酶(P5CR)、脯氨酸亚氨肽酶(PLD)、脯氨酸-4-羟化酶(P4H)均上调表达,脯氨酸脱氢酶(ProDH)下调表达将产生更多的脯氨酸与4-羟基-脯氨酸,叶中天冬氨酸氨基转移酶(AST)的上调产生更多4-羟基-酮戊二酸,增强了牛枝子渗透调节能力,保证了牛枝子对水分的吸收利用。因此,牛枝子主要通过调控与激素信号转导、渗透调节、气体交换相关的差异基因表达,参与各项生理代谢活动以响应严重干旱胁迫。
张浩, 胡海英, 李惠霞, 贺海明, 马霜, 马风华, 宋柯辰. 荒漠草原优势植物牛枝子对干旱胁迫的生理响应与转录组分析[J]. 草业学报, 2023, 32(7): 188-205.
Hao ZHANG, Hai-ying HU, Hui-xia LI, Hai-ming HE, Shuang MA, Feng-hua MA, Ke-chen SONG. Physiological response and transcriptome analysis of the desert steppe dominant plant Lespedeza potaninii to drought stress[J]. Acta Prataculturae Sinica, 2023, 32(7): 188-205.
叶Leaf | 根Root | ||
---|---|---|---|
基因 Gene ID | 引物序列 Primer sequences (5′→3′) | 基因 Gene ID | 引物序列 Primer sequences (5′→3′) |
BMK_Unigene_037155 | GTGGTGATGACAAGGAAGAGAA ACTGGCAACTTCTCCTTAACC | BMK_Unigene_039577 | ATACCGTCCCATAGCAAGAATG TCTCCAGCCTCCACTCAATA |
BMK_Unigene_111723 | CTCACACAGATGCAGGGTATG CCTCCTGGAAGCTTCTCTTTAAT | BMK_Unigene_040501 | AACCCTACCTTCCTTCACAATC CACTCTTCACTTCCACCATCA |
BMK_Unigene_009299 | CGCTTTGGTGTTGGAGATTG CAATTGCGATGGGAGCAATAG | BMK_Unigene_016501 | GATGTCGGGTCTTGGGATAAA GCTCCTCCATTGATAGGTCATAA |
BMK_Unigene_035523 | GGTGTGGAATGAGGAAGAGAAA CCACTCCCGAAAGCCAATAA | BMK_Unigene_276197 | ACTGGTGTGAAAGGTCTTGTAG GTCTATGACAGGAGCACTCAAC |
BMK_Unigene_035906 | GACCTTCAACACTCCTGCTATG CATCTCCAGAGTCCAGAACAATAC | BMK_Unigene_029018 | GCCATTCATTTGTTCCCATCC GTGTTTCTGTGTTCTGGGAATTT |
表1 牛枝子差异基因引物序列
Table 1 Differential gene primer sequences of L. potaninii
叶Leaf | 根Root | ||
---|---|---|---|
基因 Gene ID | 引物序列 Primer sequences (5′→3′) | 基因 Gene ID | 引物序列 Primer sequences (5′→3′) |
BMK_Unigene_037155 | GTGGTGATGACAAGGAAGAGAA ACTGGCAACTTCTCCTTAACC | BMK_Unigene_039577 | ATACCGTCCCATAGCAAGAATG TCTCCAGCCTCCACTCAATA |
BMK_Unigene_111723 | CTCACACAGATGCAGGGTATG CCTCCTGGAAGCTTCTCTTTAAT | BMK_Unigene_040501 | AACCCTACCTTCCTTCACAATC CACTCTTCACTTCCACCATCA |
BMK_Unigene_009299 | CGCTTTGGTGTTGGAGATTG CAATTGCGATGGGAGCAATAG | BMK_Unigene_016501 | GATGTCGGGTCTTGGGATAAA GCTCCTCCATTGATAGGTCATAA |
