草业学报 ›› 2023, Vol. 32 ›› Issue (11): 30-39.DOI: 10.11686/cyxb2022135
收稿日期:
2022-03-26
修回日期:
2023-04-12
出版日期:
2023-11-20
发布日期:
2023-09-27
通讯作者:
蒋齐
作者简介:
E-mail: ycjqnx@163.com基金资助:
Xu-dong WU(), Qi JIANG(), Zhan-jun WANG, Bo JI, Xiao-bin REN
Received:
2022-03-26
Revised:
2023-04-12
Online:
2023-11-20
Published:
2023-09-27
Contact:
Qi JIANG
摘要:
基于2019-2021年的野外降水控制试验,研究了增水(+50%)、自然降水量(CK)和减水(-50%)不同降水量对荒漠草原地上生物量稳定性的影响。结果表明:蒙古冰草通过对不同降水量的适应性决定了其在群落中的优势地位,达乌里胡枝子抗旱性能最佳,极端干旱导致猪毛蒿和短花针茅优势地位显著下降,多年生禾本科植物对降水量响应更敏感;增水显著提高了群落、多年生豆科植物、一、二年生植物或多年生杂草、达乌里胡枝子和猪毛蒿地上生物量稳定性(P<0.001),极端干旱处理显著降低了多年生禾本科植物、蒙古冰草和短花针茅地上生物量的稳定性(P<0.001),群落稳定性依赖不同功能群间的补偿作用来维持;群落地上生物量稳定性的响应机制决定了荒漠草原对极端干旱的反应,异步性和群落抵抗力,并非物种丰富度,通过降低干旱条件下地上生物量的时间变异性,以及不同响应功能群间的补偿作用来促进和维持荒漠草原生态系统的稳定性。
吴旭东, 蒋齐, 王占军, 季波, 任小玢. 降水对荒漠草原地上生物量稳定性的影响[J]. 草业学报, 2023, 32(11): 30-39.
Xu-dong WU, Qi JIANG, Zhan-jun WANG, Bo JI, Xiao-bin REN. Effects of precipitation on the stability of aboveground biomass in desert steppe[J]. Acta Prataculturae Sinica, 2023, 32(11): 30-39.
分组 Grouping | 物种 Species | 年份 Year | 年际间差异性 Inter-annual differences | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | |||||||||||
-50% | CK | +50% | -50% | CK | +50% | -50% | CK | +50% | -50% | CK | +50% | ||
优势植物Dominant species | 蒙古冰草 A. mongolicum | 16.05±5.28B | 15.45±0.80B | 34.52±3.09A | 0.00B | 18.23±1.92A | 18.46±2.50A | 34.19±3.36NS | 28.61±4.16NS | 35.29±2.98NS | P<0.001 F=179.53 CV=21.56 | P<0.001 F=52.37 CV=12.94 | P<0.001 F=87.69 CV=9.75 |
达乌里胡枝子 L. davurica | 15.98±4.53NS | 21.75±1.76NS | 14.22±1.74NS | 25.07±4.60A | 25.63±2.76A | 17.51±2.55B | 36.99±4.91A | 28.02±3.51B | 17.43±2.08C | P<0.001 F=40.50 CV=18.00 | P>0.001 F=10.46 CV=11.01 | P>0.01 F=6.14 CV=13.10 | |
猪毛蒿 A. scoparia | 38.40±10.11NS | 49.73±2.46NS | 39.30±3.25NS | 63.35±5.94A | 42.37±2.46C | 51.16±4.62B | 5.84±1.47C | 29.59±3.33A | 22.75±3.44B | P<0.001 F=143.01 CV=19.02 | P<0.001 F=107.43 CV=6.85 | P<0.001 F=111.62 CV=10.12 | |
短花针茅 S. breviflora | 8.05±2.40A | 5.82±0.61B | 3.74±0.47C | 5.84±0.77A | 3.19±0.29C | 4.54±0.87B | 2.33±0.80B | 1.17±0.37C | 5.39±1.39A | P<0.001 F=28.59 CV=28.25 | P<0.001 F=219.43 CV=13.13 | P>0.01 F=5.61 CV=21.62 | |
功能群Functional groups | 多年生禾本科植物Perennial gramineae grasses | 25.89±8.09B | 22.50±1.18B | 38.67±3.02A | 6.54±1.62B | 21.87±2.27A | 23.90±2.55A | 39.97±2.85A | 29.78±4.34B | 40.76±2.96A | P<0.001 F=88.77 CV=20.88 | P<0.001 F=18.26 CV=11.77 | P<0.001 F=82.92 CV=8.29 |
