草业学报 ›› 2024, Vol. 33 ›› Issue (1): 117-125.DOI: 10.11686/cyxb2023075
• 研究论文 • 上一篇
黄丽娟1(), 孙镕基1, 高文婧1, 张志飞1(), 陈桂华1,2()
收稿日期:
2023-03-13
修回日期:
2023-04-19
出版日期:
2024-01-20
发布日期:
2023-11-23
通讯作者:
张志飞,陈桂华
作者简介:
158531879@qq.com基金资助:
Li-juan HUANG1(), Rong-ji SUN1, Wen-jing GAO1, Zhi-fei ZHANG1(), Gui-hua CHEN1,2()
Received:
2023-03-13
Revised:
2023-04-19
Online:
2024-01-20
Published:
2023-11-23
Contact:
Zhi-fei ZHANG,Gui-hua CHEN
摘要:
本试验旨在对全株水稻表面的优势乳酸菌进行分离、筛选与鉴定,以期挖掘出青贮优良菌种资源。利用平板涂布法对全株水稻上的乳酸菌进行分离,以生长速度和产酸能力进行初筛,以抗氧化能力(H2O2耐受能力、DPPH自由基、羟自由基和超氧阴离子自由基清除率)进行复筛,对筛选出的优势乳酸菌进行生理生化特性分析和分子生物学鉴定。结果表明,从水稻植株表面共分离得到154株乳酸菌,培养48 h后,有16株OD600nm值>2且pH值<4的乳酸菌,其中有9株乳酸菌具有抗氧化能力,综合表现最好的菌株是YMA3,对DPPH自由基、羟自由基、超氧阴离子自由基清除率分别为72.23%、72.46%、86.33%。YMA3表现出较强的高温或酸性环境适应性,鉴定为粪肠球菌。
黄丽娟, 孙镕基, 高文婧, 张志飞, 陈桂华. 全株水稻表面优势乳酸菌的筛选与鉴定[J]. 草业学报, 2024, 33(1): 117-125.
Li-juan HUANG, Rong-ji SUN, Wen-jing GAO, Zhi-fei ZHANG, Gui-hua CHEN. Screening and identification of whole rice surface dominant lactic acid bacteria[J]. Acta Prataculturae Sinica, 2024, 33(1): 117-125.
图1 不同品种及不同生育期分离细菌数量A: 卓201S/6W1622 Zhuo 201S/6W1622; B: 卓201S/6W1003 Zhuo 201S/6W1003; C: 展998S/X5H008 Zhan 998S/X5H008; D: 展998S/4W0802 Zhan 998S/4W0802; E: 展998S/R302 Zhan 998S/R302.
Fig.1 The number of bacteria isolated from different varieties and different growth stages
图2 154株乳酸菌在MRS液体培养基中培养48 h时的OD600nm值及pH值黑色椭圆形中圈出的为筛选出的16株优势乳酸菌。The 16 strains of dominant lactic acid bacteria are circled in the black oval.
Fig.2 The OD600nm value and pH value of 154 strains of lactic acid bacteria cultured in MRS liquid medium at 48 h
菌株Strain | 0 mmol·L-1 | 1 mmol·L-1 | 2 mmol·L-1 | 3 mmol·L-1 | 菌株Strain | 0 mmol·L-1 | 1 mmol·L-1 | 2 mmol·L-1 | 3 mmol·L-1 |
---|---|---|---|---|---|---|---|---|---|
YMA1 | 1.879±0.01a | 1.862±0.01a | 1.572±0.01b | 0.138±0.01c | BJD3 | 1.430±0.01a | 1.325±0.01b | 1.122±0.01c | 0.086±0.01d |
YMA3 | 1.889±0.01a | 1.871±0.01b | 1.830±0.01c | 1.575±0.01d | BJD4 | 1.552±0.01a | 1.532±0.01b | 1.502±0.01c | 1.490±0.01c |
YMB4 | 1.880±0.01a | 1.841±0.01b | 1.542±0.01c | 0.159±0.01d | BJD7 | 1.665±0.01a | 1.642±0.01a | 1.561±0.01b | 1.322±0.04c |
YMC5 | 1.901±0.01a | 1.869±0.01b | 1.602±0.01c | 0.273±0.01d | BJE1 | 1.668±0.01a | 1.588±0.01b | 1.583±0.01c | 1.414±0.01d |
YMC6 | 1.879±0.01a | 1.752±0.01b | 1.643±0.01c | 0.318±0.01d | BJE8 | 1.671±0.01a | 1.642±0.01b | 1.579±0.02c | 1.510±0.01d |
YMD10 | 1.759±0.01a | 1.717±0.01a | 1.533±0.01b | 0.255±0.05c | BJE11 | 1.659±0.01a | 1.641±0.01b | 1.588±0.01c | 1.016±0.01d |
