草业学报 ›› 2024, Vol. 33 ›› Issue (3): 73-84.DOI: 10.11686/cyxb2023155
鲍根生1,2(), 李媛1,3, 冯晓云1,3, 张鹏1,3, 孟思宇1,3
收稿日期:
2023-05-09
修回日期:
2023-08-28
出版日期:
2024-03-20
发布日期:
2023-12-27
通讯作者:
鲍根生
作者简介:
鲍根生(1980-),男,青海乐都人,副研究员,博士。E-mail: E-mail: baogensheng2008@hotmail.com基金资助:
Gen-sheng BAO1,2(), Yuan LI1,3, Xiao-yun FENG1,3, Peng ZHANG1,3, Si-yu MENG1,3
Received:
2023-05-09
Revised:
2023-08-28
Online:
2024-03-20
Published:
2023-12-27
Contact:
Gen-sheng BAO
摘要:
种间根系的相互作用是禾豆间作体系系统生产力提升的关键途径,外源氮素添加也能显著改变植物根系构型。然而,有关氮添加和间作种植方式对燕麦和豌豆根系构型影响的研究鲜有报道。基于此,本研究以燕麦和豌豆为对象,比较氮添加和不同间作种植方式对燕麦和豌豆生物量、根系形态及构型的影响。结果表明:1)高氮隔行间作燕麦地上和地下生物量最高,而高氮单播豌豆生物量最高;2)高氮隔行间作燕麦除根体积和根尖数外,其他根系形态参数显著高于单播燕麦,高氮单播豌豆的根表面积、根体积和根尖数最高,而未添加氮单播豌豆的分叉数、内部和外部连接数最高;3)高氮间作燕麦拓扑指数和分形维数较高,未添加氮单播豌豆分形维数较高;4)氮添加和间作种植可增加燕麦根体积、根表面积、外部连接数和促进侧根生长,而间作种植和氮添加却降低豌豆根系连接数、根尖数、内部连接数和抑制侧根发育。由此可见,氮添加和间作种植通过增加燕麦根系与土壤接触面积强化燕麦获取土壤的能力,进而使间作燕麦生物量快速增加,这将为燕麦和豌豆间作体系中燕麦常表现出强竞争力和积累高生物量提供直接证据。
鲍根生, 李媛, 冯晓云, 张鹏, 孟思宇. 高寒区氮添加和间作种植互作对燕麦和豌豆根系构型影响的研究[J]. 草业学报, 2024, 33(3): 73-84.
Gen-sheng BAO, Yuan LI, Xiao-yun FENG, Peng ZHANG, Si-yu MENG. Interactive effects of intercropping patterns and nitrogen addition on root architectural characteristics of oat and pea in an alpine region[J]. Acta Prataculturae Sinica, 2024, 33(3): 73-84.
物种 Species | 测试指标 Measurements | 主区效应Main block effects (M) | 裂区效应Split block effects (S) | 交互效应 M×S | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
燕麦 Oat | 地上生物量 AB | 17.46 | 0.01 | 7.84 | <0.01 | 3.63 | <0.01 |
地下生物量 BB | 106.94 | <0.01 | 8.40 | <0.01 | 26.32 | <0.01 | |
根表面积RSA | 116.63 | <0.01 | 15.99 | <0.01 | 11.39 | <0.01 | |
根体积RV | 287.58 | <0.01 | 4.76 | 0.02 | 7.59 | <0.01 | |
根系平均直径RAD | 53.13 | <0.01 | 3.71 | 0.05 | 13.78 | <0.01 | |
连接数 Co | 79.98 | <0.01 | 40.69 | <0.01 | 11.02 | <0.01 | |
根尖数RT | 15.19 | <0.01 | 6.39 | <0.01 | 0.87 | 0.50 | |
分叉数 F | 148.56 | <0.01 | 176.19 | <0.01 | 21.50 | <0.01 | |
内部连接 Ic | 148.31 | <0.01 | 16.45 | <0.01 | 8.96 | <0.01 | |
外部连接 Ec | 402.64 | <0.01 | 193.66 | <0.01 | 45.83 | <0.01 | |
分形维数 FD | 11.86 | <0.01 | 4.61 | 0.02 | 1.00 | 0.43 | |
拓扑指数 TI | 88.36 | <0.01 | 124.32 | <0.01 | 58.55 | <0.01 | |
豌豆 Pea | 地上生物量 AB | 21.21 | 0.01 | 23.26 | <0.01 | 8.43 | <0.01 |
地下生物量 BB | 1.89 | 0.17 | 17.82 | <0.01 | 1.23 | 0.32 | |
根表面积RSA | 5.98 | 0.01 | 90.73 | <0.01 | 47.08 | <0.01 | |
根体积RV | 28.67 | <0.01 | 52.26 | <0.01 | 38.84 | <0.01 | |
根系平均直径RAD | 2.19 | 0.14 | 4.78 | 0.02 | 11.78 | <0.01 | |
连接数 Co | 25.37 | <0.01 | 171.74 | <0.01 | 49.22 | <0.01 | |
根尖数RT | 3.32 | 0.06 | 86.61 | <0.01 | 17.54 | <0.01 | |
分叉数 F | 6.81 | <0.01 | 107.12 | <0.01 | 40.50 | <0.01 | |
