Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (12): 31-40.DOI: 10.11686/cyxb2021467
Previous Articles Next Articles
Yu-qin WANG1(), Mei-ling SONG1, Rui ZHOU1, Hong-sheng WANG1, Hua LIU2, Xiu-lian ZHU3, Yu-shou MA1()
Received:
2021-12-13
Revised:
2022-01-27
Online:
2022-12-20
Published:
2022-10-17
Contact:
Yu-shou MA
Yu-qin WANG, Mei-ling SONG, Rui ZHOU, Hong-sheng WANG, Hua LIU, Xiu-lian ZHU, Yu-shou MA. Effects of Ligularia virgaurea on plant and soil nutrient levels and soil microbial biomass characteristics in degraded alpine grassland[J]. Acta Prataculturae Sinica, 2022, 31(12): 31-40.
功能群 Functional group | 黄帚橐吾危害区Hazard area of L.virgaurea | 黄帚橐吾防除区Control area of L.virgaurea | ||||
---|---|---|---|---|---|---|
C (g·kg-1) | N (g·kg-1) | P (mg·kg-1) | C (g·kg-1) | N (g·kg-1) | P (mg·kg-1) | |
禾本科 Gramineae | 390.02±4.36b | 21.70±0.68b* | 1.08±0.04b | 401.03±11.87a | 18.28±0.55c | 0.98±0.02c |
莎草科 Cyperaceae | 383.57±5.32bc | 20.03±0.44c | 0.92±0.02c | 370.60±12.07b | 20.93±0.46b | 1.12±0.06b* |
豆科 Leguminosae | 370.90±4.63c | 37.33±0.28a* | 1.41±0.03a* | 380.38±1.99ab | 17.33±0.33c | 0.86±0.03d |
杂类草 Forbs | 383.97±5.61bc | 24.32±0.67b | 1.40±0.02a | 385.12±6.37ab | 35.01±0.54a* | 1.39±0.02a |
黄帚橐吾 | 411.28±2.27a | 27.68±5.78ab | 1.33±0.04a | - | - | - |
Table 1 Effect of L. virgaurea on C, N and P contents of functional groups plants
功能群 Functional group | 黄帚橐吾危害区Hazard area of L.virgaurea | 黄帚橐吾防除区Control area of L.virgaurea | ||||
---|---|---|---|---|---|---|
C (g·kg-1) | N (g·kg-1) | P (mg·kg-1) | C (g·kg-1) | N (g·kg-1) | P (mg·kg-1) | |
禾本科 Gramineae | 390.02±4.36b | 21.70±0.68b* | 1.08±0.04b | 401.03±11.87a | 18.28±0.55c | 0.98±0.02c |
莎草科 Cyperaceae | 383.57±5.32bc | 20.03±0.44c | 0.92±0.02c | 370.60±12.07b | 20.93±0.46b | 1.12±0.06b* |
豆科 Leguminosae | 370.90±4.63c | 37.33±0.28a* | 1.41±0.03a* | 380.38±1.99ab | 17.33±0.33c | 0.86±0.03d |
杂类草 Forbs | 383.97±5.61bc | 24.32±0.67b | 1.40±0.02a | 385.12±6.37ab | 35.01±0.54a* | 1.39±0.02a |
黄帚橐吾 | 411.28±2.27a | 27.68±5.78ab | 1.33±0.04a | - | - | - |
项目 Item | LH | LC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PC | PN | PP | PC/N | PC/P | PC | PN | PP | PC/N | PC/P | |
PN | -0.321 | -0.059 | ||||||||
PP | -0.028 | 0.740 | -0.127 | 0.954* | ||||||
PC/N | 0.486 | -0.974** | -0.764 | 0.249 | -0.975* | -0.976* | ||||
PC/P | 0.152 | -0.767 | -0.989** | 0.814 | 0.268 | -0.894 | -0.983* | 0.957* | ||
PN/P | -0.403 | 0.746 | 0.107 | -0.672 | -0.149 | -0.037 | 0.935 | 0.787 | -0.869 | -0.692 |
Table 2 Correlations of plants C, N, P content and stoichiometry across different treatments
项目 Item | LH | LC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PC | PN | PP | PC/N | PC/P | PC | PN | PP | PC/N | PC/P | |
