草业学报 ›› 2025, Vol. 34 ›› Issue (9): 87-96.DOI: 10.11686/cyxb2024393
收稿日期:2024-10-12
修回日期:2024-12-25
出版日期:2025-09-20
发布日期:2025-07-02
通讯作者:
单立山
作者简介:E-mail: shanls@gsau.edu.cn基金资助:
Xing-long ZHANG(
), Li-shan SHAN(
), Hong-yong WANG, Ting-ting XIE, Jing MA
Received:2024-10-12
Revised:2024-12-25
Online:2025-09-20
Published:2025-07-02
Contact:
Li-shan SHAN
摘要:
水分是干旱区植物生存和生长的主要限制因子,可利用土壤水分的降低直接影响植物的水分运输能力和栓塞抗性。但是在干旱胁迫下荒漠植物水力性状动态变化特征的相关研究仍不清晰。因此,本研究以干旱、半干旱地区优势种和建群种珍珠猪毛菜为研究对象,设置对照组(充分供水)和干旱处理(不浇水),测定干旱胁迫至不同时间珍珠猪毛菜的水力参数。结果表明:1)随干旱胁迫时间增加,珍珠猪毛菜的叶比导率显著降低,栓塞抗性显著增加,水力安全边界显著降低,边材比导率无显著差异;2)与对照相比,干旱处理的珍珠猪毛菜水分调节对策更趋向于变水行为;3)干旱处理的珍珠猪毛菜栓塞抗性和水分运输效率之间解耦;4)水力安全边界和边材比导率是珍珠猪毛菜响应干旱胁迫的主要性状,可通过调控以上指标来适应土壤水分变化。总之,珍珠猪毛菜的水力性状受干旱胁迫影响显著,干旱胁迫下以栓塞抗性为代价维持较高的水分运输效率,但存在较高的水力风险。
张兴隆, 单立山, 王红永, 解婷婷, 马静. 干旱胁迫对珍珠猪毛菜水力特征的影响[J]. 草业学报, 2025, 34(9): 87-96.
Xing-long ZHANG, Li-shan SHAN, Hong-yong WANG, Ting-ting XIE, Jing MA. Effect of drought stress on the hydraulic traits of Salsola passerina[J]. Acta Prataculturae Sinica, 2025, 34(9): 87-96.
性状 Traits | 水分 Water | 处理时间 Treatment time | 交互作用 Interaction |
|---|---|---|---|
| 清晨叶水势Predawn leaf water potential | 106.72** | 17.50** | 30.97** |
| 正午叶水势Midday leaf water potential | 361.94** | 34.84** | 165.05** |
| 叶比导率Leaf specific hydraulic conductivity | 25.88** | 6.03* | 5.33** |
| 边材比导率Sapwood-specific hydraulic conductivity | 6.68* | 0.06 | 2.02 |
| 栓塞抗性Embolism vulnerability | 47.39** | 14.47** | 4.16* |
| 水力安全阈值Hydraulic safety margin | 600.11** | 73.90** | 200.19** |
表1 水分和处理时间对水力性状的双因素方差分析
Table 1 Two-way ANOVA of water content and treatment time on hydraulic traits
性状 Traits | 水分 Water | 处理时间 Treatment time | 交互作用 Interaction |
|---|---|---|---|
| 清晨叶水势Predawn leaf water potential | 106.72** | 17.50** | 30.97** |
| 正午叶水势Midday leaf water potential | 361.94** | 34.84** | 165.05** |
| 叶比导率Leaf specific hydraulic conductivity | 25.88** | 6.03* | 5.33** |
| 边材比导率Sapwood-specific hydraulic conductivity | 6.68* | 0.06 | 2.02 |
| 栓塞抗性Embolism vulnerability | 47.39** | 14.47** | 4.16* |
| 水力安全阈值Hydraulic safety margin | 600.11** | 73.90** | 200.19** |
图1 叶水势的变化不同大写字母表示同一时间对照组和干旱组间差异显著(P<0.05);不同小写字母表示同一处理组不同时间差异显著(P<0.05)。下同。Different uppercase letters indicate significant difference between the control and drought group at the same time (P<0.05); different lowercase letters indicate significant difference among different time at the same treatment group (P<0.05). The same below.