多年生豆科植物Perennial leguminous grasses | 19.27±5.44NS | 26.31±1.69NS | 20.27±1.60NS | 26.59±3.67B | 33.38±2.02A | 21.52±3.33C | 50.64±2.90A | 34.00±4.86B | 33.42±3.04B | P<0.001 F=125.60 CV=12.88 | P>0.001 F=14.35 CV=10.21 | P<0.001 F=55.30 CV=11.01 | |
一、二年生植物或多年生杂草Annual & biennial plants or perennial forbs | 42.13±11.34NS | 51.18±1.85NS | 41.06±3.07NS | 68.34±4.98A | 44.75±2.02C | 54.58±3.26B | 9.39±4.15C | 36.22±6.68A | 25.82±3.55A | P<0.001 F=122.70 CV=18.87 | P<0.001 F=25.93 CV=9.47 | P<0.001 F=152.15 CV=8.15 | |
群落Community | 地上生物量Aboveground biomass (g·m-2) | 96.41±5.04C | 123.83±4.30B | 147.01±7.27A | 4.47±0.34C | 65.32±2.03B | 91.72±7.57A | 21.07±2.94C | 41.24±3.61B | 63.47±5.30A | P<0.001 F=1688.31 CV=8.30 | P<0.001 F=1215.20 CV=4.49 | P<0.001 F=313.45 CV=6.74 |
表1 不同降水量下优势物种及功能群地上生物量的比例
Table 1 Aboveground biomass ratio of dominant species and functional groups to total aboveground biomass under different precipitation levels
分组 Grouping | 物种 Species | 年份 Year | 年际间差异性 Inter-annual differences | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | |||||||||||
-50% | CK | +50% | -50% | CK | +50% | -50% | CK | +50% | -50% | CK | +50% | ||
优势植物Dominant species | 蒙古冰草 A. mongolicum | 16.05±5.28B | 15.45±0.80B | 34.52±3.09A | 0.00B | 18.23±1.92A | 18.46±2.50A | 34.19±3.36NS | 28.61±4.16NS | 35.29±2.98NS | P<0.001 F=179.53 CV=21.56 | P<0.001 F=52.37 CV=12.94 | P<0.001 F=87.69 CV=9.75 |
达乌里胡枝子 L. davurica | 15.98±4.53NS | 21.75±1.76NS | 14.22±1.74NS | 25.07±4.60A | 25.63±2.76A | 17.51±2.55B | 36.99±4.91A | 28.02±3.51B | 17.43±2.08C | P<0.001 F=40.50 CV=18.00 | P>0.001 F=10.46 CV=11.01 | P>0.01 F=6.14 CV=13.10 | |
猪毛蒿 A. scoparia | 38.40±10.11NS | 49.73±2.46NS | 39.30±3.25NS | 63.35±5.94A | 42.37±2.46C | 51.16±4.62B | 5.84±1.47C | 29.59±3.33A | 22.75±3.44B | P<0.001 F=143.01 CV=19.02 | P<0.001 F=107.43 CV=6.85 | P<0.001 F=111.62 CV=10.12 | |
短花针茅 S. breviflora | 8.05±2.40A | 5.82±0.61B | 3.74±0.47C | 5.84±0.77A | 3.19±0.29C | 4.54±0.87B | 2.33±0.80B | 1.17±0.37C | 5.39±1.39A | P<0.001 F=28.59 CV=28.25 | P<0.001 F=219.43 CV=13.13 | P>0.01 F=5.61 CV=21.62 | |
功能群Functional groups | 多年生禾本科植物Perennial gramineae grasses | 25.89±8.09B | 22.50±1.18B | 38.67±3.02A | 6.54±1.62B | 21.87±2.27A | 23.90±2.55A | 39.97±2.85A | 29.78±4.34B | 40.76±2.96A | P<0.001 F=88.77 CV=20.88 | P<0.001 F=18.26 CV=11.77 | P<0.001 F=82.92 CV=8.29 |
多年生豆科植物Perennial leguminous grasses | 19.27±5.44NS | 26.31±1.69NS | 20.27±1.60NS | 26.59±3.67B | 33.38±2.02A | 21.52±3.33C | 50.64±2.90A | 34.00±4.86B | 33.42±3.04B | P<0.001 F=125.60 CV=12.88 | P>0.001 F=14.35 CV=10.21 | P<0.001 F=55.30 CV=11.01 | |
