草业学报 ›› 2025, Vol. 34 ›› Issue (12): 111-120.DOI: 10.11686/cyxb2025007
• 研究论文 • 上一篇
韦竣玲(
), 刘晓琪(
), 王宛青, 邓铭, 孙宝丽, 郭勇庆(
)
收稿日期:2025-01-08
修回日期:2025-03-10
出版日期:2025-12-20
发布日期:2025-10-20
通讯作者:
郭勇庆
作者简介:E-mail: yongqing@scau.edu.cn基金资助:
Jun-ling WEI(
), Xiao-qi LIU(
), Wan-qing WANG, Ming DENG, Bao-li SUN, Yong-qing GUO(
)
Received:2025-01-08
Revised:2025-03-10
Online:2025-12-20
Published:2025-10-20
Contact:
Yong-qing GUO
摘要:
为了研究不同比例玉米秸秆与毛豆茎叶混贮及添加纤维素酶对青贮品质和微生物多样性的影响,本试验以玉米秸秆和毛豆茎叶为原料,按照鲜重质量比1∶0、3∶1、1∶1(分别用10、31、11表示)混合青贮,各混合比例设空白对照组(CS)和纤维素酶组[CS(c),添加量为0.1%],青贮80 d后进行感官评定,分析其营养成分、发酵品质和微生物多样性。结果表明,玉米秸秆和毛豆茎叶混合青贮比例为3∶1时的感官评价优于其余两个比例。随着毛豆茎叶比例的增加,混合青贮的pH、氨态氮(NH3-N)及粗蛋白(CP)含量显著升高(P<0.05),而水溶性碳水化合物(WSC)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)含量显著降低(P<0.05),乳酸(LA)含量呈先升高后下降趋势。当混合青贮比例为3∶1时,乳酸含量最高。在相同混合比例条件下,添加纤维素酶对青贮的发酵参数无显著影响(P>0.05),但有降低ADF含量的趋势(P=0.07)。此外,毛豆茎叶增加了混合青贮厚壁菌门和乳杆菌属的相对丰度,减少了变形菌门的相对丰度。玉米秸秆和毛豆茎叶按3∶1混合青贮品质优于其他比例,添加纤维素酶可以改善混合青贮的发酵品质。
韦竣玲, 刘晓琪, 王宛青, 邓铭, 孙宝丽, 郭勇庆. 玉米秸秆与毛豆茎叶混合比例对青贮发酵品质和微生物群落的影响[J]. 草业学报, 2025, 34(12): 111-120.
Jun-ling WEI, Xiao-qi LIU, Wan-qing WANG, Ming DENG, Bao-li SUN, Yong-qing GUO. Effect of the mix-ratio of corn stalk and edamame stems/leaves and added cellulase on the fermentation quality and microbial community of silage[J]. Acta Prataculturae Sinica, 2025, 34(12): 111-120.
化学成分 Chemical composition | 玉米秸秆 Corn stalk | 毛豆茎叶 Edamame stem and leave |
|---|---|---|
| 干物质 Dry matter (DM, %) | 17.52 | 20.95 |
| 粗蛋白质Crude protein (%DM) | 11.05 | 21.10 |
| 中性洗涤纤维Neutral detergent fiber (%DM) | 66.07 | 53.79 |
| 酸性洗涤纤维Acid detergent fiber (%DM) | 34.40 | 29.30 |
| 可溶性碳水化合物Water soluble carbohydrates (%DM) | 13.53 | 2.79 |
表1 玉米秸秆和毛豆茎叶的化学成分
Table 1 Chemical composition of corn stalk and edamame stems/leaves
化学成分 Chemical composition | 玉米秸秆 Corn stalk | 毛豆茎叶 Edamame stem and leave |
|---|---|---|
| 干物质 Dry matter (DM, %) | 17.52 | 20.95 |
| 粗蛋白质Crude protein (%DM) | 11.05 | 21.10 |
| 中性洗涤纤维Neutral detergent fiber (%DM) | 66.07 | 53.79 |
| 酸性洗涤纤维Acid detergent fiber (%DM) | 34.40 | 29.30 |
| 可溶性碳水化合物Water soluble carbohydrates (%DM) | 13.53 | 2.79 |
| 项目Item | CS10 | CS31 | CS11 | CS10(c) | CS31(c) | CS11(c) |
|---|---|---|---|---|---|---|
| 气味Odour | 14 | 14 | 12 | 14 | 14 | 12 |
| 结构Structure | 4 | 4 | 3 | 4 | 4 | 3 |
| 色泽Colour | 1 | 2 | 1 | 1 | 2 | 1 |
| 总分Total | 19 | 20 | 16 | 19 | 20 | 16 |
| 等级Grade | 1 | 1 | 1 | 1 | 1 | 1 |
表2 玉米秸秆和毛豆茎叶混合青贮饲料感官评定
Table 2 Sensory evaluation of mixed silage of corn stalk and edamame stems/leaves
| 项目Item | CS10 | CS31 | CS11 | CS10(c) | CS31(c) | CS11(c) |