BMK_Unigene_035523 | GGTGTGGAATGAGGAAGAGAAA CCACTCCCGAAAGCCAATAA | BMK_Unigene_276197 | ACTGGTGTGAAAGGTCTTGTAG GTCTATGACAGGAGCACTCAAC |
BMK_Unigene_035906 | GACCTTCAACACTCCTGCTATG CATCTCCAGAGTCCAGAACAATAC | BMK_Unigene_029018 | GCCATTCATTTGTTCCCATCC GTGTTTCTGTGTTCTGGGAATTT |
指标Index | 对照CK | 处理Tr | F检验F-test | P |
---|---|---|---|---|
总根长Total root length (cm) | 1265.98±24.87a | 933.40±6.64b | 166.87 | 0.00 |
总根表面积Total root area (cm2) | 230.64±44.39a | 92.15±2.97b | 9.69 | 0.04 |
总根体积Total root volume (cm3) | 1.98±0.16a | 0.81±0.04b | 51.15 | 0.00 |
根尖数Root tips number | 3702.00±329.57a | 2578.00±64.73b | 11.20 | 0.03 |
根分枝数Root forks number | 4309.67±127.96a | 3384.33±240.77b | 14.69 | 0.02 |
根生物量Root biomass (g·plant-1) | 1.40±0.10a | 1.32±0.24a | 0.27 | 0.63 |
茎生物量Stem biomass (g·plant-1) | 1.50±0.16a | 1.16±0.12b | 8.61 | 0.04 |
叶生物量Leaf biomass (g·plant-1) | 1.39±0.06a | 1.27±0.24a | 0.76 | 0.43 |
根冠比Root-shoot ratio | 0.48±0.02b | 0.54±0.02a | 10.13 | 0.03 |
表2 干旱胁迫对牛枝子根系特征及器官生物量的影响
Table 2 Effects of drought stress on the root characteristics and organ biomass of L. potaninii
指标Index | 对照CK | 处理Tr | F检验F-test | P |
---|---|---|---|---|
总根长Total root length (cm) | 1265.98±24.87a | 933.40±6.64b | 166.87 | 0.00 |
总根表面积Total root area (cm2) | 230.64±44.39a | 92.15±2.97b | 9.69 | 0.04 |
总根体积Total root volume (cm3) | 1.98±0.16a | 0.81±0.04b | 51.15 | 0.00 |
根尖数Root tips number | 3702.00±329.57a | 2578.00±64.73b | 11.20 | 0.03 |
根分枝数Root forks number | 4309.67±127.96a | 3384.33±240.77b | 14.69 | 0.02 |
根生物量Root biomass (g·plant-1) | 1.40±0.10a | 1.32±0.24a | 0.27 | 0.63 |
茎生物量Stem biomass (g·plant-1) | 1.50±0.16a | 1.16±0.12b | 8.61 | 0.04 |
叶生物量Leaf biomass (g·plant-1) | 1.39±0.06a | 1.27±0.24a | 0.76 | 0.43 |
根冠比Root-shoot ratio | 0.48±0.02b | 0.54±0.02a | 10.13 | 0.03 |
图1 干旱胁迫下牛枝子生理生化指标的变化不同小写字母表示不同处理下差异显著(P<0.05)。Different lowercase letters indicate significant differences under different treatments (P<0.05).