BJA4 | 1.771±0.01a | 1.645±0.01b | 1.316±0.01c | 1.091±0.01d | CSE9 | 1.922±0.01a | 1.841±0.02b | 1.549±0.01c | 1.488±0.01d |
BJB2 | 1.956±0.01a | 1.932±0.01b | 1.633±0.01c | 0.287±0.01d | YHE4 | 1.738±0.03a | 1.915±0.01a | 1.823±0.01b | 1.614±0.03c |
表1 不同H2O2浓度下16株乳酸菌的生长情况
Table 1 Growth of 16 strains of lactic acid bacteria at different H2O2 concentrations (OD600nm value)
菌株Strain | 0 mmol·L-1 | 1 mmol·L-1 | 2 mmol·L-1 | 3 mmol·L-1 | 菌株Strain | 0 mmol·L-1 | 1 mmol·L-1 | 2 mmol·L-1 | 3 mmol·L-1 |
---|---|---|---|---|---|---|---|---|---|
YMA1 | 1.879±0.01a | 1.862±0.01a | 1.572±0.01b | 0.138±0.01c | BJD3 | 1.430±0.01a | 1.325±0.01b | 1.122±0.01c | 0.086±0.01d |
YMA3 | 1.889±0.01a | 1.871±0.01b | 1.830±0.01c | 1.575±0.01d | BJD4 | 1.552±0.01a | 1.532±0.01b | 1.502±0.01c | 1.490±0.01c |
YMB4 | 1.880±0.01a | 1.841±0.01b | 1.542±0.01c | 0.159±0.01d | BJD7 | 1.665±0.01a | 1.642±0.01a | 1.561±0.01b | 1.322±0.04c |
YMC5 | 1.901±0.01a | 1.869±0.01b | 1.602±0.01c | 0.273±0.01d | BJE1 | 1.668±0.01a | 1.588±0.01b | 1.583±0.01c | 1.414±0.01d |
YMC6 | 1.879±0.01a | 1.752±0.01b | 1.643±0.01c | 0.318±0.01d | BJE8 | 1.671±0.01a | 1.642±0.01b | 1.579±0.02c | 1.510±0.01d |
YMD10 | 1.759±0.01a | 1.717±0.01a | 1.533±0.01b | 0.255±0.05c | BJE11 | 1.659±0.01a | 1.641±0.01b | 1.588±0.01c | 1.016±0.01d |
BJA4 | 1.771±0.01a | 1.645±0.01b | 1.316±0.01c | 1.091±0.01d | CSE9 | 1.922±0.01a | 1.841±0.02b | 1.549±0.01c | 1.488±0.01d |
BJB2 | 1.956±0.01a | 1.932±0.01b | 1.633±0.01c | 0.287±0.01d | YHE4 | 1.738±0.03a | 1.915±0.01a | 1.823±0.01b | 1.614±0.03c |
菌株 Strain | DPPH自由基清除率 DPPH free radical scavenging rate | 羟自由基清除率 Hydroxyl free radical scavenging rate | 超氧阴离子自由基清除率 Superoxide anion free radical scavenging rate | ||||||
---|---|---|---|---|---|---|---|---|---|
完整菌体 IC | 无菌体提取物 CFE | 发酵上清液 CFS | 完整菌体 IC | 无菌体提取物 CFE | 发酵上清液 CFS | 完整菌体 IC | 无菌体提取物 CFE | 发酵上清液 CFS | |
YMA3 | 7.89±0.86a | 18.07±2.23d | 72.23±0.50c | 62.12±0.92a | 21.31±2.92a | 72.46±9.45a | 86.33±0.19a | 2.65±0.98c | ND |
BJA4 | 6.91±1.50ab | 19.49±1.59cd | 72.82±0.37bc | 19.37±7.10d | 14.49±4.02ab | 36.31±6.85bc | 75.13±7.96a | 6.40±1.93a | ND |
BJD4 | 8.78±2.05a | 20.37±2.22bcd | 73.51±0.82b | 34.08±9.28c | 12.61±4.25b | 35.41±4.84c | 84.77±0.38a | 5.38±1.52ab | ND |
BJD7 | 6.87±1.84abc | 17.53±2.60d | 72.64±0.94bc | 47.75±5.46b | ND | 25.21±3.21d | 29.44±16.74b | 5.16±1.38ab | ND |
BJE1 | 4.52±1.04bcd | 18.76±7.88d | 73.67±1.63b | 34.64±7.87c | 10.23±0.40b | 19.26±5.60de | 81.47±6.32a | 5.97±1.33ab | ND |