|---|---|---|---|---|---|---|
| 气味Odour | 14 | 14 | 12 | 14 | 14 | 12 |
| 结构Structure | 4 | 4 | 3 | 4 | 4 | 3 |
| 色泽Colour | 1 | 2 | 1 | 1 | 2 | 1 |
| 总分Total | 19 | 20 | 16 | 19 | 20 | 16 |
| 等级Grade | 1 | 1 | 1 | 1 | 1 | 1 |
项目 Item | 处理Treatment | P值P value | |||||||
|---|---|---|---|---|---|---|---|---|---|
| CS10 | CS31 | CS11 | CS10(c) | CS31(c) | CS11(c) | R | T | R×T | |
| 干物质 Dry matter (DM, %) | 17.02±0.13b | 17.34±0.17b | 17.76±0.18a | 17.09±0.07b | 17.27±0.08b | 18.08±0.21a | 0.000 | 0.39 | 0.443 |
| 粗蛋白质Crude protein (%DM) | 11.61±1.24c | 14.11±0.27b | 17.63±0.25a | 10.70±0.19c | 14.26±0.23b | 17.67±0.80a | 0.000 | 0.67 | 0.686 |
| 可溶性碳水化合物WSC (%DM) | 1.28±0.08a | 0.62±0.06b | 0.35±0.01c | 1.16±0.11a | 0.56±0.07b | 0.27±0.03c | 0.000 | 0.21 | 0.941 |
| 中性洗涤纤维NDF (%DM) | 66.16±0.28a | 58.73±0.48b | 55.60±0.75c | 64.96±0.11a | 58.23±0.46b | 55.14±1.32c | 0.000 | 0.25 | 0.853 |
| 酸性洗涤纤维ADF (%DM) | 38.45±0.06a | 34.78±0.25b | 33.53±0.48c | 36.93±0.32a | 34.42±0.36b | 32.84±0.95c | 0.000 | 0.07 | 0.563 |
表3 玉米秸秆和毛豆茎叶混合青贮的化学成分
Table 3 Chemical composition of mixed silage of corn stalk and edamame stems/leaves
项目 Item | 处理Treatment | P值P value | |||||||
|---|---|---|---|---|---|---|---|---|---|
| CS10 | CS31 | CS11 | CS10(c) | CS31(c) | CS11(c) | R | T | R×T | |
| 干物质 Dry matter (DM, %) | 17.02±0.13b | 17.34±0.17b | 17.76±0.18a | 17.09±0.07b | 17.27±0.08b | 18.08±0.21a | 0.000 | 0.39 | 0.443 |
| 粗蛋白质Crude protein (%DM) | 11.61±1.24c | 14.11±0.27b | 17.63±0.25a | 10.70±0.19c | 14.26±0.23b | 17.67±0.80a | 0.000 | 0.67 | 0.686 |
| 可溶性碳水化合物WSC (%DM) | 1.28±0.08a | 0.62±0.06b | 0.35±0.01c | 1.16±0.11a | 0.56±0.07b | 0.27±0.03c | 0.000 | 0.21 | 0.941 |
| 中性洗涤纤维NDF (%DM) | 66.16±0.28a | 58.73±0.48b | 55.60±0.75c | 64.96±0.11a | 58.23±0.46b | 55.14±1.32c | 0.000 | 0.25 | 0.853 |
| 酸性洗涤纤维ADF (%DM) | 38.45±0.06a | 34.78±0.25b | 33.53±0.48c | 36.93±0.32a | 34.42±0.36b | 32.84±0.95c | 0.000 | 0.07 | 0.563 |
项目 Item | 处理Treatment | P值P value | |||||||
|---|---|---|---|---|---|---|---|---|---|
| CS10 | CS31 | CS11 | CS10(c) | CS31(c) | CS11(c) | R | T | R×T | |
| pH | 3.63±0.00c | 3.77±0.01b | 4.28±0.00a | 3.65±0.01c | 3.79±0.02b | 4.26±0.03a | 0.000 | 0.709 | 0.395 |
| 氨态氮NH3-N (%DM) | 0.49±0.08c | 0.79±0.11b | 1.32±0.28a | 0.52±0.07c | 0.86±0.10b | 1.34±0.10a | 0.000 | 0.757 | 0.983 |
| 乳酸Lactic acid (%DM) | 8.84±0.84a | 9.81±1.01a | 6.98±0.75a | 9.12±0.56a | 9.21±1.01a | 8.51±0.20a | 0.618 | 0.208 | 0.552 |
| 乙酸Acetic acid (%DM) | 2.64±0.02b | 2.94±0.16ab | 3.85±0.08a | 2.78±0.10b | 2.94±0.12ab | 3.36±0.23a | 0.041 | 0.087 | 0.193 |