Fig.1 Variation of leaf water potential
图2 对照组和干旱处理珍珠猪毛菜幼苗的水力面积灰色区域表示水力面积。The gray area represents the hydraulic area.
Fig.2 Hydraulic area of S. passerina seedlings under adequate water supply and drought treatment
图5 水力性状间的相关关系*表示相关性显著(P<0.05);**表示相关性极显著(P<0.01);红色代表正相关;蓝色代表负相关。* indicates significant correlation (P<0.05), ** indicates extremely significant correlation (P<0.01), red represents positive correlation, blue represents negative correlation. ψPD: 清晨叶水势Predawn leaf water potential; ψMD: 正午叶水势Midday leaf water potential; KL: 叶比导率Leaf specific hydraulic conductivity; KS: 边材比导率Sapwood-specific hydraulic conductivity; P50: 最大导水度损失50%时的木质部水势Xylem tension causing 50% loss of maximum hydraulic conductivity; HSM: 水力安全阈值Hydraulic safety margin. 下同The same below.
Fig.5 The correlation between hydraulic traits
图6 不同水分处理下珍珠猪毛菜边材比导率与栓塞抗性的关系
Fig.6 Correlation between the sapwood-specific hydraulic conductivity (KS) and embolism vulnerability (P50) of S. passerina seedlings under different treatments
| 主成分 Principal component | ψPD | ψMD | KL | KS | P50 | HSM |
|---|---|---|---|---|---|---|
| PC1 | 0.44 | 0.43 | 0.40 | 0.31 | -0.41 | 0.45 |
| PC2 | -0.08 | 0.02 | -0.36 | 0.90 | 0.22 | -0.04 |
表2 主成分分析变量因子载荷值
Table 2 Principal component analysis variable factor loading values
| 主成分 Principal component | ψPD | ψMD | KL | KS | P50 | HSM |
|---|---|---|---|---|---|---|
| PC1 | 0.44 | 0.43 | 0.40 | 0.31 | -0.41 | 0.45 |
| PC2 | -0.08 | 0.02 | -0.36 | 0.90 | 0.22 | -0.04 |
| [1] | Li R, Jiang Z M, Zhang S X, et al. A review of new research progress on the vulnerability of xylem embolism of woody plants. Chinese Journal of Plant Ecology, 2015, 39(8): 838-848. |
| 李荣, 姜在民, 张硕新, 等. 木本植物木质部栓塞脆弱性研究新进展. 植物生态学报, 2015, 39(8): 838-848. | |
| [2] | Tyree M T, Zimmermann M H. Xylem structure and the ascent of sap. Berlin, Germany: Springer Science & Business Media, 2013. |
| [3] | Choat B, Jansen S, Brodribb T J, et al. Global convergence in the vulnerability of forests to drought. Nature, 2012, 491(7426): 752-755. |
| [4] | Awad H, Barigah T, Badel E, et al. Poplar vulnerability to xylem cavitation acclimates to drier soil conditions. Physiologia Plantarum, 2010, 139(3): 280-288. |
| [5] | Dai A. Increasing drought under global warming in observations and models. Nature Climate Change, 2013, 3(1): 52-58. |
| [6] | Giorgi F, Coppola E, Raffaele F. A consistent picture of the hydroclimatic response to global warming from multiple indices: Models and observations. Journal of Geophysical Research: Atmospheres, 2014, 119(20): 11695-11708. |
| [7] | Kavanagh K L, Bond B J, Aitken S N, et al. Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings. Tree Physiology, 1999, 19(1): 31-37. |
| [8] | Smith‐Martin C M, Muscarella R, Hammond W M, et al. Hydraulic variability of tropical forests is largely independent of water availability. Ecology Letters, 2023, 26(11): 1829-1839. |