内部连接 Ic | 34.34 | <0.01 | 302.06 | <0.01 | 82.50 | <0.01 | |
外部连接 Ec | 39.60 | <0.01 | 419.59 | <0.01 | 97.37 | <0.01 | |
分形维数 FD | 0.18 | 0.84 | 4.89 | 0.02 | 2.10 | 0.12 | |
拓扑指数 TI | 190.28 | <0.01 | 0.21 | 0.82 | 19.31 | <0.01 |
表1 主区(氮添加)和裂区(间作种植方式)对燕麦和豌豆生物量及根系形态影响的方差分析
Table 1 ANOVA of above- and belowground biomass and root morphological parameters in monocropped, mixed and alternate-row intercropped planting patterns for oat and pea under different nitrogen levels
物种 Species | 测试指标 Measurements | 主区效应Main block effects (M) | 裂区效应Split block effects (S) | 交互效应 M×S | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
燕麦 Oat | 地上生物量 AB | 17.46 | 0.01 | 7.84 | <0.01 | 3.63 | <0.01 |
地下生物量 BB | 106.94 | <0.01 | 8.40 | <0.01 | 26.32 | <0.01 | |
根表面积RSA | 116.63 | <0.01 | 15.99 | <0.01 | 11.39 | <0.01 | |
根体积RV | 287.58 | <0.01 | 4.76 | 0.02 | 7.59 | <0.01 | |
根系平均直径RAD | 53.13 | <0.01 | 3.71 | 0.05 | 13.78 | <0.01 | |
连接数 Co | 79.98 | <0.01 | 40.69 | <0.01 | 11.02 | <0.01 | |
根尖数RT | 15.19 | <0.01 | 6.39 | <0.01 | 0.87 | 0.50 | |
分叉数 F | 148.56 | <0.01 | 176.19 | <0.01 | 21.50 | <0.01 | |
内部连接 Ic | 148.31 | <0.01 | 16.45 | <0.01 | 8.96 | <0.01 | |
外部连接 Ec | 402.64 | <0.01 | 193.66 | <0.01 | 45.83 | <0.01 | |
分形维数 FD | 11.86 | <0.01 | 4.61 | 0.02 | 1.00 | 0.43 | |
拓扑指数 TI | 88.36 | <0.01 | 124.32 | <0.01 | 58.55 | <0.01 | |
豌豆 Pea | 地上生物量 AB | 21.21 | 0.01 | 23.26 | <0.01 | 8.43 | <0.01 |
地下生物量 BB | 1.89 | 0.17 | 17.82 | <0.01 | 1.23 | 0.32 | |
根表面积RSA | 5.98 | 0.01 | 90.73 | <0.01 | 47.08 | <0.01 | |
根体积RV | 28.67 | <0.01 | 52.26 | <0.01 | 38.84 | <0.01 | |
根系平均直径RAD | 2.19 | 0.14 | 4.78 | 0.02 | 11.78 | <0.01 | |
连接数 Co | 25.37 | <0.01 | 171.74 | <0.01 | 49.22 | <0.01 | |
根尖数RT | 3.32 | 0.06 | 86.61 | <0.01 | 17.54 | <0.01 | |
分叉数 F | 6.81 | <0.01 | 107.12 | <0.01 | 40.50 | <0.01 | |
内部连接 Ic | 34.34 | <0.01 | 302.06 | <0.01 | 82.50 | <0.01 | |
外部连接 Ec | 39.60 | <0.01 | 419.59 | <0.01 | 97.37 | <0.01 | |
分形维数 FD | 0.18 | 0.84 | 4.89 | 0.02 | 2.10 | 0.12 | |
拓扑指数 TI | 190.28 | <0.01 | 0.21 | 0.82 | 19.31 | <0.01 |
图 1 氮添加对单播、同行混合和隔行间作种植燕麦和豌豆生物量的影响大写字母表示不同氮添加水平下,单播、同行混合或隔行间作种植燕麦、豌豆在0.05水平上差异显著(P<0.05);小写字母表示相同氮添加水平下,单播、同行混合和隔行间作种植燕麦、豌豆在0.05水平上差异显著(P<0.05),下同。The capital letters indicated difference of oat and pea in the same monocropped, mixed and alternate-row intercropped planting patterns among different nitrogen addition was significant at 0.05 level; The lowercase letters indicated difference of oat and pea in monocropped, mixed and alternate-row intercropped planting patterns within the identical nitrogen level was significant at 0.05 level. The same below.