| 丙酸Propionic acid (%DM) | ND | ND | ND | ND | ND | ND | |||
| 丁酸Butyric acid (%DM) | ND | ND | ND | ND | ND | ND | |||
表4 玉米秸秆和毛豆茎叶混合青贮的发酵参数
Table 4 Fermentation parameters of mixed silage of corn stalk and edamame stems/leaves
项目 Item | 处理Treatment | P值P value | |||||||
|---|---|---|---|---|---|---|---|---|---|
| CS10 | CS31 | CS11 | CS10(c) | CS31(c) | CS11(c) | R | T | R×T | |
| pH | 3.63±0.00c | 3.77±0.01b | 4.28±0.00a | 3.65±0.01c | 3.79±0.02b | 4.26±0.03a | 0.000 | 0.709 | 0.395 |
| 氨态氮NH3-N (%DM) | 0.49±0.08c | 0.79±0.11b | 1.32±0.28a | 0.52±0.07c | 0.86±0.10b | 1.34±0.10a | 0.000 | 0.757 | 0.983 |
| 乳酸Lactic acid (%DM) | 8.84±0.84a | 9.81±1.01a | 6.98±0.75a | 9.12±0.56a | 9.21±1.01a | 8.51±0.20a | 0.618 | 0.208 | 0.552 |
| 乙酸Acetic acid (%DM) | 2.64±0.02b | 2.94±0.16ab | 3.85±0.08a | 2.78±0.10b | 2.94±0.12ab | 3.36±0.23a | 0.041 | 0.087 | 0.193 |
| 丙酸Propionic acid (%DM) | ND | ND | ND | ND | ND | ND | |||
| 丁酸Butyric acid (%DM) | ND | ND | ND | ND | ND | ND | |||
指数 Index | 处理Treatment | P值P value | |||||||
|---|---|---|---|---|---|---|---|---|---|
| CS10 | CS31 | CS11 | CS10(c) | CS31(c) | CS11(c) | R | T | R×T | |
| 香农指数Shannon | 6.11±2.05a | 3.64±0.94b | 4.05±0.33b | 4.83±0.35ab | 3.50±0.62b | 3.68±0.62b | 0.014 | 0.230 | 0.599 |
| 辛普森指数Simpson | 0.92±0.10a | 0.72±0.13c | 0.85±0.02abc | 0.89±0.01ab | 0.76±0.04bc | 0.84±0.04abc | 0.007 | 0.975 | 0.677 |
| 覆盖度估计值Ace | 916.69±35.75aA | 909.33±134.63aA | 862.86±61.12aA | 599.44±77.90aB | 464.14±29.21aB | 625.00±137.32aB | 0.380 | <0.001 | 0.187 |
| 赵氏指数Chao1 | 876.42±29.74aA | 882.88±133.94aA | 842.27±44.08aA | 564.66±66.22aB | 452.87±4.39aB | 605.27±137.22aB | 0.470 | <0.001 | 0.176 |
| 覆盖率Goods_coverage | 0.9983±0.00 | 0.9979±0.00 | 0.9977±0.00 | 0.9987±0.00 | 0.9989±0.00 | 0.9981±0.00 | 0.153 | 0.025 | 0.497 |
表5 玉米秸秆与毛豆茎叶混合青贮的细菌群落α多样性指数
Table 5 The α diversity index of bacterial communities in silage mixed with corn stalk and edamame stems/leaves
指数 Index | 处理Treatment | P值P value | |||||||
|---|---|---|---|---|---|---|---|---|---|
| CS10 | CS31 | CS11 | CS10(c) | CS31(c) | CS11(c) | R | T | R×T | |
| 香农指数Shannon | 6.11±2.05a | 3.64±0.94b | 4.05±0.33b | 4.83±0.35ab | 3.50±0.62b | 3.68±0.62b | 0.014 | 0.230 | 0.599 |
| 辛普森指数Simpson | 0.92±0.10a | 0.72±0.13c | 0.85±0.02abc | 0.89±0.01ab | 0.76±0.04bc | 0.84±0.04abc | 0.007 | 0.975 | 0.677 |
| 覆盖度估计值Ace | 916.69±35.75aA | 909.33±134.63aA | 862.86±61.12aA | 599.44±77.90aB | 464.14±29.21aB | 625.00±137.32aB | 0.380 | <0.001 | 0.187 |
| 赵氏指数Chao1 | 876.42±29.74aA | 882.88±133.94aA | 842.27±44.08aA | 564.66±66.22aB | 452.87±4.39aB | 605.27±137.22aB | 0.470 | <0.001 | 0.176 |