| [9] | Cochard H, Barigah S T, Kleinhentz M, et al. Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species? Journal of Plant Physiology, 2008, 165(9): 976-982. |
| [10] | Zhai H B, Li J Y, Jiang J P. Effect of drought stress on hydraulic architecture characteristics of Pinus tabulaeformis and Platycladus orientalis seedlings. Journal of Beijing Forestry University, 2002, 24(5): 45-49. |
| 翟洪波, 李吉跃, 姜金璞. 干旱胁迫对油松侧柏苗木水力结构特征的影响. 北京林业大学学报, 2002, 24(5): 45-49. | |
| [11] | Wang Y, Wang H, Xie T, et al. Response of hydraulic and photosynthetic characteristics of Caroxylon passerinum (Bunge) Akhani and Roalson to prolonged drought and short-term rehydration. Forests, 2023, 14(10): 1961. |
| [12] | Jin Y, Wang C, Zhou Z, et al. Co-ordinated performance of leaf hydraulics and economics in 10 Chinese temperate tree species. Functional Plant Biology, 2016, 43(11): 1082-1090. |
| [13] | Nardini A, Pedà G, La Rocca N. Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences. New Phytologist, 2012, 196(3): 788-798. |
| [14] | Bucci S J, Scholz F G, Goldstein G, et al. Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. Plant, Cell & Environment, 2006, 29(12): 2153-2167. |
| [15] | Hacke U G, Sperry J S, Wheeler J K, et al. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 2006, 26(6): 689-701. |
| [16] | Tan F S, Li Q H. Anatomical structure and functional trade-offs of the xylem in desert shrubs in China: a case study with 18 shrubs in Western Inner Mongolia. Scientia Silvae Sinicae, 2025, 61(1): 81-94. |
| 谭凤森, 李清河. 荒漠灌木的木质部解剖结构与功能权衡——以内蒙西部18种灌木为例. 林业科学, 2025, 61(1): 81-94. | |
| [17] | Yan Q F, Shan L S, Xie T T, et al. Morphological characteristics of the leaves and roots of Caroxylon passerinum seedlings in response to drought-induced stress. Arid Zone Research, 2024, 41(1): 92-103. |
| 颜巧芳, 单立山, 解婷婷, 等. 珍珠柴幼苗叶片和根系形态特征对干旱胁迫的响应. 干旱区研究, 2024, 41(1): 92-103. | |
| [18] | Wang H, Ma J, Xie T, et al. Hydraulic traits and non-structural carbon responses to drought stress in Reaumuria soongorica (Pall.) Maxim. and Salsola passerina Bunge. Forests, 2024, 15(2): 287. |
| [19] | Brodribb T J, Feild T S. Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant, Cell & Environment, 2000, 23(12): 1381-1388. |
| [20] | Sperry J S, Donnelly J R, Tyree M T. A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell & Environment, 1988, 11(1): 35-40. |
| [21] | Pammenter N W, Van der Willigen C. A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiology, 1998, 18(8/9): 589-593. |
| [22] | Wu M, Tian Y, Fan D Y, et al. Hydraulic regulation of Populus tomentosa and Acer truncatum under drought stress. Chinese Journal of Plant Ecology, 2022, 46(9): 1086-1097. |
| 伍敏, 田雨, 樊大勇, 等. 干旱胁迫下毛白杨和元宝槭的水力学调控. 植物生态学报, 2022, 46(9): 1086-1097. | |
| [23] | Sun Q X, Yang X D, Li B R, et al. Effects of hydraulic traits on the species abundance distribution pattern of desert plant communities. Arid Zone Research, 2023, 40(3): 412-424. |