BJE8 | 8.47±1.59a | 34.67±3.70a | 72.21±0.75c | 46.41±4.63b | 11.02±4.02b | 43.63±2.40bc | 5.57±1.65c | 6.18±1.95ab | ND |
BJE11 | 9.23±3.79a | 24.96±3.85b | 75.56±0.63a | 9.24±6.03e | ND | 27.29±8.33cd | 76.32±10.60a | 4.39±1.57bc | ND |
CSE9 | 7.09±1.58a | 24.41±5.65b | 73.56±0.95b | 24.41±4.55cd | 8.69±3.93b | 36.92±3.53bc | ND | 4.78±1.07ab | 3.33±0.93 |
YHE4 | 8.17±1.82a | 24.06±4.09bc | 72.90±1.22bc | 28.95±9.32c | 11.22±5.47b | 13.17±3.00e | 79.04±6.28a | 2.71±1.49c | ND |
表2 9株乳酸菌对3种自由基的清除率
Table 2 The scavenging rate of 3 kinds of free radicals by 9 strains lactic acid bacteria (%)
菌株 Strain | DPPH自由基清除率 DPPH free radical scavenging rate | 羟自由基清除率 Hydroxyl free radical scavenging rate | 超氧阴离子自由基清除率 Superoxide anion free radical scavenging rate | ||||||
---|---|---|---|---|---|---|---|---|---|
完整菌体 IC | 无菌体提取物 CFE | 发酵上清液 CFS | 完整菌体 IC | 无菌体提取物 CFE | 发酵上清液 CFS | 完整菌体 IC | 无菌体提取物 CFE | 发酵上清液 CFS | |
YMA3 | 7.89±0.86a | 18.07±2.23d | 72.23±0.50c | 62.12±0.92a | 21.31±2.92a | 72.46±9.45a | 86.33±0.19a | 2.65±0.98c | ND |
BJA4 | 6.91±1.50ab | 19.49±1.59cd | 72.82±0.37bc | 19.37±7.10d | 14.49±4.02ab | 36.31±6.85bc | 75.13±7.96a | 6.40±1.93a | ND |
BJD4 | 8.78±2.05a | 20.37±2.22bcd | 73.51±0.82b | 34.08±9.28c | 12.61±4.25b | 35.41±4.84c | 84.77±0.38a | 5.38±1.52ab | ND |
BJD7 | 6.87±1.84abc | 17.53±2.60d | 72.64±0.94bc | 47.75±5.46b | ND | 25.21±3.21d | 29.44±16.74b | 5.16±1.38ab | ND |
BJE1 | 4.52±1.04bcd | 18.76±7.88d | 73.67±1.63b | 34.64±7.87c | 10.23±0.40b | 19.26±5.60de | 81.47±6.32a | 5.97±1.33ab | ND |
BJE8 | 8.47±1.59a | 34.67±3.70a | 72.21±0.75c | 46.41±4.63b | 11.02±4.02b | 43.63±2.40bc | 5.57±1.65c | 6.18±1.95ab | ND |
BJE11 | 9.23±3.79a | 24.96±3.85b | 75.56±0.63a | 9.24±6.03e | ND | 27.29±8.33cd | 76.32±10.60a | 4.39±1.57bc | ND |
CSE9 | 7.09±1.58a | 24.41±5.65b | 73.56±0.95b | 24.41±4.55cd | 8.69±3.93b | 36.92±3.53bc | ND | 4.78±1.07ab | 3.33±0.93 |
YHE4 | 8.17±1.82a | 24.06±4.09bc | 72.90±1.22bc | 28.95±9.32c | 11.22±5.47b | 13.17±3.00e | 79.04±6.28a | 2.71±1.49c | ND |
项目Item | 结果Result |
---|---|
革兰氏染色Gram stain | 阳性Positive |
过氧化氢酶Catalase | 阴性Negative |
葡萄糖产气Glucose gas production | 阴性Negative |
发酵类型Fermentation type | 同型Homo |
耐温Temperature resistance (℃) | |
5 | + |
10 | ++ |
37 | ++ |
45 | ++ |
50 | ++ |
耐酸Acid resistance (pH) | |
3.0 | + |
3.5 | ++ |
4.0 | ++ |
5.0 | ++ |
6.0 | ++ |
7.0 | ++ |
耐盐Salt tolerance (NaCl, %) | |
3.0 | ++ |
6.8 | ++ |