Fig.1 Changes of physiological and biochemical indexes of L. potaninii under drought stress
样品名称 Sample | 基本数据 Base number | GC占比 GC content (%) | Q20 (%) | Q30 (%) | 过滤后的数据 Clean reads | 映射读取 Mapped reads | 映射比率 Mapped ratio (%) | |
---|---|---|---|---|---|---|---|---|
CK | L1 | 6186621368 | 44.54 | 98.60 | 95.43 | 20723703 | 12840214 | 61.96 |
L2 | 6234665288 | 45.00 | 98.58 | 95.41 | 20868074 | 12951855 | 62.07 | |
L3 | 6225191496 | 44.71 | 98.47 | 95.09 | 20846238 | 12614651 | 60.51 | |
R1 | 5786751212 | 43.89 | 98.25 | 94.59 | 19357392 | 11709354 | 60.49 | |
R2 | 6370728902 | 43.86 | 98.08 | 94.12 | 21294316 | 13130824 | 61.66 | |
R3 | 6138978110 | 44.20 | 98.34 | 94.85 | 20547009 | 12650760 | 61.57 | |
Tr | L1 | 6225600476 | 44.79 | 98.49 | 95.15 | 20816470 | 12764270 | 61.32 |
L2 | 5816270068 | 44.10 | 98.56 | 95.34 | 19465715 | 11695609 | 60.08 | |
L3 | 6358918316 | 44.00 | 98.55 | 95.32 | 21287781 | 12910160 | 60.65 | |
R1 | 5959686196 | 44.03 | 98.50 | 95.26 | 19944009 | 12394261 | 62.15 | |
R2 | 6326554166 | 44.16 | 98.54 | 95.38 | 21198666 | 13124275 | 61.91 | |
R3 | 6560622132 | 43.93 | 98.68 | 96.02 | 21970365 | 13775359 | 62.70 |
表3 牛枝子不同器官及不同处理测序组装数据
Table 3 Sequencing and assembly data of different organs and different treatments of L. potaninii
样品名称 Sample | 基本数据 Base number | GC占比 GC content (%) | Q20 (%) | Q30 (%) | 过滤后的数据 Clean reads | 映射读取 Mapped reads | 映射比率 Mapped ratio (%) | |
---|---|---|---|---|---|---|---|---|
CK | L1 | 6186621368 | 44.54 | 98.60 | 95.43 | 20723703 | 12840214 | 61.96 |
L2 | 6234665288 | 45.00 | 98.58 | 95.41 | 20868074 | 12951855 | 62.07 | |
L3 | 6225191496 | 44.71 | 98.47 | 95.09 | 20846238 | 12614651 | 60.51 | |
R1 | 5786751212 | 43.89 | 98.25 | 94.59 | 19357392 | 11709354 | 60.49 | |
R2 | 6370728902 | 43.86 | 98.08 | 94.12 | 21294316 | 13130824 | 61.66 | |
R3 | 6138978110 | 44.20 | 98.34 | 94.85 | 20547009 | 12650760 | 61.57 | |
Tr | L1 | 6225600476 | 44.79 | 98.49 | 95.15 | 20816470 | 12764270 | 61.32 |
L2 | 5816270068 | 44.10 | 98.56 | 95.34 | 19465715 | 11695609 | 60.08 | |
L3 | 6358918316 | 44.00 | 98.55 | 95.32 | 21287781 | 12910160 | 60.65 | |
R1 | 5959686196 | 44.03 | 98.50 | 95.26 | 19944009 | 12394261 | 62.15 | |
R2 | 6326554166 | 44.16 | 98.54 | 95.38 | 21198666 | 13124275 | 61.91 | |
R3 | 6560622132 | 43.93 | 98.68 | 96.02 | 21970365 | 13775359 | 62.70 |
图2 实时荧光定量PCR验证RNA-Seq数据a: 对RNA-Seq数据和qRT-PCR数据进行线性相关分析; b: 上调差异基因RNA-Seq的表达量与qRT-PCR的相对表达量; c: 下调差异基因RNA-Seq的表达量与qRT-PCR的相对表达量。a: Linear correlation analysis of RNA-Seq data and qRT-PCR data; b: Up-regulation of differential gene RNA-Seq FRKM and relative expression level of qRT-PCR; c: Down-regulation of differential gene RNA-Seq FRKM and relative expression level of qRT-PCR. FPKM: Fragments per kilobase of exon model per million mapped fragments.
Fig.2 Real-time fluorescence quantitative PCR validation RNA-seq data
图3 干旱胁迫下根和叶片中差异基因表达分析a: CKRvsTrR和CKLvsTRL差异基因火山图。黑点代表对干旱胁迫没有响应的基因,上调与下调基因分别用红点与绿点表示。b: 维恩图中显示了叶与根中上调与下调基因具有的相同差异基因的数量 。a: Differential gene volcano map of the CKRvsTrR and CKLvsTRL. Black dots represent genes that do not respond to drought stress, up-regulated and down-regulated genes are indicated by red and green dots respectively. b: The Venn diagram shows the number of identical differential genes in leaves and roots that have up- and down-regulated genes.