| 孙启兴, 杨晓东, 李浡睿, 等. 水力性状对荒漠植物群落物种多度分布格局的影响. 干旱区研究, 2023, 40(3): 412-424. | |
| [24] | Liu S S, Xu G Q, Mi X J, et al. Effects of groundwater depth and seasonal drought on the physiology and growth of Haloxylon ammodendron at the southern edge of Gurbantonggut desert. Acta Ecologica Sinica, 2022, 42(21): 8881-8891. |
| 刘深思, 徐贵青, 米晓军, 等. 地下水埋深和季节性干旱对古尔班通古特沙漠南缘梭梭生理和生长的影响. 生态学报, 2022, 42(21): 8881-8891. | |
| [25] | Feng S L, Zhou T, Wang J L, et al. Response characteristics of leaf water potential in different growth stages of Lespedeza bicolor seedlings to drought stress and rewatering. Acta Agrestia Sinica, 2023, 31(7): 2077-2085. |
| 冯树林, 周婷, 王军利. 胡枝子幼苗不同生长阶段叶水势对干旱-复水的响应特征. 草地学报, 2023, 31(7): 2077-2085. | |
| [26] | Wang J Y, Wang X P, Xu C Y, et al. Response of hydraulic architecture in Fraxinus velutina street trees to the percentage of impervious pavement in Beijing. Chinese Journal of Plant Ecology, 2023, 47(7): 998-1009. |
| 王嘉仪, 王襄平, 徐程扬, 等. 北京市行道树绒毛梣的水力结构对城市不透水表面比例的响应. 植物生态学报, 2023, 47(7): 998-1009. | |
| [27] | Liu L M, Qi H, Luo X L, et al. Coordination effect between vapor water loss through plant stomata and liquid water supply in soil-plant-atmosphere continuum (SPAC). Chinese Journal of Applied Ecology, 2008, 19(9): 2067-2073. |
| 刘利民, 齐华, 罗新兰, 等. 植物气孔气态失水与SPAC系统液态供水的相互调节作用研究进展. 应用生态学报, 2008, 19(9): 2067-2073. | |
| [28] | Yang Q L, Zhang F C, Liu X G, et al. Research progress in plant hydraulic conductance under different environmental factors. Chinese Journal of Eco-Agriculture, 2011, 19(2): 456-461. |
| 杨启良, 张富仓, 刘小刚, 等. 环境因素对植物导水率影响的研究综述. 中国生态农业学报, 2011, 19(2): 456-461. | |
| [29] | Li J P, Li H B, Wang L. Response of root tip function characteristics of Hippophae rhamnoides subsp. sinensis Rousi to slope position and herbivores grazing on branches and leaves. Acta Ecologica Sinica, 2023, 43(17): 7118-7127. |
| 李俊鹏, 李海波, 王林. 中国沙棘根尖功能特征对坡位和动物啃食枝叶的响应. 生态学报, 2023, 43(17): 7118-7127. | |
| [30] | Xu S R, Zhang E H, Ma R L, et al. Hydraulic characteristics of Lycium barbarum L. seedlings under drought stress and re-watering conditions. Chinese Journal of Eco-Agriculture, 2017, 25(8): 1190-1197. |
| 胥生荣, 张恩和, 马瑞丽, 等. 干旱胁迫及复水对耐旱枸杞水力学特性的影响. 中国生态农业学报, 2017, 25(8): 1190-1197. | |
| [31] | Choat B, Brodribb T J, Brodersen C R, et al. Triggers of tree mortality under drought. Nature, 2018, 558(7711): 531-539. |
| [32] | Peng L, Zhou X B, Tao Y, et al. Effects of drought on hydraulic traits and physio-biochemical characteristics of Haloxylon ammodendron. Chinese Journal of Ecology, 2023, 42(2): 257-265. |
| 彭兰, 周晓兵, 陶冶, 等. 干旱对梭梭水力性状及生理生化特性的影响. 生态学杂志, 2023, 42(2): 257-265. | |
| [33] | Li X, Ma Y Q, Song Y X, et al. Effects of Cistanche deserticola parasitization on Haloxylon ammodendron seedlings’ protective enzyme activities and osmotic adjustment substance contents. Chinese Journal of Ecology, 2009, 28(8): 1531-1536. |
| 李霞, 马永清, 宋玉霞, 等. 肉苁蓉寄生对梭梭幼苗保护酶活性及渗透调节物质的影响. 生态学杂志, 2009, 28(8): 1531-1536. | |