10.0 | + |
表3 菌株YMA3的生理生化特性
Table 3 Physiological and biochemical characteristics of strain YMA3
项目Item | 结果Result |
---|---|
革兰氏染色Gram stain | 阳性Positive |
过氧化氢酶Catalase | 阴性Negative |
葡萄糖产气Glucose gas production | 阴性Negative |
发酵类型Fermentation type | 同型Homo |
耐温Temperature resistance (℃) | |
5 | + |
10 | ++ |
37 | ++ |
45 | ++ |
50 | ++ |
耐酸Acid resistance (pH) | |
3.0 | + |
3.5 | ++ |
4.0 | ++ |
5.0 | ++ |
6.0 | ++ |
7.0 | ++ |
耐盐Salt tolerance (NaCl, %) | |
3.0 | ++ |
6.8 | ++ |
10.0 | + |
项目Item | 结果Result | 项目Item | 结果Result | 项目Item | 结果Result |
---|---|---|---|---|---|
七叶苷Esculoside | + | 半乳糖Galactose | + | 蔗糖Saccharose | - |
水杨苷Salicin | + | 阿拉伯糖Arabinose | + | 乳糖Lactose | - |
纤维二糖Cellobiose | + | 葡萄糖Glucose | + | 菊糖Inulin | - |
木糖Xylose | + | 甘露醇Mannitol | - | 松三糖Melezitose | - |
鼠李糖Rhamnose | + | 山梨醇Sorbitol | + | 蜜二糖Melibiose | - |
果糖Fructose | + | 麦芽糖Maltose | - | 棉籽糖Melitriose | - |
表4 菌株YMA3的碳源利用特性
Table 4 Carbon source utilization characteristics of strain YMA3
项目Item | 结果Result | 项目Item | 结果Result | 项目Item | 结果Result |
---|---|---|---|---|---|
七叶苷Esculoside | + | 半乳糖Galactose | + | 蔗糖Saccharose | - |
水杨苷Salicin | + | 阿拉伯糖Arabinose | + | 乳糖Lactose | - |
纤维二糖Cellobiose | + | 葡萄糖Glucose | + | 菊糖Inulin | - |
木糖Xylose | + | 甘露醇Mannitol | - | 松三糖Melezitose | - |
鼠李糖Rhamnose | + | 山梨醇Sorbitol | + | 蜜二糖Melibiose | - |
果糖Fructose | + | 麦芽糖Maltose | - | 棉籽糖Melitriose | - |
1 | Zhang P H, Wang J Q, He J H, et al. Effect of ensiling on content and rumen degradability of forage rice straw’s DM and NDF. Pratacultural Science, 2008, 25(6): 80-84. |
张佩华, 王加启, 贺建华, 等. 青贮对饲料稻秸秆DM和NDF瘤胃降解特性的影响. 草业科学, 2008, 25(6): 80-84. | |
2 | Gu Y J, Ding C L, Zhan J S, et al. Ensiled rice straw affecting growth performance and blood biochemical indexes of goat. Chinese Agricultural Science Bulletin, 2018, 34(5): 129-133. |
顾拥建, 丁成龙, 占今舜, 等. 青贮稻秸秆对山羊生长性能和血液生化指标的影响. 中国农学通报, 2018, 34(5): 129-133. | |
3 | Li F G. Studies of rice straw silage and its feeding value on beef cattle. Harbin: Northeast Agricultural University, 2013. |
李富国. 青贮水稻秸发酵品质及其饲喂肉牛效果的研究. 哈尔滨: 东北农业大学, 2013. | |
4 | Fan C G, Liu Q H, Zhang J G, et al. Nutritive values and ensiling characteristics of six rice varieties. Acta Agrestia Sinica, 2009, 17(4): 495-499. |
范传广, 刘秦华, 张建国, 等. 六个水稻品种饲用价值及青贮特性研究. 草地学报, 2009, 17(4): 495-499. | |
5 | Cheng Q M, Li M Y, Fan X Y, et al. Effects of epiphytic and exogenous lactic acid bacteria on fermentation quality and microbial community compositions of paper mulberry silage. Frontiers in Microbiology, 2022, 13: 973500. |