PN | -0.321 | -0.059 | ||||||||
PP | -0.028 | 0.740 | -0.127 | 0.954* | ||||||
PC/N | 0.486 | -0.974** | -0.764 | 0.249 | -0.975* | -0.976* | ||||
PC/P | 0.152 | -0.767 | -0.989** | 0.814 | 0.268 | -0.894 | -0.983* | 0.957* | ||
PN/P | -0.403 | 0.746 | 0.107 | -0.672 | -0.149 | -0.037 | 0.935 | 0.787 | -0.869 | -0.692 |
项目 Item | LH | LC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PC | PN | PP | PC/N | PC/P | PN/P | PC | PN | PP | PC/N | PC/P | PN/P | |
SOC | -0.031 | 0.384 | 0.174 | -0.355 | -0.236 | 0.359 | -0.611 | -0.542 | -0.314 | 0.346 | 0.133 | -0.710 |
STN | 0.808 | -0.978* | -0.786 | 0.981* | 0.816 | -0.671 | 0.516 | 0.796 | 0.783 | -0.693 | -0.675 | 0.678 |
NH4+-N | 0.551 | -0.783 | -0.383 | 0.739 | 0.440 | -0.759 | -0.776 | 0.623 | 0.720 | -0.777 | -0.816 | 0.480 |
NO3--N | -0.140 | 0.525 | 0.477 | -0.531 | -0.530 | 0.276 | -0.554 | 0.536 | 0.355 | -0.549 | -0.332 | 0.726 |
STP | 0.129 | -0.171 | 0.470 | 0.060 | -0.417 | -0.690 | 0.739 | -0.702 | -0.759 | 0.834 | 0.832 | -0.595 |
SAP | 0.462 | -0.581 | 0.025 | 0.493 | 0.033 | -0.861 | 0.711 | 0.566 | 0.384 | -0.370 | -0.207 | 0.668 |
STK | 0.273 | -0.232 | 0.466 | 0.116 | -0.420 | -0.785 | 0.382 | -0.895 | -0.965* | 0.969* | 0.989* | -0.723 |
SAK | 0.042 | 0.367 | 0.421 | -0.383 | -0.471 | 0.094 | 0.882 | -0.519 | -0.537 | 0.662 | 0.623 | -0.491 |
MBC | -0.387 | 0.721 | 0.831 | -0.764 | -0.863 | 0.233 | 0.792 | 0.562 | 0.480 | -0.391 | -0.327 | 0.538 |
MBN | -0.208 | 0.589 | 0.696 | -0.625 | -0.736 | 0.163 | 0.165 | 0.933 | 0.790 | -0.836 | -0.674 | 0.977* |
MBP | -0.762 | 0.717 | 0.865 | -0.775 | -0.842 | 0.236 | 0.869 | 0.433 | 0.319 | -0.239 | -0.153 | 0.458 |
SC/N | -0.723 | 0.939 | 0.705 | -0.931 | -0.746 | 0.684 | -0.590 | -0.771 | -0.695 | 0.632 | 0.558 | -0.726 |
SC/P | -0.107 | 0.229 | -0.354 | -0.130 | 0.295 | 0.657 | -0.804 | 0.576 | 0.683 | -0.739 | -0.788 | 0.429 |
SC/K | -0.188 | 0.362 | -0.183 | -0.275 | 0.121 | 0.685 | -0.596 | 0.676 | 0.825 | -0.820 | -0.914 | 0.451 |
SN/P | 0.512 | -0.596 | -0.959* | 0.685 | 0.938 | 0.043 | -0.411 | 0.909 | 0.954* | -0.979* | -0.973* | 0.769 |
MBC/MBN | -0.460 | 0.761 | 0.899 | -0.812 | -0.924 | 0.231 | 0.881 | 0.417 | 0.351 | -0.240 | -0.201 | 0.385 |
MBC/MBP | 0.214 | 0.191 | 0.228 | -0.197 | -0.280 | 0.020 | 0.774 | 0.586 | 0.506 | -0.418 | -0.354 | 0.558 |
MBN/MBP | 0.610 | -0.317 | -0.368 | 0.346 | 0.322 | -0.147 | -0.987* | 0.208 | 0.250 | -0.383 | -0.373 | 0.197 |
Table 3 Correlations of C, N, P, K content and stoichiometry between plants and soil nutrients in different treatments
项目 Item | LH | LC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PC | PN | PP | PC/N | PC/P | PN/P | PC | PN | PP | PC/N | PC/P | PN/P | |