一、二年生植物或多年生杂草Annual & biennial plants or perennial forbs | 42.13±11.34NS | 51.18±1.85NS | 41.06±3.07NS | 68.34±4.98A | 44.75±2.02C | 54.58±3.26B | 9.39±4.15C | 36.22±6.68A | 25.82±3.55A | P<0.001 F=122.70 CV=18.87 | P<0.001 F=25.93 CV=9.47 | P<0.001 F=152.15 CV=8.15 | |
群落Community | 地上生物量Aboveground biomass (g·m-2) | 96.41±5.04C | 123.83±4.30B | 147.01±7.27A | 4.47±0.34C | 65.32±2.03B | 91.72±7.57A | 21.07±2.94C | 41.24±3.61B | 63.47±5.30A | P<0.001 F=1688.31 CV=8.30 | P<0.001 F=1215.20 CV=4.49 | P<0.001 F=313.45 CV=6.74 |
图2 不同降水量下群落、功能群及优势物种地上生物量稳定性CK:自然降水量; +50%:降水量增加50%; -50%:降水量减少50%。不同字母表示差异显著(P<0.001)。下同。CK: Control, natural precipitation level; +50%: Increase precipitation by 50%; -50%: Reduce precipitation by 50%. Different letters indicate significant difference (P<0.001). The same below.
Fig.2 The stability of community, functional groups, and dominant species aboveground biomass under different precipitation levels
1 | Song C L. Structural stability: Concepts, methods, and applications. Biodiversity Science, 2020, 28(11): 1345-1361. |
宋础良. 结构稳定性:概念、方法和应用. 生物多样性, 2020, 28(11): 1345-1361. | |
2 | Zi H B, Ade L J, Liu M, et al. Difference of community characteristics and niche of dominant species in different grassland types of alpine meadow. Chinese Journal of Applied & Environmental Biology, 2016, 22(4): 546-554. |
字洪标, 阿的鲁骥, 刘敏, 等. 高寒草甸不同类型草地群落特征及优势种植物生态位差异. 应用与环境生物学报, 2016, 22(4): 546-554. | |
3 | Liu H, Mi Z, Lin L, et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 4051-4056. |
4 | Bai Y F, Huang J H, Zheng S X, et al. Drivers and regulating mechanisms of grassland and desert ecosystem services.Chinese Journal of Plant Ecology, 2014, 38(2): 93-102. |
白永飞, 黄建辉, 郑淑霞, 等. 草地和荒漠生态系统服务功能的形成与调控机制. 植物生态学报, 2014, 38(2): 93-102. | |
5 | Zhu A M, Han G D, Kang J, et al. Effects of long-term grazing on characteristics of plant functional groups in Stipa breviflora desert steppe. Acta Agrestia Sinica, 2019, 27(6): 1459-1466. |
朱爱民, 韩国栋, 康静, 等. 长期放牧对短花针茅荒漠草原植物功能群特征的影响. 草地学报, 2019, 27(6): 1459-1466. | |
6 | Zhang F, Zheng J H, Zhao M L, et al. Effects of mowing intensity on temporal stability of aboveground biomass in the Stipa grandis steppe. Biodiversity Science, 2020, 28(7): 779-786. |
张峰, 郑佳华, 赵萌莉, 等. 刈割强度对大针茅草原地上生物量时间稳定性的影响. 生物多样性, 2020, 28(7): 779-786. | |
7 | Bai Y F, Chen Z Z. Effects of long-term variability of plant species and functional groups on stability of a Leymus chinensis community in the Xilin River Basin, Inner Mongolia. Chinese Journal of Plant Ecology, 2000, 24(6): 641-647. |