6 | Yuan J, Ma R R, Zhang W J, et al. Screening of superior lactic acid bacteria from natural Lolium multiflorum silage and their effects on silage quality. Acta Prataculturae Sinica, 2021, 30(11): 132-143. |
袁洁, 马冉冉, 张文洁, 等. 自然青贮多花黑麦草优良乳酸菌的筛选及对多花黑麦草青贮品质的影响. 草业学报, 2021, 30(11): 132-143. | |
7 | Lin D D, Ju Z L, Chai J K, et al. Screening and identification of low temperature tolerant lactic acid bacterial epiphytes from oats on Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2022, 31(5): 103-114. |
蔺豆豆, 琚泽亮, 柴继宽, 等. 青藏高原燕麦附着耐低温乳酸菌的筛选与鉴定. 草业学报, 2022, 31(5): 103-114. | |
8 | Amaretti A, Di Nunzio M, Pompei A, et al. Antioxidant properties of potentially probiotic bacteria: In vitro and in vivo activities. Applied Microbiology and Biotechnology, 2013, 97(2): 809-817. |
9 | He L, Zhou W, Wang C, et al. Effect of cellulase and Lactobacillus casei on ensiling characteristics, chemical composition, antioxidant activity, and digestibility of mulberry leaf silage. Journal of Dairy Science, 2019, 102(11): 9919-9931. |
10 | Tian J. Study on the survival ability of lactic acid bacteria on grass surface and its effect on silage. Guangzhou: South China Agricultural University, 2018. |
田静. 乳酸菌在牧草表面的生存能力及对青贮的影响研究. 广州: 华南农业大学, 2018. | |
11 | Zhang Q. Studies on screening, mechanism of action of lactic acid bacteria for forage ensiling. Beijing: China Agricultural University, 2016. |
张庆. 饲草青贮用乳酸菌的筛选及作用机理. 北京: 中国农业大学, 2016. | |
12 | Li D D. Study on screening of lactic acid bacteria with antioxidant and fermentation properties from traditional yak dairy products in Tibet. Lhasa: Tibet University, 2020. |
李丹丹. 西藏传统牦牛乳制品中抗氧化乳酸菌的筛选及发酵性能研究. 拉萨: 西藏大学, 2020. | |
13 | Chen M. Screening and characterizing of lactic acid bacteria with high antioxidant activity from the Tibetan Plateau. Lanzhou: Lanzhou University, 2017. |
陈明. 青藏高原高抗氧化活性乳酸菌的筛选及其抗氧化特性研究. 兰州: 兰州大学, 2017. | |
14 | Li X L, Guan H, Yan Y H, et al. Screening and physiological-biochemical characteristics of good lactic acid bacteria from Pennisetum Rich. silage. Journal of Grassland and Forage Science, 2018(4): 27-35. |
李小铃, 关皓, 闫艳红, 等. 狼尾草属牧草青贮优良乳酸菌的筛选及生理生化特性研究. 草学, 2018(4): 27-35. | |
15 | Ling D W. Classification, identification and experimental methods of lactic acid bacteria. Beijing: China Light Industry Press, 1999. |
凌代文. 乳酸细菌分类鉴定及实验方法. 北京: 中国轻工业出版社, 1999. | |