SOC | -0.031 | 0.384 | 0.174 | -0.355 | -0.236 | 0.359 | -0.611 | -0.542 | -0.314 | 0.346 | 0.133 | -0.710 |
STN | 0.808 | -0.978* | -0.786 | 0.981* | 0.816 | -0.671 | 0.516 | 0.796 | 0.783 | -0.693 | -0.675 | 0.678 |
NH4+-N | 0.551 | -0.783 | -0.383 | 0.739 | 0.440 | -0.759 | -0.776 | 0.623 | 0.720 | -0.777 | -0.816 | 0.480 |
NO3--N | -0.140 | 0.525 | 0.477 | -0.531 | -0.530 | 0.276 | -0.554 | 0.536 | 0.355 | -0.549 | -0.332 | 0.726 |
STP | 0.129 | -0.171 | 0.470 | 0.060 | -0.417 | -0.690 | 0.739 | -0.702 | -0.759 | 0.834 | 0.832 | -0.595 |
SAP | 0.462 | -0.581 | 0.025 | 0.493 | 0.033 | -0.861 | 0.711 | 0.566 | 0.384 | -0.370 | -0.207 | 0.668 |
STK | 0.273 | -0.232 | 0.466 | 0.116 | -0.420 | -0.785 | 0.382 | -0.895 | -0.965* | 0.969* | 0.989* | -0.723 |
SAK | 0.042 | 0.367 | 0.421 | -0.383 | -0.471 | 0.094 | 0.882 | -0.519 | -0.537 | 0.662 | 0.623 | -0.491 |
MBC | -0.387 | 0.721 | 0.831 | -0.764 | -0.863 | 0.233 | 0.792 | 0.562 | 0.480 | -0.391 | -0.327 | 0.538 |
MBN | -0.208 | 0.589 | 0.696 | -0.625 | -0.736 | 0.163 | 0.165 | 0.933 | 0.790 | -0.836 | -0.674 | 0.977* |
MBP | -0.762 | 0.717 | 0.865 | -0.775 | -0.842 | 0.236 | 0.869 | 0.433 | 0.319 | -0.239 | -0.153 | 0.458 |
SC/N | -0.723 | 0.939 | 0.705 | -0.931 | -0.746 | 0.684 | -0.590 | -0.771 | -0.695 | 0.632 | 0.558 | -0.726 |
SC/P | -0.107 | 0.229 | -0.354 | -0.130 | 0.295 | 0.657 | -0.804 | 0.576 | 0.683 | -0.739 | -0.788 | 0.429 |
SC/K | -0.188 | 0.362 | -0.183 | -0.275 | 0.121 | 0.685 | -0.596 | 0.676 | 0.825 | -0.820 | -0.914 | 0.451 |
SN/P | 0.512 | -0.596 | -0.959* | 0.685 | 0.938 | 0.043 | -0.411 | 0.909 | 0.954* | -0.979* | -0.973* | 0.769 |
MBC/MBN | -0.460 | 0.761 | 0.899 | -0.812 | -0.924 | 0.231 | 0.881 | 0.417 | 0.351 | -0.240 | -0.201 | 0.385 |
MBC/MBP | 0.214 | 0.191 | 0.228 | -0.197 | -0.280 | 0.020 | 0.774 | 0.586 | 0.506 | -0.418 | -0.354 | 0.558 |
MBN/MBP | 0.610 | -0.317 | -0.368 | 0.346 | 0.322 | -0.147 | -0.987* | 0.208 | 0.250 | -0.383 | -0.373 | 0.197 |
1 | Wang C T, Long R J, Wang Q L, et al. Response of plant diversity and productivity to soil resources changing under grazing disturbance on an alpine meadow. Acta Ecologica Sinica, 2008, 28(9): 4144-4152. |
王长庭, 龙瑞军, 王启兰, 等. 放牧扰动下高寒草甸植物多样性、生产力对土壤养分条件变化的响应. 生态学报, 2008, 28(9): 4144-4152. | |
2 | Bengtsson J, Bullock J M, Egoh B, et al. Grasslands-more important for ecosystem services than you might think. Ecosphere, 2019, 10(2): 1-20. |
3 | Ren J Z, Xu G, Li X L, et al. Trajectory and prospect of China’s prataculture. Chinese Science Bulletin, 2016, 61(2): 178-192. |
任继周, 胥刚, 李向林, 等. 中国草业科学的发展轨迹与展望. 科学通报, 2016, 61(2): 178-192. | |
4 | Wang H, Liu H Y, Cao G M, et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecology Letters, 2020, 23(4): 701-710. |