白永飞, 陈佐忠. 锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响. 植物生态学报, 2000, 24(6): 641-647. | |
8 | Li Z Y, Ma W H, Liang C Z, et al. Long-term vegetation dynamics driven by climatic variations in the Inner Mongolia grassland: findings from 30-year monitoring. Landscape Ecology, 2015, 30(9): 1701-1711. |
9 | Mao W, Li Y L, Sun D C, et al. Aboveground biomass differentiations of different functional group spices after nitrogen and snow addition altered community productivity of sandy grassland. Journal of Desert Research, 2016, 36(1): 27-33. |
毛伟, 李玉霖, 孙殿超, 等. 养分和水分添加后沙质草地不同功能群植物地上生物量变化对群落生产力的影响. 中国沙漠, 2016, 36(1): 27-33. | |
10 | Zhang R, Zhao X Y, Zuo X A, et al. Responses of the Stipa glareosa community species diversity and above-ground biomass to precipitation in the desert-steppe region in northern China. Journal of Desert Research, 2019, 39(2): 45-52. |
张蕊, 赵学勇, 左小安, 等. 荒漠草原沙生针茅(Stipa glareosa)群落物种多样性和地上生物量对降雨量的响应. 中国沙漠, 2019, 39(2): 45-52. | |
11 | Li J, Hong M, Yan J, et al. The response of vegetation community structure and biomass in Stipa breviflora desert steppe to water and nitrogen. Acta Prataculturae Sinica, 2020, 29(9): 38-48. |
李静, 红梅, 闫瑾, 等. 短花针茅荒漠草原植被群落结构及生物量对水氮变化的响应. 草业学报, 2020, 29(9): 38-48. | |
12 | Bao Y J, Cao M, Li Z H, et al. A comparative study of the response of Leymus chinensis and Stipa grandis root characteristics to moisture gradients. Acta Ecologica Sinica, 2019, 39(3): 1063-1070. |
鲍雅静, 曹明, 李政海, 等. 羊草与大针茅根系构型对水分梯度响应的比较研究. 生态学报, 2019, 39(3): 1063-1070. | |
13 | Zhang J H, Huang Y M. Biodiversity and stability mechanisms: understanding and future research. Acta Ecologica Sinica, 2016, 36(13): 3859-3870. |
张景慧, 黄永梅. 生物多样性与稳定性机制研究进展. 生态学报, 2016, 36(13): 3859-3870. | |
14 | Sun D X, Liu X, Zhou S R. Dynamical changes of diversity and community assembly during recovery from a plant functional group removal experiment in the alpine meadow. Biodiversity Science, 2018, 26(7): 655-666. |
孙德鑫, 刘向, 周淑荣. 停止人为去除植物功能群后的高寒草甸多样性恢复过程与群落构建. 生物多样性, 2018, 26(7): 655-666. | |
15 | Ma W J, Zhang Q, Niu J M, et al. Relationship of ecosystem primary productivity to species diversity and functional group diversity: evidence from Stipa breviflora grassland in Nei Mongol. Chinese Journal of Plant Ecology, 2013, 37(7): 620-630. |
马文静, 张庆, 牛建明, 等. 物种多样性和功能群多样性与生态系统生产力的关系——以内蒙古短花针茅草原为例. 植物生态学报, 2013, 37(7): 620-630. | |
16 | Cadotte M W. Functional traits explain ecosystem function through opposing mechanisms. Ecology Letters, 2017, 20: 989-996. |