Fig.1 Effect of nitrogen addition on above- and belowground biomass of monocropped, mixed and alternate-row intercropped planting patterns for oat and pea
图2 氮添加对单播、同行混合和隔行间作种植燕麦和豌豆根系形态的影响
Fig.2 Effect of nitrogen addition on root morphology in monocropped, mixed and alternate-row intercropped planting patterns for oat and pea
图 3 氮添加对单播、同行混合和隔行间作种植燕麦和豌豆根系拓扑指数和分形维数的影响
Fig.3 Effect of nitrogen addition on root morphology in root topological index and fractal dimension in monocropped, mixed and alternate-row intercropped planting patterns for oat and pea
图 4 氮添加和不同间作种植方式对燕麦、豌豆根系构型和地下生物量影响的结构方程模型a和b分别表示氮添加和不同间作种植方式对燕麦、豌豆根系构型和地下生物量影响的结构方程模型。使用R语言偏最小二乘结构方程(PLS-PM)包进行模型分析与构建,实线箭头和虚线箭头分别代表正、负相关性。箭头上的数字为标准化路径系数(standardized path coefficients, SPC),星号表示关系的强度(*P<0.05, **P<0.01, ***P<0.001)。箭头的宽度与值的大小成正比。响应变量上方的数字(R2)表示解释方差的比例。Figure a and b illustrated SEM based on effects of nitrogen addition and intercropped planting patterns on root architecture and root biomass for oat or pea, respectively. A partial least squares path modeling (PLS-EM) module in the R Programming Language was selected to construct piecewise structural equations. Black dotted line demonstrated the negative correlation between variables, while the black solid line demonstrated a positive correlation between variables. The value above the lines demonstrated the normalized path coefficients of variables, which indicated the strength of the correlation (*P<0.05, **P<0.01, ***P<0.001). The width of line and the value above the line is identical to the strength of correlation. R2 indicated the proportion of the interpreted variance. Planting pattern: 播种方式; Nitrogen level: 氮肥水平; Area: 根表面积; Volume: 根体积; AD: 根系平均直径Average diameter; CN: 连接数Connections number; NN: 节点数Node number; Tips: 根尖数; Forks: 分叉数; Ic: 内部连接Internal connections; Ec: 外部连接External connections; FD: 分形维数Fractal dimension; TI: 拓扑指数Topological index; Root biomass: 根系生物量。
Fig.4 Structural equation model (SEM) based on effects of nitrogen addition and intercropped planting patterns on root architecture and root biomass for oat and pea
1 | Wang Y F, Lyu W W, Xue K, et al. Grassland changes and adaptive management on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, 2022, 3: 668-683. |
2 | Shen M G, Wang S P, Jiang N, et al. Plant phenology changes and drivers on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, 2022, 3(10): 633-651. |
3 | Liu X, Ma Z W, Huang X T, et al. How does grazing exclusion influence plant productivity and community structure in alpine grasslands of the Qinghai-Tibetan Plateau? Global Ecology and Conservation, 2020, 23: e01066. |
4 | Wang Y X, Sun Y, Wang Z F, et al. Grazing management options for restoration of alpine grasslands on the Qinghai-Tibet Plateau. Ecosphere, 2018, 9(11): e02515. |