16 | Woo P C Y, Ng K H L, Lau S K P, et al. Usefulness of the MicroSeq 500 16S ribosomal DNA-based bacterial identification system for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. Journal of Clinical Microbiology, 2003, 41(5): 1996-2001. |
17 | Zhang H M, Duan Z, Li X, et al. Actual research and application of the silage lactic acid bacteria additives. Pratacultural Science, 2017, 34(12): 2575-2583. |
张红梅, 段珍, 李霞, 等. 青贮饲料乳酸菌添加剂的应用现状. 草业科学, 2017, 34(12): 2575-2583. | |
18 | Zhai H R. Study on isolation and identification of lactic acid bacteria from S. guianensis Sw. and application for silage preparation. Haikou: Hainan University, 2012. |
翟海瑞. 柱花草中乳酸菌的分离鉴定及在青贮柱花草中的应用. 海口: 海南大学, 2012. | |
19 | Feng T, Wang J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review. Gut Microbes, 2020, 12(1): 1801944. |
20 | Zou S B, Zhao M W, Ji C F, et al. Screening of high antioxidant activity lactic acid bacteria in traditional fermented Suancai of northeast China and its prebiotic studies. Journal of Food Safety and Quality, 2023, 14(1): 42-50. |
邹思博, 赵明伟, 纪超凡, 等. 自然发酵东北酸菜中抗氧化乳酸菌的筛选及其益生性研究. 食品安全质量检测学报, 2023, 14(1): 42-50. | |
21 | Shen Q, Shang N, Li P L. In vitro and in vivo antioxidant activity of Bifidobacterium animalis 01 isolated from centenarians. Current Microbiology, 2011, 62(4): 1097-1103. |
22 | Yang T S, Yang J S, Tang K, et al. Antioxidative properties analysis of gastrointestinal lactic acid bacteria in Hainan black goat and its effect on the aerobic stability of total mixed ration. Frontiers in Microbiology, 2022, 13: 974925. |
23 | Bernardes T F, Daniel J L P, Adesogan A T, et al. Silage review: Unique challenges of silages made in hot and cold regions. Journal of Dairy Science, 2018, 101(5): 4001-4019. |
24 | Xu J Y, Na B B, Liu S, et al. Excellent lactic acid bacteria for silage and their application. Biotechnology Bulletin, 2021, 37(9): 39-47. |
徐进益, 那彬彬, 刘顺, 等. 青贮饲料的优良乳酸菌及其应用. 生物技术通报, 2021, 37(9): 39-47. | |
25 | The Ministry of Agriculture of the People’s Republic of China. The catalogue of feed additives varieties (2013). Gazette of ministry of agriculture of the people’s republic of China, 2014(1): 61-63. |
中华人民共和国农业部办公厅.饲料添加剂品种目录(2013). 中华人民共和国农业部公报, 2014(1): 61-63. | |
26 | Li Y K. Screening, identification and evaluation of lactic acid bacteria for the fermentation and quality of silage in Tibet. Nanjing: Nanjing Agricultural University, 2012. |
李永凯. 西藏乳酸菌的分离筛选及对青贮饲料发酵品质的影响. 南京: 南京农业大学, 2012. | |