17 | Wang C T, Long R J, Ding L M. The effects of differences in functional group diversity and composition on plant community productivity in four types of alpine meadow communities. Biodiversity Science, 2004, 12(4): 403-409. |
王长庭, 龙瑞军, 丁路明. 高寒草甸不同草地类型功能群多样性及组成对植物群落生产力的影响. 生物多样性, 2004, 12(4): 403-409. | |
18 | Zhang J Q, Li Q, Ren Z W, et al. Effects of nitrogen addition on species richness and relationship between species richness and aboveground productivity of alpine meadow of the Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 2010, 34(10): 1125-1131. |
张杰琦, 李奇, 任正炜, 等. 氮素添加对青藏高原高寒草甸植物群落物种丰富度及其与地上生产力关系的影响. 植物生态学报, 2010, 34(10): 1125-1131. | |
19 | Du Z Y, An H, Wen Z L, et al. Response of plant community structure and its stability to water and nitrogen addition in desert grassland. Acta Ecologica Sinica, 2021, 41(6): 2359-2371. |
杜忠毓, 安慧, 文志林, 等. 荒漠草原植物群落结构及其稳定性对增水和增氮的响应. 生态学报, 2021, 41(6): 2359-2371. | |
20 | Zhao L Y, Gao D D, Xiong B Q, et al. Relationship between the aboveground biomass and species diversity of sandy communities during the process of restoring succession in the Horqin Sandy Land, China. Acta Ecologica Sinica, 2017, 37(12): 4108-4117. |
赵丽娅, 高丹丹, 熊炳桥, 等. 科尔沁沙地恢复演替进程中群落物种多样性与地上生物量的关系.生态学报, 2017, 37(12): 4108-4117. | |
21 | Guo Q. Responses of grassland ecosystem productivity to altered precipitation regime: A review. Chinese Journal of Applied Ecology, 2019, 30(7): 2201-2210. |
郭群. 草原生态系统生产力对降水格局响应的研究进展. 应用生态学报, 2019, 30(7): 2201-2210. | |
22 | Gamadaer J, Yang Z, Tan X R, et al. Effect of altered litter input and nitrogen addition on ecosystem aboveground primary productivity and plant functional group composition in a semiarid grassland. Chinese Journal of Plant Ecology, 2020, 44(8): 791-806. |
嘎玛达尔基, 杨泽, 谭星儒, 等. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响. 植物生态学报, 2020, 44(8): 791-806. | |
23 | Jiao S Y, Han G D, Li Y Q, et al. Effects of different stocking rates on the structures and functional group productivity of the communities in desert steppe. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(3): 564-571. |
焦树英, 韩国栋, 李永强, 等. 不同载畜率对荒漠草原群落结构和功能群生产力的影响. 西北植物学报, 2006, 26(3): 564-571. | |
24 | Jiang L, Hu J, Yang Z A, et al. Effects of plant functional group removal on community structure, diversity and production in alpine meadow. Acta Ecologica Sinica, 2021, 41(4): 1402-1411. |
姜林, 胡骥, 杨振安, 等. 植物功能群去除对高寒草甸群落结构、多样性及生产力的影响. 生态学报, 2021, 41(4): 1402-1411. | |
25 | Wang H D, Zhang L L, Zhu Z H. Effects of clipping and fertilizing on the relationships between species diversity and ecosystem functioning and mechanisms of community stability in alpine meadow. Chinese Journal of Plant Ecology, 2013, 37(4): 279-295. |