5 | Wang H S. Current research status and prosperous of allelecheical in weeds control. Qinghai Prataculture, 2007, 16(3): 33-36. |
王宏生. 利用化感物质防除杂草研究现状及应用前景. 青海草业, 2007, 16(3): 33-36. | |
6 | Zhang G F, Xie T P, Du G Z. Variation in floral sex allocation, female success, and seed predation within racemiform synflorescence in the gynomonoecious Ligularia virgaurea (Asteraceae). Journal of Plant Research, 2012, 125(4): 527-538. |
7 | Xie T P, Zhang G F, Zhao Z G, et al. Intraspecific competition and light effect on reproduction of Ligularia virgaurea, an invasive native alpine grassland clonal herb. Ecology and Evolution, 2014, 4(6): 817-825. |
8 | Shi G X, Wang W Y, Jiang S J, et al. Effects of the spreading of Ligularia virgaurea on soil physicochemical property and microbial functional diversity. Chinese Journal of Plant Ecology, 2018, 42(1): 126-132. |
石国玺, 王文颖, 蒋胜竞, 等.黄帚橐吾种群扩张对土壤理化特性与微生物功能多样性的影响. 植物生态学报, 2018, 42(1): 126-132. | |
9 | Wang M T, Zhao Z G, Du G Z, et al. Effects of light on the growth and clonal reproduction of Ligularia virgaurea. Journal of Integrative Plant Biology, 2008(8): 1015-1023. |
10 | Shi X M, Li X G, Wu R M, et al. Changes in soil biochemical properties associated with Ligularia virgaurea spreading in grazed alpine meadows. Plant and Soil, 2011, 347(1、2): 65-78. |
11 | Yu H Y. Study on influence of appiying herbicide to control Ligularia virgaurea on grassland vegetation. Qinghai Prataculture, 2018, 27(2): 14-16. |
于红妍. 不同药剂防除黄帚橐吾对草地植被的影响研究. 青海草业, 2018, 27(2): 14-16. | |
12 | Wang H S, Bao G S, Song M L, et al. Effects of using “Qingtuo No.1”to control Ligularia virgaurea on grassland community and productivity. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2018, 48(5): 1-5. |
王宏生, 鲍根生, 宋梅玲, 等. 应用“清橐1号”防除黄帚橐吾对草地群落及生产力的影响. 青海畜牧兽医杂志, 2018, 48(5): 1-5. | |
13 | Li Y Y, Dong S K, Liu S, et al. The interaction between poisonous plants and soil quality in response to grassland degradation in the alpine region of the Qinghai-Tibetan Plateau. Plant Ecology, 2014, 215(8): 809-819. |
14 | Ma S F, Deng J, Diao Z M, et al. Present research situation, comprehensive utilization and control countermeasures of Stellera chamaejasme in Qinghai. Qinghai Prataculture, 2007(1): 17-21. |
马寿福, 邓君, 刁治民, 等. 青海省狼毒研究现状、综合利用及防治. 青海草业, 2007(1): 17-21. | |
15 | Liu X W, Zhou Y L, Qi C M, et al. Effects of Mikania micrantha invasion on soil nutrient contents and enzyme activities. Ecology and Environmental Sciences, 2012, 21(12): 1960-1965. |
刘小文, 周益林, 齐成媚, 等. 入侵植物薇甘菊对土壤养分和酶活性的影响. 生态环境学报, 2012, 21(12): 1960-1965. | |
16 | Yang W, An S Q, Zhao H, et al. Impacts of Spartina alterniflora invasion on soil organic carbon and nitrogen pools sizes, stability, and turnover in a coastal salt marsh of eastern China. Ecological Engineering, 2016, 86: 174-182. |