5 | Shen H H, Zhu Y K, Zhao X, et al. Analysis of current grassland resources in China. Chinese Science Bulletin, 2016, 61(2): 139-154. |
沈海花, 朱言坤, 赵霞, 等. 中国草地资源的现状分析. 科学通报, 2016, 61(2): 139-154. | |
6 | Schaub S, Finger R, Leiber F, et al. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nature Communications, 2020, 11(1): 768. |
7 | Bai Y F, Yu Z, Yang Q C, et al. Mechanisms regulating the productivity and stability of artificial grasslands in China: Issues, progress, and prospects. Chinese Science Bulletin, 2018, 63(5/6): 511-520. |
白永飞, 玉柱, 杨青川, 等. 人工草地生产力和稳定性的调控机理研究: 问题、进展与展望. 科学通报, 2018, 63(5/6): 511-520. | |
8 | Panchal P, Preece C, Peñuelas J, et al. Soil carbon sequestration by root exudates. Trends in Plant Science, 2022, 27(8): 749-757. |
9 | Yan H L, Gu S S, Li S Z, et al. Grass-legume mixtures enhance forage production via the bacterial community. Agriculture, Ecosystems & Environment, 2022, 338: 108087. |
10 | Wang X Y, Gao Y Z. Advances in the mechanism of cereal/legume intercropping promotion of symbiotic nitrogen fixation. Chinese Science Bulletin, 2020, 65(2/3): 142-149. |
王新宇, 高英志. 禾本科/豆科间作促进豆科共生固氮机理研究进展. 科学通报, 2020, 65(2/3): 142-149. | |
11 | Li C J, Hoffland E, Kuyper T W, et al. Syndromes of production in intercropping impact yield gains. Nature Plants, 2020, 6(6): 653-660. |
12 | Li X F, Wang Z G, Bao X G, et al. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability, 2021, 4(11): 943-950. |
13 | Yu Y, Stomph T J, Makowski D, et al. A meta-analysis of relative crop yields in cereal/legume mixtures suggests options for management. Field Crops Research, 2016, 198: 269-279. |
14 | Yu Y, Stomph T J, Makowski D, et al. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Research, 2015, 184: 133-144. |
15 | Brooker R W, Bennett A E, Cong W F, et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206(1): 107-117. |
16 | Li R, Zhang Z X, Tang W, et al. Common vetch cultivars improve yield of oat row intercropping on the Qinghai-Tibetan plateau by optimizing photosynthetic performance. European Journal of Agronomy, 2020, 117: 126088. |
17 | Zhu Y Q, Zheng W, Wang X, et al. Effects plant spacing pattern on root morphological and architectural characteristics of legume-grass mixtures. Acta Prataculturae Sinica, 2018, 27(1): 73-85. |
朱亚琼, 郑伟, 王祥,等. 混播方式对豆禾混播草地植物根系构型特征的影响. 草业学报, 2018, 27(1): 73-85. | |
18 | Wang Z K, Zhang X M, Ma Q H, et al. Seed mixture of oats and common vetch on fertilizer and water-use reduction in a semi-arid alpine region. Soil and Tillage Research, 2022, 219: 105329. |
19 | Kong X P, Zhang M L, De Smet I, et al. Designer crops: optimal root system architecture for nutrient acquisition. Trends in Biotechnology, 2014, 32(12): 597-598. |
20 | Ehrmann J, Ritz K. Plant: Soil interactions in temperate multi-cropping production systems. Plant and Soil, 2014, 376(1/2): 1-29. |