Fig.3 Analysis of differential gene expression in leaf and root under drought treatment
图4 牛枝子叶和根中响应干旱胁迫的差异基因GO富集分析a: 叶中上调与下调差异基因GO富集分析; b: 根中上调与下调差异基因GO富集分析; 将过程注释到分子功能、细胞成分、生物过程。a: GO enrichment analysis of up-regulated and down-regulated differentially genes in leaf; b: GO enrichment analysis of up- and down-regulated differential genes in root. Annotate processes to molecular function, cellular component, biological process.
Fig.4 GO enrichment analysis of differential genes in response to drought stress in leaf and root of L. potaninii
图5 牛枝子叶和根中响应干旱胁迫的差异基因KEGG富集分析富集路径沿y轴列出,x轴表示富集因子。红色代表高Q值,而蓝色代表低Q值。Enrichment paths are listed along the y-axis, the x-axis represents enrichment factors. Red represents high Q-values, while blue represents low Q-values.
Fig.5 KEGG enrichment analysis of differential genes in response to drought stress in leaf and roots of L. potaninii
组别Group | 代谢通路Metabolic pathway | 数量Count | 上调Up | 下调Down |
---|---|---|---|---|
对照叶vs处理叶CKLvsTrL | 植物-病原体相互作用Plant-pathogen interaction | 175 | 117 | 58 |
植物激素信号转导Plant hormone signal transduction | 68 | 68 | 0 | |
内质网上蛋白质加工Protein processing in endoplasmic reticulum | 59 | 54 | 5 | |
淀粉与蔗糖代谢Starch and sucrose metabolism | 50 | 50 | 0 | |
碳代谢Carbon metabolism | 118 | 19 | 99 | |
光合作用-天线蛋白Photosynthesis-antenna proteins | 40 | 0 | 40 | |
光合作用Photosynthesis | 48 | 2 | 46 | |
光合生物中的碳固定Carbon fixation in photosynthetic organisms | 49 | 4 | 45 | |
氨基酸生物合成Biosynthesis of amino acids | 88 | 28 | 60 | |
对照根vs处理根CKRvsTrR | 精氨酸与脯氨酸代谢Arginine and proline metabolism | 28 | 21 | 7 |
内质网上蛋白质加工Protein processing in endoplasmic reticulum | 41 | 30 | 11 | |
糖酵解/糖异生Glycolysis/ | 27 | 25 | 2 | |
植物-病原体相互作用Plant-pathogen interaction | 93 | 7 | 86 | |
MAPK信号通路MAPK signaling pathway | 71 | 14 | 57 | |
淀粉与蔗糖代谢Starch and sucrose metabolism | 70 | 24 | 46 | |
异黄酮生物合成Isoflavonoid biosynthesis | 11 | 1 | 10 |
表4 牛枝子叶与根差异基因KEGG显著富集通路
Table 4 KEGG pathway was significantly enriched in differential genes of leaf and root of L. potaninii
组别Group | 代谢通路Metabolic pathway | 数量Count | 上调Up | 下调Down |
---|---|---|---|---|
对照叶vs处理叶CKLvsTrL | 植物-病原体相互作用Plant-pathogen interaction | 175 | 117 | 58 |
植物激素信号转导Plant hormone signal transduction | 68 | 68 | 0 | |
内质网上蛋白质加工Protein processing in endoplasmic reticulum | 59 | 54 | 5 | |
淀粉与蔗糖代谢Starch and sucrose metabolism | 50 | 50 | 0 | |
碳代谢Carbon metabolism | 118 | 19 | 99 | |
光合作用-天线蛋白Photosynthesis-antenna proteins | 40 | 0 | 40 | |
光合作用Photosynthesis | 48 | 2 | 46 | |
光合生物中的碳固定Carbon fixation in photosynthetic organisms | 49 | 4 | 45 | |
氨基酸生物合成Biosynthesis of amino acids | 88 | 28 | 60 | |
对照根vs处理根CKRvsTrR | 精氨酸与脯氨酸代谢Arginine and proline metabolism | 28 | 21 | 7 |
内质网上蛋白质加工Protein processing in endoplasmic reticulum | 41 | 30 | 11 | |
糖酵解/糖异生Glycolysis/ | 27 | 25 | 2 | |
植物-病原体相互作用Plant-pathogen interaction | 93 | 7 | 86 | |
MAPK信号通路MAPK signaling pathway | 71 | 14 | 57 | |
淀粉与蔗糖代谢Starch and sucrose metabolism | 70 | 24 | 46 | |
异黄酮生物合成Isoflavonoid biosynthesis | 11 | 1 | 10 |
图6 牛枝子差异基因转录因子数量统计a: 叶; b: 根。横坐标表示分配给特定家族的基因数量;纵坐标表示转录因子类型。a: Leaf; b: Root; The horizontal axis represents the number of genes assigned to a particular family; The vertical axis represents the transcription factor type.