17 | Bao G S, Wang Y Q, Song M L, et al. Effects of Stellera chamaejasme patches on the surrounding grassland community and on soil physical-chemical properties in degraded grasslands susceptible to S.chamaejasme invasion. Acta Prataculturae Sinica, 2019, 28(3): 51-61. |
鲍根生, 王玉琴, 宋梅玲, 等. 狼毒斑块对狼毒型退化草地植被和土壤理化性质影响的研究. 草业学报, 2019, 28(3): 51-61. | |
18 | Ma J G, Hou F J, Bowatte S. Effects of toxic plants on soil physicochemical properties and soil microbial abundance in an alpine meadow on the Qinghai-Tibetan Plateau. Pratacultural Science, 2019, 36(12): 3033-3040. |
马建国, 侯扶江, Bowatte S. 青藏高原高寒草甸有毒植物对土壤理化性质和土壤微生物丰度的影响. 草业科学, 2019, 36(12): 3033-3040. | |
19 | Bao S D. Soil agro-chemical analysis. Beijing: China Agriculture Press, 2005. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2005. | |
20 | Lin X G. Principles and methods of soil microbial research. Beijing: Higher Education Press, 2010. |
林先贵. 土壤微生物研究原理与方法. 北京: 高等教育出版社, 2010. | |
21 | Wang K, Shangguan Z. Seasonal variations in leaf C, N, and P stoichiometry of typical plants in the Yangou watershed in the loess hilly gully region. Acta Ecologica Sinica, 2011, 31(3): 62-64. |
22 | Wang K, Gao S, Liu H B, et al. Effects of nitrogen and water addition on C, N, P stoichiometry in different organs of poplar seedlings. Chinese Journal of Ecology, 2021, 40(12): 3870-3880. |
王凯, 高爽, 刘焕彬, 等. 施氮与增水对杨树幼苗不同器官碳氮磷化学计量的影响. 生态学杂志, 2021, 40(12): 3870-3880. | |
23 | He J S, Fang J, Wang Z, et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 2006, 149(1): 115-122. |
24 | Güsewell S. N∶P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 2010, 164(2): 243-266. |
25 | Herbert D A, Williams M, Rastetter E B. A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry, 2003, 65: 121-150. |
26 | She S F, Hu Y F, Shu X Y, et al. Variation of C, N and P stoichiometry in dominant understory plants during stand development in Salix cupularis plantations in alpine grassland in Northwestern Sichuan, China. Acta Prataculturae Sinica, 2018, 27(4): 123-130. |
佘淑凤, 胡玉福, 舒向阳, 等. 川西北高寒沙地不同年限高山柳林下优势植物碳、氮、磷生态化学计量特征. 草业学报, 2018, 27(4): 123-130. | |
27 | Liu Z, Tian D, Huang Z J, et al. Characteristics of soil and foliar N and P concentrations and stoichiometric ratio along restoration ages of Pinus massoniana plantations in red soils erosion regions of southern China. Chinese Journal of Applied and Environmental Biology, 2019, 25(4): 768-775. |
刘政, 田地, 黄梓敬, 等. 南方红壤侵蚀区不同恢复年限马尾松人工林土壤和叶片氮磷养分含量及生态化学计量特征. 应用与环境生物学报, 2019, 25(4): 768-775. | |
28 | Fan J W, Gao Y G. The role of nitrogen fixation of legume herbage in mixture pasture. Grassland of China, 1994(6): 64-69, 73. |