王海东, 张璐璐, 朱志红. 刈割、施肥对高寒草甸物种多样性与生态系统功能关系的影响及群落稳定性机制. 植物生态学报, 2013, 37(4): 279-295. | |
26 | Bai Y F, Pan Q M, Xing Q. Fundamental theories and technologies for optimizing the production functions and ecological functions in grassland ecosystems. Chinese Science Bulletin, 2016, 61(2): 201-212. |
白永飞, 潘庆民, 邢旗. 草地生产与生态功能合理配置的理论基础与关键技术. 科学通报, 2016, 61(2): 201-212. | |
27 | Yan R R, Zhang Y, Xin X P, et al. Effects of mowing disturbance on grassland plant functional groups and diversity in Leymus chinensis meadow steppe. Scientia Agricultura Sinica, 2020, 53(13): 2573-2583. |
闫瑞瑞, 张宇, 辛晓平, 等. 刈割干扰对羊草草甸草原植物功能群及多样性的影响. 中国农业科学, 2020, 53(13): 2573-2583. | |
28 | Ma J J, Yao H, Feng Z Y, et al. Changes in plant functional groups and species diversity under three grassland using modes in typical grassland area of Inner Mongolia, China. Chinese Journal of Plant Ecology, 2012, 36(1): 1-9. |
马建军, 姚虹, 冯朝阳, 等. 内蒙古典型草原区3种不同草地利用模式下植物功能群及其多样性的变化. 植物生态学报, 2012, 36(1): 1-9. | |
29 | Zhang J, Zuo X A, Yang Y, et al. Response of plant community functional traits in different grasslands to enclosure and grazing in Horqin Sandy Land. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(24): 261-268. |
张晶, 左小安, 杨阳, 等.科尔沁沙地草地植物群落功能性状对封育和放牧的响应. 农业工程学报, 2017, 33(24): 261-268. | |
30 | Zhao X Y, Liu L X, Wang W, et al. Impacts of precipitation change on desert-grassland vegetation productivity. Journal of Desert Research, 2014, 34(6): 1486-1495. |
赵学勇, 刘良旭, 王玮, 等. 降水波动对荒漠草原生产力的影响. 中国沙漠, 2014, 34(6): 1486-1495. | |
31 | Tan L P, Zhou G S. Variations of Leymus chinensis community, functional groups, plant species and their relationships with climate factors. Acta Ecologica Sinica, 2013, 33(2): 650-658. |
谭丽萍, 周广胜.内蒙古羊草群落、功能群、物种变化及其与气候的关系. 生态学报, 2013, 33(2): 650-658. | |
32 | Miao B L, Liang C Z, Shi Y B, et al. Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China. Chinese Journal of Plant Ecology, 2019, 43(7): 557-565. |
苗百岭, 梁存柱, 史亚博, 等. 降水变化对内蒙古典型草原地上生物量的影响. 植物生态学报, 2019, 43(7): 557-565. | |
33 | Dong S K, Tang L, Zhang X F, et al. Relationship between plant species diversity and functional diversity in alpine grasslands. Acta Ecologica Sinica, 2017, 37(5): 1472-1483. |
董世魁, 汤琳, 张相锋, 等. 高寒草地植物物种多样性与功能多样性的关系. 生态学报, 2017, 37(5): 1472-1483. | |
34 | Tilman D. The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 1999, 80(5): 1455-1474. |