Fig.6 Quantitative statistics of differential gene transcription factors in L. potaninii
1 | Wilhite D A. Drought as a natural hazard: concepts and defi-nitions. Drought: A Global Assessment, 2000: 3-18. |
2 | Budb S, Huang J L, Fischer T, et al. Drought losses in China might double between the 1.5 ℃ and 2.0 ℃ warming. Proceedings of the National Academy of Science, 2018, 115(42): 10600-10605. |
3 | Qv T, Nan Z B. Research progress on responses and mechanisms of crop and grass under drought stress. Acta Prataculturae Sinica, 2008, 17(2): 126-135. |
曲涛, 南志标. 作物和牧草对干旱胁迫的响应及机理研究进展. 草业学报, 2008, 17(2): 126-135. | |
4 | Ma P C, Xie Q G, Zhao X, et al. Effects of different treatments on seed germination and persistent sepals of Lespedeza potaninii Vass. Acta Agrestia Sinica, 2021, 29(8): 1828-1834. |
马鹏程, 谢全刚, 赵祥, 等. 不同处理对牛枝子种子萌发和宿存萼片的影响. 草地学报, 2021, 29(8): 1828-1834. | |
5 | Hu H Y, Li H X, Ni B, et al.Characteristic of typical vegetation community and water use efficiency of dominant plants in desert steppe of Ningxia. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 460-471. |
胡海英, 李惠霞, 倪彪, 等. 宁夏荒漠草原典型群落的植被特征及其优势植物的水分利用效率. 浙江大学学报(农业与生命科学版), 2019, 45(4): 460-471. | |
6 | Huang G T, Ma S L, Bai L P, et al. Signal transduction during cold salt and drought stresses in plants. Molecular Biology Reports, 2012, 39: 969-987. |
7 | Rasheed S, Bashir K, Matsui A, et al. Transcriptomic analysis of soil-grown Arabidopsis thaliana roots and shoots in response to a drought stress. Frontiers in Plant Science, 2016, 7: 180. |
8 | Chinnusamy V, Schumaker K, Zhu J K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany, 2004, 55(395): 225-236. |
9 | Filichkin S A, Hamilton M, Dharmawardhana P D, et al. Abiotic stresses modulate landscape of poplar transcriptome via alternative splicing, differential intron retention, and isoform ratio switching. Frontiers in Plant Science, 2018, 9: 5. |
10 | Takahashi F, Kuromori T, Sato H, et al. Regulatory gene networks in drought stress responses and resistance in plants. Advances in Experimental Medicine and Biology, 2018, 1081: 189-214. |
11 | Victor E V, Zhang L, Wei Z, et al. Characterization of the yeast transcriptome. Cell, 1997, 88(2): 243-251. |
12 | Lian J, Zhang X C, Gu J T. Advance in transcriptomics and its application in olericulture research. Chinese Agricultural Science Bulletin, 2015, 31(8): 118-122. |
廉洁, 张喜春, 谷建田. 转录组学及其在蔬菜学上应用研究进展. 中国农学通报, 2015, 31(8): 118-122. | |
13 | Avramova Z. Transcriptional ‘memory’ of a stress:transient chromatin and memory (epigenetic) marks at stress-response genes. The Plant Journal: for Cell and Molecular Biology, 2015, 83(1): 149-159. |
14 | Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63-78. |
15 | Marè C, Mazzucotelli E, Crosatti C, et al. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Molecular Biology, 2004, 55: 399-416. |