| 覆盖率Goods_coverage | 0.9983±0.00 | 0.9979±0.00 | 0.9977±0.00 | 0.9987±0.00 | 0.9989±0.00 | 0.9981±0.00 | 0.153 | 0.025 | 0.497 |
| [1] | Zhou X, Ouyang Z, Zhang X, et al. Sweet corn stalk treated with Saccharomyces cerevisiae alone or in combination with Lactobacillus plantarum: Nutritional composition, fermentation traits and aerobic stability. Animals, 2019, 9(9): 598. |
| [2] | Wang X, Song J, Liu Z, et al. Fermentation quality and microbial community of corn stover or rice straw silage mixed with soybean curd residue. Animals, 2022, 12(7): 919. |
| [3] | Zhao X Y, Li Z Y, Ma G G, et al. Study on fattening effect of adding soybean leaf powder on pigs. Journal of Animal Science and Veterinary Medicine, 2022, 41(2): 68-70. |
| 赵晓阳, 李宗宇, 马更尕, 等. 添加大豆叶粉对生猪育肥效果的研究. 畜牧兽医杂志, 2022, 41(2): 68-70. | |
| [4] | Meng H, Jiang Y, Wang L, et al. Effects of different soybean and maize mixed proportions in a strip intercropping system on silage fermentation quality. Fermentation, 2022, 8(12): 696. |
| [5] | Zhang X, Jiao T, Ma S M, et al. Silage quality and in vitro rumen fermentation characteristics of stevia and corn stalks. Pratacultural Science, 2023, 40(2): 539-550. |
| 张霞, 焦婷, 马淑敏, 等. 甜叶菊秆与玉米秸秆混合青贮品质和体外瘤胃发酵特性. 草业科学, 2023, 40(2): 539-550. | |
| [6] | Ma J, Fan X, Ma Z, et al. Silage additives improve fermentation quality, aerobic stability and rumen degradation in mixed silage composed of amaranth and corn straw. Frontiers in Plant Science, 2023, 14: 1189747. |
| [7] | Wu Q F, Chen C, Huang Q J, et al. A effects of cellulase and high-temperature tolerant lactic acid bacteria on structural carbohydrate of (Pennisetum ameri-canum×P. purpureum)×P. durpureum Schum. Acta Agrestia Sinica, 2024, 32(7): 2314-2322. |
| 武齐丰, 陈晨, 黄沁骄, 等. 纤维素酶和乳酸菌对杂交象草青贮结构性碳水化合物影响. 草地学报, 2024, 32(7): 2314-2322. | |
| [8] | Broderick G A, Kang J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 1980, 63(1): 64-75. |
| [9] | Erwin E S, Marco G J, Emery E M. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. Journal of Dairy Science, 1961, 44(9): 1768-1771. |
| [10] | Madrid J, Martínez-Teruel A, Hernández F, et al. A comparative study on the determination of lactic acid in silage juice by colorimetric, high-performance liquid chromatography and enzymatic methods. Journal of the Science of Food and Agriculture, 1999, 79(12): 1722-1726. |
| [11] | Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
| [12] | McDonald P, Henderson A R. Determination of water-soluble carbohydrates in grass. Journal of the Science of Food and Agriculture, 1964, 15(6): 395-398. |