| [34] | Powers J S, Vargas G G, Brodribb T J, et al. A catastrophic tropical drought kills hydraulically vulnerable tree species. Global Change Biology, 2020, 26(5): 3122-3133. |
| [35] | Anderegg W R L, Klein T, Bartlett M, et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(18): 5024-5029. |
| [36] | Li M Q, Jiang Z M, Zhao H, et al. Study on the adaptability of hydraulic and physiological characteristics to different soil moisture conditions in Populus × canadensis Moench. Plant Physiology Journal, 2017, 53(4): 632-640. |
| 李美琦, 姜在民, 赵涵, 等. 加杨水力学与生理特性对不同土壤水分条件响应研究. 植物生理学报, 2017, 53(4): 632-640. | |
| [37] | Hoffmann W A, Marchin R É E M, Abit P, et al. Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Global Change Biology, 2011, 17(8): 2731-2742. |
| [38] | Mantova M, Herbette S, Cochard H, et al. Hydraulic failure and tree mortality: from correlation to causation. Trends in Plant Science, 2022, 27(4): 335-345. |
| [39] | Chen T Q, Xu G Q, Liu S S, et al. Hydraulic traits adjustments and nonstructural carbohydrate dynamics of Haloxylon ammodendron under drought stress. Chinese Journal of Plant Ecology, 2023, 47(10): 1407-1421. |
| 陈图强, 徐贵青, 刘深思, 等. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态. 植物生态学报, 2023, 47(10): 1407-1421. | |
| [40] | Han L, Zhao H, Wang W, et al. Hydraulic vulnerability segmentation and its correlation with growth in hybrid poplar. Scientia Silvae Sinicae, 2023, 59(3): 94-103. |
| 韩璐, 赵涵, 王薇, 等. 白杨杂交子代栓塞脆弱性分割及与生长的关系. 林业科学, 2023, 59(3): 94-103. | |
| [41] | Cao Y, Chao L, An Y N, et al. Response of hydraulic architecture of Hemiptelea davidii to soil water conditions in Horqin sandy land. Scientia Silvae Sinicae, 2021, 57(7): 32-42. |
| 曹宇, 巢林, 安宇宁, 等. 科尔沁沙地刺榆水力结构特征对土壤水分环境的响应. 林业科学, 2021, 57(7): 32-42. | |
| [42] | Cheng L, Li Y L, Ning Z Y, et al. Response mechanisms of woody plants to drought stress: a review based on plant hydraulic traits. Acta Ecologica Sinica, 2024, 44(7): 2688-2705. |
| 程莉, 李玉霖, 宁志英, 等. 木本植物应对干旱胁迫的响应机制: 基于水力学性状视角. 生态学报, 2024, 44(7): 2688-2705. | |
| [43] | Gleason S M, Westoby M, Jansen S, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 2016, 209(1): 123-136. |
| [44] | Li Z D, Chen Z C, Cao Z, et al. Xylem anatomical and hydraulic drought resistance characteristics of common tree species in hilly areas of North China. Acta Ecologica Sinica, 2021, 41(1): 69-78. |
| 李泽东, 陈志成, 曹振, 等. 华北低山丘陵区常用树种木质部解剖特征及其水力学抗旱性. 生态学报, 2021, 41(1): 69-78. | |
| [45] | Han X L, Zhao M S, Wang Z Y, et al. Adaptation of xylem structure and function of three gymnosperms to different habitats. Chinese Journal of Plant Ecology, 2022, 46(4): 440-450. |
| 韩旭丽, 赵明水, 王忠媛, 等. 三种裸子植物木质部结构与功能对不同生境的适应. 植物生态学报, 2022, 46(4): 440-450. | |
| [46] | Ye L F, Li Y, Wang Z Y, et al. Efficiency-safety relationships of hydraulic conducting system for branch and root of three Pinus species growing in humid area. Scientia Silvae Sinicae, 2021, 57(7): 194-204. |