16 | Sun S, Yu J P, Chen F, et al. A dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis. Journal of Biological Chemistry, 2008, 283: 6261-6271. |
17 | Yang X W, Wang X Y, Lv J, et al. Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Reports, 2015, 34(6): 943-958. |
18 | Chen Y, Liu Z H, Li F. Genome-wide functional analysis of cotton (Gossypium hirsutum) in response to drought. PLoS One, 2013, 8(11): e80879. |
19 | Xiao L H, Yang G, Zhang L C, et al. The resurrection genome of Boea hygrometrica: A blueprint for survival of dehydra-tion.Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18): 5833-5837. |
20 | Zhu Y, Wang X, Huang L, et al. Transcriptomic identification of drought-related genes and SSR markers in Sudan grass based on RNA-seq. Frontiers in Plant Science, 2017, 8: 687. |
21 | Yao L, Jiang Y, Lu X, et al. A R2R3-MYB transcription factor from Lablab purpureus induced by drought increases tolerance to abiotic stress in Arabidopsis. Molecular Biology Reports, 2016, 43(10): 1089-1100. |
22 | Ali M A, Azeem F, Nawaz M A, et al. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis. Journal of Plant Physiology, 2018, 226: 12-21. |
23 | Wang X K. Plant physiological and biochemical experiment principles and techniques. Beijing: Higher Education Press, 2006. |
王学奎. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2006. | |
24 | Yue S J, Xu C C, Zou Q, et al. Improvements of method for measurement of malondialdehyde in plant tissues. Plant Physiology Journal, 1991, 30(3): 207-210. |
越世杰, 许长成, 邹琦, 等. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1991, 30(3): 207-210. | |
25 | Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biology, 2014, 15(12): 550. |
26 | Cai C H. The effects of drought and enhanced UV-B radiation on physiological metabolism and antioxidant isozyme of Lespedeza davurica. Xianyang: Northwest A&F University, 2014. |
蔡彩虹. 干旱和增强UV-B辐射对达乌里胡枝子生理代谢及抗氧化酶同工酶的影响. 咸阳: 西北农林科技大学, 2014. | |
27 | Zhang C M, Shi S L, Liu Z, et al. Effects of drought stress on the root morphology and anatomical structure of alfalfa (Medicago sativa) varieties with differing drought-tolerance. Acta Prataculturae Sinica, 2019, 28(5): 79-89. |
张翠梅, 师尚礼, 刘珍, 等. 干旱胁迫对不同抗旱性苜蓿品种根系形态及解剖结构的影响. 草业学报, 2019, 28(5): 79-89. | |
28 | Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress:effects mechanisms and management. Agronomy for Sustainable Development, 2009, 29: 185-212. |
29 | Liu L Z, Ouyang H, Li X T, et al. Physiological and transcriptome analysis of ‘Gannan Zao’ navel orange under drought stress. Chinese Journal of Tropical Crops, 2022, 43(5): 893-903. |
刘林芝, 欧阳欢, 李兴涛, 等. ‘赣南早’ 脐橙在干旱胁迫下的生理及转录组研究. 热带作物学报, 2022, 43(5): 893-903. | |
30 | Su S P, Li Y, Liu X E, et al. A study of the mechanism of drought stress alleviation by exogenous proline applied to Reaumuria soongorica. Acta Prataculturae Sinica, 2022, 31(6): 127-138. |
苏世平, 李毅, 刘小娥, 等. 外源脯氨酸对缓解红砂干旱胁迫的机理研究. 草业学报, 2022, 31(6): 127-138. | |