| [13] | Guo M, Wu F, Hao G, et al. Bacillus subtilis improves immunity and disease resistance in rabbits. Frontiers in Immunology, 2017, 8: 354. |
| [14] | Hu W, Schmidt R J, McDonell E E, et al. The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contents. Journal of Dairy Science, 2009, 92(8): 3907-3914. |
| [15] | Lyu R L, Jiang R K, Zhang Y S, et al. Effects of different fermentation time, moisture and additives on fermentation quality of passion fruit peels. Feed Industry, 2024, 45(18): 106-113. |
| 吕仁龙, 蒋睿珂, 张雨书, 等. 不同青贮时间、水分和添加剂对百香果果皮发酵品质的影响. 饲料工业, 2024, 45(18): 106-113. | |
| [16] | Zhang Z, Zhao K, Yang S, et al. Analysis on fermentation quality, chemical composition and bacterial communities of corn straw and soybean straw mixed silage. Fermentation, 2023, 9(6): 500. |
| [17] | Carpici E B. Nutritive values of soybean silages ensiled with maize at different rates. Legume Research, 2016, 39(5): 810-813. |
| [18] | Ni K, Zhao J, Zhu B, et al. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresource Technology, 2018, 265: 563-567. |
| [19] | Yang M, Wang F, Xu W, et al. Effects of the fermentation quality and microbial community of waxy maize mixed with fodder soybean silage. Frontiers in Microbiology, 2024, 15: 1405018. |
| [20] | Wang Q, Li Z J, Li J, et al. Evaluation of agronomic and forage quality traits of a range of oat cultivars. Acta Prataculturae Sinica, 2019, 28(12): 149-158. |
| 王茜, 李志坚, 李晶, 等. 不同类型燕麦农艺和饲草品质性状分析. 草业学报, 2019, 28(12): 149-158. | |
| [21] | Mao J H, Tao L, Liu R, et al. Effects of living bacteria preparation and compound enzymes preparation on chemical composition and microstructure of fibers of silage corn stover. Chinese Journal of Animal Nutrition, 2018, 30(7): 2763-2771. |
| 毛建红, 陶莲, 刘融, 等. 活菌制剂和复合酶制剂对青贮玉米秸秆化学组成及纤维微观结构的影响. 动物营养学报, 2018, 30(7): 2763-2771. | |
| [22] | Cheng F F, Yang J H, Xia M L, et al. Effect of different raw materials moisture and additives on the quality of alfalfa silage. Feed Research, 2020, 43(12): 106-109. |
| 程方方, 杨君辉, 夏茂林, 等. 不同原料水分含量和添加剂对紫花苜蓿青贮品质的影响. 饲料研究, 2020, 43(12): 106-109. | |
| [23] | Li F F, Zhang F F, Wang X Z, et al. Effects of homo-and heterofermentative lactic acid bacteria on the nutritional quality and ruminal degradation rate of the whole plant maize silage. Acta Prataculturae Sinica, 2019, 28(6): 128-136. |
| 李菲菲, 张凡凡, 王旭哲, 等. 同/异型发酵乳酸菌对全株玉米青贮营养成分和瘤胃降解特征的影响. 草业学报, 2019, 28(6): 128-136. | |
| [24] | Blajman J E, Paez R B, Vinderola C G, et al. A Meta-analysis on the effectiveness of homofermentative and heterofermentative lactic acid bacteria for corn silage. Journal of Applied Microbiology, 2018, 125(6): 1655-1669. |