21 | Homulle Z, George T S, Karley A J. Root traits with team benefits: Understanding belowground interactions in intercropping systems. Plant and Soil, 2021(1/2), 471: 1-26. |
22 | Hassan A, Dresbøll D B, Rasmussen C R, et al. Root distribution in intercropping systems-a comparison of DNA based methods and visual distinction of roots. Archives of Agronomy and Soil Science, 2021, 67(1): 15-28. |
23 | Zhang D S, Lyu Y, Li H B, et al. Neighbouring plants modify maize root foraging for phosphorus: coupling nutrients and neighbours for improved nutrient-use efficiency. New Phytologist, 2020, 226(1): 244-253. |
24 | Bouma T, Nielsen K, Van Hal J, et al. Root system topology and diameter distribution of species from habitats differing in inundation frequency. Functional Ecology, 2001, 15(3): 360-369. |
25 | Fitter A. An architectural approach to the comparative ecology of plant root systems. New Phytologist, 1987, 106: 61-77. |
26 | Zhu Y Q, Li S S, Wang N X, et al. Effects of rhizobium-root system-arbuscular mycorrhizal fungi features on nitrogen fixation and transfer efficiency of mixed sowing meadow. Chinese Journal of Grassland, 2022, 44(11): 18-31. |
朱亚琼, 黎松松, 王宁欣, 等. 根瘤菌-根系构型-丛枝菌根真菌对混播草地氮素固定与转移效率的影响. 中国草地学报, 2022, 44(11): 18-31. | |
27 | Taylor B N, Menge D N L. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nature Plants, 2018, 4(9): 655-661. |
28 | Ramirez-Garcia J, Martens H J, Quemada M, et al. Intercropping effect on root growth and nitrogen uptake at different nitrogen levels. Journal of Plant Ecology, 2015, 8(4): 380-389. |
29 | Corre-Hellou G, Brisson N, Launay M, et al. Effect of root depth penetration on soil nitrogen competitive interactions and dry matter production in pea-barley intercrops given different soil nitrogen supplies. Field Crops Research, 2007, 103(1): 76-85. |
30 | Zhang H M, Jennings A, Barlow P W, et al. Dual pathways for regulation of root branching by nitrate. Proceedings of the National Academy of Sciences, 1999, 96(11): 6529-6534. |
31 | He J T, Ma X, Ju Z L, et al. Effects of intercropping between oat and broad bean on crop growth and yield in alpine region. Acta Agrestia Sinica, 2022, 30(9): 2514-2521. |
何纪桐, 马祥, 琚泽亮, 等. 高寒地区燕麦与蚕豆间作对作物生长发育及产量的影响. 草地学报, 2022, 30(9): 2514-2521. | |
32 | Gang Y H, Zhang H B, Chen Y L, et al. Mixture combination and mixed ratio of triticale and legumes in the eastern agricultural region of Qinghai. Pratacultural Science, 2021, 38(11): 2274-2285. |
刚永和, 张海博, 陈永珑, 等. 青海东部农区小黑麦与豆科牧草的混播组合与混播比例. 草业科学, 2021, 38(11): 2274-2285. | |
33 | Khan T, Nadeem F, Gao Y, et al. A larger root system in oat (Avena nuda L.) is coupled with enhanced biomass accumulation and hormonal alterations under low nitrogen. Applied Ecology and Environmental Research, 2019, 17(2): 4631-4653. |
34 | Lynch J P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytologist, 2019, 223(2): 548-564. |