27 | Gao Y R, Li B L, Li D P, et al. Purification and characteristics of a novel bacteriocin produced by Enterococcus faecalis L11 isolated from Chinese traditional fermented cucumber. Biotechnology Letters, 2016, 38(5): 871-876. |
28 | Xu Y, Li Y Q, Xue M Y, et al. Effects of dietary Enterococcus faecalis YFI-G720 on the growth, immunity, serum biochemical, intestinal morphology, intestinal microbiota, and disease resistance of crucian carp (Carassius auratus). Fishes, 2022, 7(1): 18. |
29 | Liu Z Y. Isolation and identification of major cellulolytic bacteria in rumen of sheep and effects of nitrogen sources on their cellulolytic activities. Hohhot: Inner Mongolia Agricultural University, 2008. |
刘占英. 绵羊瘤胃主要纤维降解细菌的分离鉴定及不同氮源对其纤维降解能力的影响. 呼和浩特: 内蒙古农业大学, 2008. | |
30 | He Q Y, Zhao Y, Duan H L, et al. Isolation and identification of a fibrinolytic bacterium. Microbiology China, 2013, 40(8): 1375-1383. |
和七一, 赵瑛, 段海龙, 等. 一株产纤溶酶菌株的分离、鉴定及其酶活特征的初步研究. 微生物学通报, 2013, 40(8): 1375-1383. |
[1] | 姜瑛, 张辉红, 魏畅, 徐正阳, 赵颖, 刘芳, 李鸽子, 张雪海, 柳海涛. 外源褪黑素对干旱胁迫下玉米幼苗根系发育及生理生化特性的影响[J]. 草业学报, 2023, 32(9): 143-159. |
[2] | 徐蕊, 王峥, 王仪明, 苏连泰, 高鲤, 周鹏, 安渊. 紫花苜蓿对轮作水稻产量和蔗糖代谢的影响[J]. 草业学报, 2023, 32(8): 129-140. |
[3] | 苗涵, 魏莱, 杨燕萍, 车永和. 海水胁迫下冰草幼苗期耐盐性指标筛选[J]. 草业学报, 2023, 32(3): 200-211. |
[4] | 吴永杰, 丁浩, 邵涛, 赵杰, 董东, 代童童, 尹雪敬, 宗成, 李君风. 酶制剂对水稻秸秆青贮发酵品质及体外消化特性的影响[J]. 草业学报, 2022, 31(8): 167-177. |
[5] | 孙禄娟, 何建军, 汪军成, 姚立蓉, 司二静, 杨轲, 李葆春, 马小乐, 尚勋武, 孟亚雄, 王化俊. 基于全长转录组测序的盐生草SSR标记开发及其遗传多样性分析[J]. 草业学报, 2022, 31(8): 199-210. |
[6] | 李君风, 赵杰, 唐小月, 代童童, 董东, 宗成, 邵涛. 瘤胃纤维素降解菌系对灭菌水稻秸秆结构性碳水化合物降解的影响[J]. 草业学报, 2022, 31(7): 85-95. |
[7] | 周力, 王志有, 杨葆春, 侯生珍, 张峰硕, 桂林生. 饲粮中性洗涤纤维水平对黑藏羊肌纤维类型组成比例与肉质特性的影响[J]. 草业学报, 2022, 31(11): 75-85. |
[8] | 吴国芳, 于肖夏, 于卓, 杨东升, 卢倩倩. 基于BSA-SSR技术的高丹草低氢氰酸性状目的片段的筛选与鉴定[J]. 草业学报, 2021, 30(7): 82-92. |
[9] | 黄丽琴, 李松桥, 袁振中, 唐晶, 闫景彩, 唐启源. 全株水稻与平菇菌糠共发酵料对浏阳黑山羊屠宰性能、肉品质和器官指数的影响[J]. 草业学报, 2021, 30(6): 133-140. |
[10] | 张帆, 杨茜. 紫云英与双季稻秸秆协同利用影响稻田土壤钾循环与平衡[J]. 草业学报, 2021, 30(1): 72-80. |
[11] | 舒新月, 江波, 马丽, 郑爱萍. 不同侵染时间点稻粒黑粉病菌的转录组分析[J]. 草业学报, 2020, 29(9): 190-202. |
[12] | 李柯, 周庄煜, 李四菊, 姚浩铮, 周莹, 缪雨静, 唐晓清, 王康才. 荆芥的生长、渗透调节和抗氧化能力对干旱胁迫的响应[J]. 草业学报, 2020, 29(5): 150-158. |
[13] | 刘雪儿, 马金凤, 杨成德, 李统华. 青海高寒草地针茅根际土壤细菌拮抗功能评价及鉴定[J]. 草业学报, 2019, 28(8): 161-169. |
[14] | 罗颖洁, 陈桂华, 穆麟, 胡龙兴, 张志飞, 高帅, 魏仲珊. 不同稻秸添加比例对紫花苜蓿和麦麸混合青贮的影响[J]. 草业学报, 2019, 28(5): 178-184. |
[15] | 项洪涛, 齐德强, 李琬, 郑殿峰, 王月溪, 王彤彤, 王立志, 曾宪楠, 杨纯杰, 周行, 赵海东. 低温胁迫下外源ABA对开花期水稻叶鞘激素含量及抗寒生理的影响[J]. 草业学报, 2019, 28(4): 81-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||