| [25] | Zhao M, Wang Z, Du S, et al. Lactobacillus plantarum and propionic acid improve the fermentation quality of high-moisture amaranth silage by altering the microbial community composition. Frontiers in Microbiology, 2022, 13: 1066641. |
| [26] | Xu D, Wang N, Rinne M, et al. The bacterial community and metabolome dynamics and their interactions modulate fermentation process of whole crop corn silage prepared with or without inoculants. Microbial Biotechnology, 2021, 14(2): 561-576. |
| [27] | Li M, Zi X, Sun R, et al. Co-ensiling whole-plant cassava with corn stalk for excellent silage production: Fermentation characteristics, bacterial community, function profile, and microbial ecological network features. Agronomy, 2024, 14(3): 501. |
| [28] | Zhao G, Wu H, Li L, et al. Effects of applying cellulase and starch on the fermentation characteristics and microbial communities of Napier grass (Pennisetum purpureum Schum.) silage. Journal of Animal Science and Technology, 2021, 63(6): 1301-1313. |
| [29] | Qiu C, Liu N, Diao X, et al. Effects of cellulase and xylanase on fermentation characteristics, chemical composition and bacterial community of the mixed silage of king grass and rice straw. Microorganisms, 2024, 12(3): 561. |
| [30] | Mu L, Xie Z, Hu L, et al. Cellulase interacts with Lactobacillus plantarum to affect chemical composition, bacterial communities, and aerobic stability in mixed silage of high-moisture amaranth and rice straw. Bioresource Technology, 2020, 315: 123772. |
| [31] | Chi Z, Deng M, Tian H, et al. Effects of mulberry leaves and Pennisetum hybrid mix-silage on fermentation parameters and bacterial community. Fermentation, 2022, 8(5): 197. |
| [32] | Huang R, Cai B, Chen Y, et al. Bacterial community structure and metabolites after ensiling paper mulberry mixed with corn or wheat straw. Frontiers in Sustainable Food Systems, 2024, 8: 1356705. |
| [33] | Aßhauer K P, Wemheuer B, Daniel R, et al. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics, 2015, 31(17): 2882-2884. |
| [34] | Bai J, Franco M, Ding Z, et al. Effect of Bacillus amyloliquefaciens and Bacillus subtilis on fermentation, dynamics of bacterial community and their functional shifts of whole-plant corn silage. Journal of Animal Science and Biotechnology, 2022, 13: 1-14. |
| [35] | Bai J, Ding Z, Ke W, et al. Different lactic acid bacteria and their combinations regulated the fermentation process of ensiled alfalfa: Ensiling characteristics, dynamics of bacterial community and their functional shifts. Microbal Biotechnology, 2021, 14: 1171-1182. |