31 | Demiral T, Türkan I. Exogenous glycine betaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environmental and Experimental Botany, 2006, 56: 72-79. |
32 | Tian Y, Gu H, Fan Z, et al. Role of a cotton endoreduplication-related gene, GaTop6B, in response to drought stress. Planta, 2018, 249: 19-32. |
33 | Wang Z H, Wei Y Q, Zhao Y R, et al. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings. Acta Prataculturae Sinica, 2022, 31(3): 71-84. |
王志恒, 魏玉清, 赵延蓉, 等. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征. 草业学报, 2022, 31(3): 71-84. | |
34 | Valente M, Faria J, Soares-Ramos J, et al. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. Journal of Experimental Botany, 2009, 60(2): 533-546. |
35 | Jia X Y, He L H, Jing R L, et al. Calreticulin: conserved protein and diverse functions in plants. Physiologia Plantarum, 2009, 136(2): 127-138. |
36 | Yang K Z, Xia C, Liu X L, et al. A mutation in Thermosensitive Male Sterile 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis. The Plant Journal: for Cell and Molecular Biology, 2009, 57(5): 870-882. |
37 | Olivari S, Cali T, Salo K, et al. EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation. Biochemical and Biophysical Research Communications, 2006, 349(4): 1278-1284. |
38 | Zhao Y J. Study on physiological metabolism and proteomics of Chamaecrista rotundifolia (86134R1) under drought stress. Fuzhou: Fujian Agriculture and Forestry University, 2009. |
赵雅静. 干旱胁迫下圆叶决明(86134R1)生理代谢及蛋白质组学研究. 福州: 福建农林大学, 2009. | |
39 | Wang L B. The study on response mechanism and screening of key factors under drought and high temperature stresses in soybean. Harbin: Northeast Agricultural University, 2018. |
王利彬.大豆苗期干旱和高温胁迫应答机制研究及关键转录因子的筛选.哈尔滨: 东北农业大学, 2018. | |
40 | Li F F, Mei F M, Zhang Y F, et al. Genome-wide analysis of the AREB/ABF gene lineage in land plants and functional analysis of TaABF3 in Arabidopsis. BMC Plant Biology, 2020, 20: 558. |
41 | Lin Y Y, Li X Y, Liu S, et al. Auxin distribution in Arabidopsis plants over-expressing AhAREB1 encoding a transcription factor. Journal of South China Normal University (Natural Science Edition), 2015, 47(1): 87-92. |
林莹莹, 李晓云, 刘帅, 等. 过表达转录因子AhAREB1对拟南芥生长素分布的影响. 华南师范大学学报(自然科学版), 2015, 47(1): 87-92. | |
42 | Horton R F. Methyl jasmonate and transpiration in barley. Plant Physiology, 1991, 96(4): 1376-1378. |
43 | Tiwari S B, Hagen G, Guilfoyle T J. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell, 2004, 16: 533-543. |
44 | Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002, 290: 998-1009. |
45 | Gutterson N, Reuber T L. Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 2004, 7: 465-471. |
46 | Cheng M C, Liao P M, Kuo W W, et al. The Arabidopsis ethylene response factor1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology, 2013, 162: 1566-1582. |
47 | Seo Y J, Park J B, Cho Y J, et al. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Molecular Cell, 2010, 30: 271-277. |