35 | Ma W, He J S, Yang Y, et al. Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites. Global Ecology and Biogeography, 2010, 19(2): 233-243. |
36 | Ma Z Y, Liu H Y, Mi Z R, et al. Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 2017, 8(1): 15378. |
37 | Luo W, Zuo X, Ma W, et al. Differential responses of canopy nutrients to experimental drought along a natural aridity gradient. Ecology, 2018, 99(10): 2230-2239. |
38 | Hallett L M, Hsu J S, Cleland E E, et al. Biotic mechanisms of community stability shift along a precipitation gradient. Ecology, 2014, 95(6): 1693-1700. |
39 | Zhang Y, Loreau M, He N, et al. Climate variability decreases species richness and community stability in a temperate grassland. Oecologia, 2018, 188(2): 183-192. |
40 | Loreau M, de Mazancourt C, Duffy E. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecology Letters, 2013, 16(Supple 1): 106-115. |
41 | Oliver T H, Isaac N J B, August T A, et al. Declining resilience of ecosystem functions under biodiversity loss. Nature Communications, 2015, 6: 10122. |
[1] | 赵敏, 赵坤, 王赟博, 殷国梅, 刘思博, 闫宝龙, 孟卫军, 吕世杰, 韩国栋. 长期放牧干扰降低了短花针茅荒漠草原植物多样性[J]. 草业学报, 2023, 32(9): 39-49. |
[2] | 刘欣雷, 杜鹤强, 刘秀帆, 范亚伟. 内蒙古荒漠草原地表风沙活动对放牧强度的响应[J]. 草业学报, 2023, 32(7): 1-11. |
[3] | 凌文卿, 张磊, 李珏, 冯启贤, 李妍, 周燚, 刘一佳, 阳伏林, 周晶. 布氏乳杆菌和不同糖类联用对紫花苜蓿青贮营养成分、发酵品质、瘤胃降解率及有氧稳定性的影响[J]. 草业学报, 2023, 32(7): 122-134. |
[4] | 陈彦硕, 马彦平, 王红梅, 赵亚楠, 李志丽, 张振杰. 荒漠草原不同年限灌丛引入过程土壤细菌碳源利用特征[J]. 草业学报, 2023, 32(6): 30-44. |
[5] | 叶婷, 吴晓娟, 芦奕晓, 刘生娟, 姜卓慧, 杨惠敏. 混播比例对两种苜蓿混播草地产量和种群密度稳定性的影响[J]. 草业学报, 2023, 32(5): 127-137. |
[6] | 郭鑫, 罗欢, 许雪梅, 马爱霞, 尚振艳, 韩天虎, 牛得草, 文海燕, 李旭东. 不同品质凋落物分解对黄土高原草地土壤有机碳及其稳定性的影响[J]. 草业学报, 2023, 32(5): 83-93. |
[7] | 胡宇霞, 龚吉蕊, 朱趁趁, 矢佳昱, 张子荷, 宋靓苑, 张魏圆. 基于生态系统服务簇的内蒙古荒漠草原生态系统服务的空间分布特征[J]. 草业学报, 2023, 32(4): 1-14. |
[8] | 雷石龙, 廖李容, 王杰, 张路, 叶振城, 刘国彬, 张超. 高寒草地植物多样性与Godron群落稳定性关系及其环境驱动因素[J]. 草业学报, 2023, 32(3): 1-12. |
[9] | 李江文, 裴婧宏, 韩国栋, 何邦印, 李彩. 基于植物功能性状分析异常降水对不同载畜率下荒漠草原功能群多样性的影响[J]. 草业学报, 2023, 32(11): 212-222. |
[10] | 张勇, 王海娣, 高玉红, 吴兵, 剡斌, 王一帆, 崔政军, 文泽东. 多元胡麻轮作模式对土壤团聚体特征及氮素含量的影响[J]. 草业学报, 2023, 32(1): 75-88. |
[11] | 牛伟玲, 陈辉, 侯慧新, 郭晨睿, 马娇林, 武建双. 10年禁牧未改变藏西北高寒荒漠植物水氮利用效率[J]. 草业学报, 2022, 31(8): 35-48. |
[12] | 刘万龙, 许冬梅, 史佳梅, 许爱云. 不同群落生境蒙古冰草种群株丛结构和叶片功能性状的变化[J]. 草业学报, 2022, 31(8): 72-80. |
[13] | 郭香, 吴硕, 郑明扬, 陈德奎, 邹璇, 陈晓阳, 周玮, 张庆. 添加黄梁木叶和壳寡糖对甘蔗梢青贮饲料发酵品质及有氧稳定性的影响[J]. 草业学报, 2022, 31(6): 202-210. |
[14] | 郭文章, 井长青, 邓小进, 陈宸, 赵苇康, 侯志雄, 王公鑫. 新疆天山北坡荒漠草原碳通量特征及其对环境因子的响应[J]. 草业学报, 2022, 31(5): 1-12. |
[15] | 金玲, 陆颖, 马红彬, 谢应忠, 沈艳. 内蒙古鄂托克前旗荒漠草原植物群落的数量分类与排序[J]. 草业学报, 2022, 31(4): 12-21. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||