樊江文, 高永革. 混播草地中豆科牧草的固氮作用. 中国草地, 1994(6): 64-69, 73. | |
29 | Wan F, Meng Z J, Dang X H, et al. C, N and P ecological stoichiometry characteristics of a Stipa species plant-soil system subject to grazing exclusion in a desert steppe. Acta Prataculturae Sinica, 2020, 29(9): 49-55. |
万芳, 蒙仲举, 党晓宏, 等. 封育措施下荒漠草原针茅植物-土壤C、N、P化学计量特征. 草业学报, 2020, 29(9): 49-55. | |
30 | Yu R X, Wang L, Yang X G, et al. C, N, P stoichiometric characteristics of different dominant species in Stipa Breviflora desert steppe. Bulletin of Soil and Water Conservation, 2019, 39(4): 36-43. |
于瑞鑫, 王磊, 杨新国, 等. 短花针茅荒漠草原不同斑块优势种植物的C,N,P化学计量特征. 水土保持通报, 2019, 39(4): 36-43. | |
31 | Ehrenfeld J G. Effects of exotic plant invasiona on soil nutrient cycling processes. Ecosystems, 2003, 6(6): 503-523. |
32 | Cheng M, An S S. Responses of soil nitrogen, phosphorous and organic matter to vegetation succession on the Loess Plateau of China. Journal of Arid Land, 2015, 7(2): 216-223. |
33 | Zhang H D, Ru H L, Jiao F, et al. C, N, P, K stoichiometric characteristic of leaves, root and soil in different abandoned years in Loess Plateau. Environmental Science, 2016, 37(3): 1128-1138. |
张海东, 汝海丽, 焦峰, 等. 黄土丘陵区退耕时间序列梯度上草本植被群落与土壤C、N、P、K化学计量学特征. 环境科学, 2016, 37(3): 1128-1138. | |
34 | Zhang G S, Deng H J, Du K, et al. Soil stoichiometry characteristics at different elevation gradients of a mountain in an area with high frequency debris flow: A case study in Xiaojiang Watershed, Yunnan. Acta Ecologica Sinica, 2016, 36(3): 675-687. |
张广帅, 邓浩俊, 杜锟, 等. 泥石流频发区山地不同海拔土壤化学计量特征——以云南省小江流域为例. 生态学报, 2016, 36(3): 675-687. | |
35 | Wang Y Q, Song M L, Bao G S, et al. Variation of C, N and P stoichiometry in plant and soil after removal Stellera chamaejasme in Stellera chamaejasme patches. Acta Ecologica Sinica, 2021, 41(15): 6280-6288. |
王玉琴, 宋梅玲, 鲍根生, 等. 防除狼毒对狼毒斑块植物-土壤C、N、P化学计量特征的影响. 生态学报, 2021, 41(15): 6280-6288. | |
36 | Yu L H, Wang J, Liao L R, et al. Soil microbial biomass, enzyme activities and ecological stoichiometric characteristics and influencing factors along degraded meadows on the Qinghai-Tibet Plateau. Acta Agrestia Sinica, 2020, 28(6): 1702-1710. |
喻岚晖, 王杰, 廖李容, 等. 青藏高原退化草甸土壤微生物量、酶化学计量学特征及其影响因素. 草地学报, 2020, 28(6): 1702-1710. | |
37 | Wang H H, Ren T B, Yuan Y, et al. Combined application of biomass charcoal and nitrogen fertilizer: Effects on microbial biomass C, microbial biomass N and C/N in tobacco soil. Chinese Agricultural Science Bulletin, 2017, 33(12): 52-57. |
王欢欢, 任天宝, 元野, 等. 生物质炭与氮肥配施对植烟土壤微生物量碳、氮和碳氮比的影响. 中国农学通报, 2017, 33(12): 52-57. |
[1] | Guo-hong YOU, Dan LIU, Yan-li WANG, Chang-ting WANG. Response of plant leaf ecological stoichiometric characteristics to long-term nitrogen addition in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(9): 50-62. |