| [36] | Li X, Chen F, Wang X, et al. Innovative utilization of herbal residues: Exploring the diversity of mechanisms beneficial to regulate anaerobic fermentation of alfalfa. Bioresource Technology, 2022, 360: 127429. |
| [37] | Kilstrup M, Hammer K, Ruhdal P, et al. Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiology Reviews, 2005, 29(3): 555-590. |
| [38] | Liu Q H, Wu J X, Shao T. Roles of microbes and lipolytic enzymes in changing the fatty acid profile, α-tocopherol and β-carotene of whole-crop oat silages during ensiling and after exposure to air. Animal Feed Science and Technology, 2019, 253: 81-92. |
| [39] | Wang S, Shao T, Li J, et al. A survey of fermentation parameters, bacterial community compositions and their metabolic pathways during the ensiling of sorghum. Journal of Applied Microbiology, 2022, 132(5): 3563-3577. |
| [1] | 袁玖. 绿豆衣、大蒜皮、茄子皮与玉米秸秆青贮料、精料间饲料组合效应研究[J]. 草业学报, 2025, 34(9): 173-184. |
| [2] | 吴娟燕, 田静, 郭香, 黄莉莹, 张建国. 籽实青贮的研究与利用进展[J]. 草业学报, 2025, 34(8): 211-220. |
| [3] | 任春燕, 郝志云, 邴睿, 霍应栋, 赵海碧, 尹鹏飞, 唐德富, 蔺淑琴, 王继卿. 开食料添加纤维素酶对羔羊生产性能、器官发育、肌肉脂肪酸组成及血清抗氧化指标的影响[J]. 草业学报, 2025, 34(7): 120-131. |
| [4] | 王思然, 丁成龙, 田吉鹏, 程云辉, 许能祥, 张文洁, 王欣, 刘蓓一. 乳酸菌和抗真菌添加剂对湿啤酒糟全混合日粮青贮发酵品质、体外消化率及有氧稳定性的影响[J]. 草业学报, 2025, 34(6): 213-226. |
| [5] | 匡宗洋, 穆麟, 魏岚, 郭阳, 胥贵, 陈瑶, 石雪云, 魏仲珊, 张志飞. 不同混合比例和乳酸菌添加对全株玉米和大豆混合青贮品质及有氧稳定性的影响[J]. 草业学报, 2025, 34(6): 227-238. |
| [6] | 毛开, 许艺, 王学梅, 柴欢, 黄帅, 王坚, 郇树乾, 玉柱, 王目森. 植物乳植杆菌与糖蜜对花生秧青贮饲料发酵品质、生物胺含量及细菌群落的影响[J]. 草业学报, 2025, 34(5): 146-158. |
| [7] | 王思然, 刘蓓一, 田吉鹏, 程云辉, 许能祥, 张文洁, 王欣, 丁成龙. 复合乳酸菌添加剂对低温环境下意大利黑麦草青贮发酵品质的影响[J]. 草业学报, 2025, 34(5): 159-170. |
| [8] | 梁宇成, 张晓雯, 邵涛, 王文博, 原现军. 乳酸菌对全株玉米青贮发酵品质和霉菌毒素含量的影响[J]. 草业学报, 2025, 34(3): 123-133. |
| [9] | 邓清源, 付东青, 黄嵘峥, 张凡凡, 孙国君. 松针精油对构树青贮品质及有氧稳定性的影响[J]. 草业学报, 2025, 34(10): 85-94. |
| [10] | 郭田心, 阮诗诗, 郭香, 詹佳琦, 梁秋雨, 陈晓阳, 周玮, 张庆. 不同复合菌酶添加对中药渣青贮饲料的营养价值及发酵品质的影响[J]. 草业学报, 2024, 33(10): 194-202. |
| [11] | 赵杰, 尹雪敬, 王思然, 董志浩, 李君风, 贾玉山, 邵涛. 贮藏时间对甜高粱青贮发酵品质、微生物群落组成和功能的影响[J]. 草业学报, 2023, 32(8): 164-175. |
| [12] | 凌文卿, 张磊, 李珏, 冯启贤, 李妍, 周燚, 刘一佳, 阳伏林, 周晶. 布氏乳杆菌和不同糖类联用对紫花苜蓿青贮营养成分、发酵品质、瘤胃降解率及有氧稳定性的影响[J]. 草业学报, 2023, 32(7): 122-134. |
| [13] | 党浩千, 覃娟清, 郭宇康, 张富, 王迎港, 刘庆华. 不同添加剂发酵笋壳对湖羊生产性能及瘤胃发酵的影响[J]. 草业学报, 2023, 32(7): 135-148. |
| [14] | 梁梦琪, 武齐丰, 邵涛, 吴艾丽, 刘秦华. 添加剂对多花黑麦草青贮发酵品质、α-生育酚和β-胡萝卜素含量的影响[J]. 草业学报, 2023, 32(5): 180-189. |
| [15] | 徐远志, 刘新平, 王立龙, 胡鸿姣, 何玉惠, 张铜会, 景家琪. 华北驼绒藜青贮加工及营养价值评价[J]. 草业学报, 2023, 32(12): 150-159. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||