35 | Hodge A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytologist, 2004, 162(1): 9-24. |
36 | Zheng C C, Bochmann H, Liu Z G, et al. Plant root plasticity during drought and recovery: What do we know and where to go? Frontiers in Plant Science, 2023, 14: 1084355. |
37 | Wang J Y, Wang H Q, Liang X D, et al. Response of root morphology and N absorption to nitrate nitrogen supply in hydroponic oats. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 1049-1055. |
王俊英, 王华青, 梁晓东, 等. 水培燕麦根系形态和氮吸收流量对硝态氮供应浓度的响应. 植物营养与肥料学报, 2016, 22(4): 1049-1055. | |
38 | Li L, Sun J, Zhang F, et al. Root distribution and interactions between intercropped species. Oecologia, 2006, 147: 280-290. |
39 | Li Y Y, Hu H S, Cheng X, et al. Effects of interspecific interactions and nitrogen fertilization rates on above- and below-growth in faba bean/maize intercropping system. Acta Ecologica Sinica, 2011, 31(6): 1617-1630. |
李玉英, 胡汉升, 程序, 等. 种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响. 生态学报, 2011, 31(6): 1617-1630. | |
40 | Wu X J, Yang M, Lu Y X, et al. Effects of mixing ratio and nitrogen fertilization on root characteristics in the common vetch/oat mixture. Acta Prataculturae Sinica, 2020, 29(9): 106-116. |
吴晓娟, 杨梅, 芦奕晓, 等. 混播比例和施氮肥对箭筈豌豆/燕麦草地根系特性的影响. 草业学报, 2020, 29(9): 106-116. |
[1] | 冯琴, 何小莉, 王斌, 王腾飞, 倪旺, 马霞, 明雪花, 邓建强, 兰剑. 宁夏引黄灌区燕麦与箭筈豌豆的混播效果研究[J]. 草业学报, 2024, 33(3): 107-119. |
[2] | 罗颖, 李聪, 王沛, 田莉华, 汪辉, 周青平, 雷映霞. 低氮胁迫下不同皮燕麦品种早期的响应研究及耐低氮性综合评价[J]. 草业学报, 2024, 33(2): 164-184. |
[3] | 李文龙, 李峰, 张仲鹃, 王殿清, 王欢, 靳慧卿, 特木热, 胡志玲, 陶雅. 鄂尔多斯高原北部一年两季燕麦种植模式生产性能评价[J]. 草业学报, 2024, 33(1): 159-168. |
[4] | 张珈敏, 关皓, 李海萍, 贾志锋, 马祥, 刘文辉, 陈有军, 陈仕勇, 蒋永梅, 甘丽, 周青平, 杨丽雪. 混播比例及乳酸菌剂对燕麦-饲用豌豆发酵TMR品质及瘤胃降解特性的影响[J]. 草业学报, 2024, 33(1): 169-181. |
[5] | 任春燕, 梁国玲, 刘文辉, 刘凯强, 段嘉蕾. 青藏高原高寒地区早熟燕麦资源筛选和适应性评价[J]. 草业学报, 2023, 32(9): 116-129. |
[6] | 石永红, 高鹏, 方志红, 赵祥, 韩伟, 魏江铭, 刘琳, 李锦臻. 15个进口饲用燕麦品种炭疽病的抗病性评价及损失分析[J]. 草业学报, 2023, 32(9): 130-142. |
[7] | 张振粉, 黄荣, 李向阳, 姚博, 赵桂琴. 基于Illumina MiSeq高通量测序的燕麦种带细菌多样性及功能分析[J]. 草业学报, 2023, 32(7): 96-108. |
[8] | 陈晓明, 韩东英, 宋桂龙. 砷(As)胁迫对海滨雀稗As吸收特征及根系形态影响[J]. 草业学报, 2023, 32(6): 112-119. |
[9] | 马绍英, 陈桂平, 王娜, 马蕾, 连荣芳, 李胜, 张绪成. 豌豆土壤中潜在自毒物质的鉴定及自毒效应研究[J]. 草业学报, 2023, 32(6): 134-145. |
[10] | 王梓凡, 张晓庆, 钟志明, 权欣. 燕麦草捆和草块对彭波半细毛羊采食行为及生产性能的影响[J]. 草业学报, 2023, 32(5): 171-179. |
[11] | 严翊丹, 聂莹莹, 徐丽君, 高兴发, 饶彦章, 饶雄, 张洪志, 赵查书, 竺艳萍, 朱玉波. 西南山区冬闲田功能型燕麦品种潜力挖掘评价[J]. 草业学报, 2023, 32(4): 42-53. |
[12] | 王茂鉴, 石薇, 常生华, 张程, 贾倩民, 侯扶江. 灌溉模式对河西灌区禾-豆间作系统饲草产量、品质和水分利用的影响[J]. 草业学报, 2023, 32(3): 13-29. |
[13] | 魏露萍, 周青平, 刘芳, 林积圳, 詹圆, 汪辉. 遮穗和去颖下燕麦穗部特征变化和穗部光合贡献率估算[J]. 草业学报, 2023, 32(2): 110-118. |
[14] | 刘建新, 刘瑞瑞, 刘秀丽, 欧晓彬, 贾海燕, 卜婷, 李娜. 盐碱胁迫下外源硫化氢对裸燕麦叶片氨基酸代谢过程的影响[J]. 草业学报, 2023, 32(2): 119-130. |
[15] | 叶雪玲, 甘圳, 万燕, 向达兵, 邬晓勇, 吴琪, 刘长英, 范昱, 邹亮. 饲用燕麦育种研究进展与展望[J]. 草业学报, 2023, 32(2): 160-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||