| 叶琳峰, 李彦, 王忠媛, 等. 湿润地区3种松属植物枝和根导水系统的效率-安全关系. 林业科学, 2021, 57(7): 194-204. | |
| [47] | Fang J, Ye L F, Chen S, et al. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats. Chinese Journal of Plant Ecology, 2021, 45(6): 650-658. |
| 方菁, 叶琳峰, 陈森, 等. 自然和人工生境被子植物枝木质部结构与功能差异. 植物生态学报, 2021, 45(6): 650-658. | |
| [48] | Bittencourt P R L, Oliveira R S, da Costa A C L, et al. Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long-term drought. Global Change Biology, 2020, 26(6): 3569-3584. |
| [49] | Fang L D, Ning Q R, Guo J J, et al. Hydraulic limitation underlies the dieback of Populus pseudo-simonii trees in water-limited areas of northern China. Forest Ecology and Management, 2021, 483: 118764. |
| [50] | An F, Zhang S X, Zhao P J. Relations between xylem embolisms and physiological indexes in eight woody plants Ⅰ. Relationships with xylem water potentials. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(8): 1595-1600. |
| 安锋, 张硕新, 赵平娟. 8种木本植物木质部栓塞变化与生理生态指标关系的研究Ⅰ. 与植物木质部水势的关系. 西北植物学报, 2005, 25(8): 1595-1600. | |
| [51] | Zhou J, Yang X D, Wang Y Y, et al. Difference in adaptation strategy between Haloxylon ammodendron and Alhagi sparsifolia to drought. Chinese Journal of Plant Ecology, 2022, 46(9): 1064-1076. |
| 周洁, 杨晓东, 王雅芸, 等. 梭梭和骆驼刺对干旱的适应策略差异. 植物生态学报, 2022, 46(9): 1064-1076. |
| [1] | 李慧玲, 朱永兴, 陈檬, 刘姝, 王娇, 刘奕清, 张雪梅, 马慧慧. 干旱胁迫与复水对菊芋幼苗的生长及生理特性的影响[J]. 草业学报, 2025, 34(7): 171-184. |
| [2] | 温小月, 赵颖, 王宝强, 王贤, 朱晓林, 王义真, 魏小红. 外源NO调控干旱胁迫下紫花苜蓿AP2/ERFs基因的表达分析[J]. 草业学报, 2025, 34(6): 154-167. |
| [3] | 曾燕霞, 陈志龙, 尚继红, 沙晓弟, 吴娟, 陈彩锦. 太空诱变对PEG-6000模拟干旱胁迫下紫花苜蓿材料苗期生长的影响[J]. 草业学报, 2025, 34(6): 59-69. |
| [4] | 王小风, 马步东, 黄海霞, 罗永忠, 齐建伟, 邓卓. 干旱胁迫及复水对裸果木幼苗生理特性的影响[J]. 草业学报, 2025, 34(4): 93-103. |
| [5] | 王宝, 谢占玲, 郭璟, 唐永鹏, 孟清, 彭清青, 杨家宝, 董德誉, 徐鸿雁, 高太侦, 张凡, 段迎珠. 真菌发酵液浸种燕麦对其抗旱性及根际真菌群落结构的影响[J]. 草业学报, 2024, 33(9): 126-139. |
| [6] | 张婷婷, 刘宇乐, 陈红, 许凌欣, 陈祥伟, 王恩姮, 严俊鑫. 不同外源物质对盐、碱及干旱胁迫下草木樨种子萌发、幼苗生长及生理的影响[J]. 草业学报, 2024, 33(8): 122-132. |
| [7] | 魏娜, 敬文茂, 许尔文, 王荣新, 赵晶忠, 马雪娥, 张吉宇, 刘文献. 白花草木樨MaERF058基因耐旱功能验证[J]. 草业学报, 2024, 33(8): 159-169. |
| [8] | 潘颜霞, 许浩, 张亚峰, 张红霞. 旱生植物水力结构特征研究进展[J]. 草业学报, 2024, 33(8): 190-198. |
| [9] | 曾露婧, 王国华. 干旱及复水对荒漠绿洲过渡带一年生草本植物生长及生理特性的影响[J]. 草业学报, 2024, 33(5): 41-57. |
| [10] | 李硕, 李培英, 孙宗玖, 李雯. 基于转录组测序的狗牙根抗旱根系关键代谢途径分析[J]. 草业学报, 2024, 33(4): 186-198. |
| [11] | 邢静, 范文强, 王佳妮, 石凤翎. 干旱胁迫下 2个扁蓿豆品种根际细菌多样性及土壤灭菌对其生长的影响[J]. 草业学报, 2024, 33(12): 147-159. |
| [12] | 王钰煐, 种培芳, 张建喜, 刘行行, 包新光, 王雪莹. 红砂与珍珠猪毛菜水浸提液对其幼苗生长的化感作用[J]. 草业学报, 2024, 33(12): 99-110. |
| [13] | 王雨欣, 陶佳丽, 朱慧森, 许涛, 张逸飞, 岑慧芳. 异源表达偏关苜蓿miR397-5p增强烟草干旱胁迫耐受能力[J]. 草业学报, 2024, 33(11): 123-134. |
| [14] | 姜瑛, 张辉红, 魏畅, 徐正阳, 赵颖, 刘芳, 李鸽子, 张雪海, 柳海涛. 外源褪黑素对干旱胁迫下玉米幼苗根系发育及生理生化特性的影响[J]. 草业学报, 2023, 32(9): 143-159. |
| [15] | 王宝强, 马文静, 王贤, 朱晓林, 赵颖, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿幼苗次生代谢产物的影响[J]. 草业学报, 2023, 32(8): 141-151. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||