48 | Meng X P, Li F G, Liu C L, et al. Isolation and characterization of an ERF transcription factor gene from cotton (Gossypium barbadense L.). Plant Molecular Biology Reporter, 2020, 28(1): 176-183. |
49 | Lau O S, Davies K A, Chang J, et al. Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells. Science, 2014, 345: 1605-1609. |
50 | Zhu L L, Zhou B. Regulation of bHLH protein in plant development and abiotic stress. Molecular Plant Breeding, 2022, 20(20): 6750-6760. |
朱璐璐, 周波. bHLH蛋白在植物发育及非生物胁迫中的调控. 分子植物育种, 2022, 20(20): 6750-6760. | |
51 | Vaten A, Soyars C L, Tarr P T, et al. Modulation of asymmetric division diversity through cytokinin and SPEECHLESS regulatory interactions in the Arabidopsis stomatal lineage. Developmental Cell, 2018, 47: 53-66. |
52 | Samakovli D, Tichá T, Vavrdová T, et al. YODA-HSP90 module regulates phosphorylation-dependent inactivation of SPEECHLESS to control stomatal development under acute heat stress in Arabidopsis. Molecular Plant, 2020, 13(4): 612-633. |
53 | Bechtold U, Albihlal W S,Lawson T, et al. Arabidopsis heat shock transcription factor A1b overexpression enhances water productivity, resistance to drought, and infection. Journal of Experimental Botany, 2013, 64(11): 3467-3481. |
54 | Yuan X, Wang H, Cai J, et al. Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biology, 2019, 19: 278. |
55 | Zegaoui Z, Planchais S, Cabassa C, et al. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. Journal of Plant Physiology, 2017, 218: 26-34. |
[1] | 张一龙, 李雯, 喻启坤, 李培英, 孙宗玖. 狗牙根叶与根氮代谢对不同干旱胁迫的响应机制[J]. 草业学报, 2023, 32(7): 175-187. |
[2] | 张适阳, 刘凤民, 崔均涛, 何磊, 冯月燕, 张伟丽. 三种外源物质对低温胁迫下柱花草生理与荧光特性的影响[J]. 草业学报, 2023, 32(6): 85-99. |
[3] | 李艳鹏, 魏娜, 翟庆妍, 李杭, 张吉宇, 刘文献. 全基因组水平白花草木樨TCP基因家族的鉴定及在干旱胁迫下表达模式分析[J]. 草业学报, 2023, 32(4): 101-111. |
[4] | 张一龙, 喻启坤, 李雯, 李培英, 孙宗玖. 不同抗旱性狗牙根地上地下表型特征及内源激素对干旱胁迫的响应[J]. 草业学报, 2023, 32(3): 163-178. |
[5] | 许浩宇, 赵颖, 阮倩, 朱晓林, 王宝强, 魏小红. 不同混合盐碱下藜麦幼苗的抗性研究[J]. 草业学报, 2023, 32(1): 122-130. |
[6] | 刘福, 陈诚, 张凯旋, 周美亮, 张新全. 日本百脉根LjbHLH34基因克隆及耐旱功能鉴定[J]. 草业学报, 2023, 32(1): 178-191. |
[7] | 张彩霞, 方香玲. 草类植物抗病机制研究进展[J]. 草业学报, 2023, 32(1): 203-215. |
[8] | 曾令霜, 李培英, 孙宗玖, 孙晓梵. 两类新疆狗牙根抗旱基因型抗氧化酶保护系统及其基因表达差异分析[J]. 草业学报, 2022, 31(7): 122-132. |
[9] | 刘彩婷, 毛丽萍, 阿依谢木, 于应文, 沈禹颖. 紫花苜蓿与垂穗披碱草混播比例对其抗寒生长生理特征的影响[J]. 草业学报, 2022, 31(7): 133-143. |
[10] | 纪童, 蒋齐, 王占军, 季波. 7种禾本科牧草抗旱性研究与评价[J]. 草业学报, 2022, 31(7): 144-156. |
[11] | 谢文辉, 黄莉娟, 赵丽丽, 王雷挺, 赵文武. 钙盐胁迫对3份葛藤种质种子萌发及幼苗生理特性的影响[J]. 草业学报, 2022, 31(7): 220-233. |
[12] | 金祎婷, 刘文辉, 刘凯强, 梁国玲, 贾志锋. 全生育期干旱胁迫对‘青燕1号’燕麦叶绿素荧光参数的影响[J]. 草业学报, 2022, 31(6): 112-126. |
[13] | 苏世平, 李毅, 刘小娥, 种培芳, 单立山, 后有丽. 外源脯氨酸对缓解红砂干旱胁迫的机理研究[J]. 草业学报, 2022, 31(6): 127-138. |
[14] | 张铎, 李岚涛, 林迪, 郑龙辉, 耿赛男, 石纹碹, 盛开, 苗玉红, 王宜伦. 施磷水平对菊芋块茎产量、品质、植株生理特性与磷利用率的影响[J]. 草业学报, 2022, 31(6): 139-149. |
[15] | 孙晓梵, 张一龙, 李培英, 孙宗玖. 不同施氮量对干旱下狗牙根抗氧化酶活性及渗透调节物质含量的影响[J]. 草业学报, 2022, 31(6): 69-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||