[2] | Ying TIAN, Zhe XU, Li-zhen ZHU, Jun WANG, Xue-fei WEN. Effect of cutting time during the growing season on the soil bacterial community under an artificial Caragana intermedia plantation [J]. Acta Prataculturae Sinica, 2022, 31(5): 40-50. |
[3] | Li-tao TANG, Rui MAO, Chang-ting WANG, Jie LI, Lei HU, Hong-biao ZI. Effects of nitrogen and phosphorus addition on root characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2021, 30(9): 105-116. |
[4] | Ying MA, Zhi-hao XU, Qiao-hong ZENG, Jian-long MENG, Ya-hu HU, Jie-qiong SU. Impact of nitrogen addition on stoichiometric characteristics of herbaceous species in desert steppe [J]. Acta Prataculturae Sinica, 2021, 30(6): 64-72. |
[5] | Zhong-chao SUN, Tian-dou GUO, Lu YU, Yan-ping MA, Ya-nan ZHAO, Xue-ying LI, Hong-mei WANG. Changes in soil particle size distribution and fractal characteristics across an anthropogenic transition from desert steppe grassland to shrubland in eastern Ningxia [J]. Acta Prataculturae Sinica, 2021, 30(4): 34-45. |
[6] | Chao ZHANG, Rui-rui YAN, Qing-wei LIANG, Ri-su NA, Tong LI, Xiu-fang YANG, Yu-hai BAO, Xiao-ping XIN. Study on soil physical and chemical properties and carbon and nitrogen sequestration of grassland under different utilization modes [J]. Acta Prataculturae Sinica, 2021, 30(4): 90-98. |
[7] | Ju-hong WANG, Ze-xuan XU, Wen CHEN, Hui ZHU, Long-jun HUANG, Jia-wei LI. The stoichiometric characteristics of Alternanthera philoxeroides with different invasive degrees and their comparison with the coexisting species Gomphrena celosioides [J]. Acta Prataculturae Sinica, 2021, 30(2): 115-123. |
[8] | Mei XIONG, Ji-rong QIAO, Yang YANG, Feng ZHANG, Jia-hua ZHENG, Jian-xin WU, Meng-li ZHAO. Stocking rate effects on stoichiometric characteristics of the steppe grassland pioneer species Stipabreviflora and its underlying soil [J]. Acta Prataculturae Sinica, 2021, 30(2): 212-219. |
[9] | Da-cheng SONG, Li-de WANG, Hao WU, Chun-rong WU, He-ran ZHAO, Sheng-hui HAN, Bao-yi XU. A study of change in soil characteristics with recovery time in degraded grassland in Minqin [J]. Acta Prataculturae Sinica, 2021, 30(2): 59-68. |
[10] | Jing-jing ZHANG, Zun-chi LIU, Chuang YAN, Yun-xia WANG, Kai LIU, Xin-rong SHI, Zhi-you YUAN. Effects of soil pH on soil carbon, nitrogen, and phosphorus ecological stoichiometry in three types of steppe [J]. Acta Prataculturae Sinica, 2021, 30(2): 69-81. |
[11] | Wen ZHAO, Ya-li YIN, Shi-xiong LI, Yan LIU, Jing-jing LIU, Yi-ling DONG, Shi-feng SU, Ling-he JI. The characteristics of bacterial communities in different vegetation types in the Qilian Mountains [J]. Acta Prataculturae Sinica, 2021, 30(12): 161-171. |
[12] | Jiao SUN, Jin-xiu LIANG, De-jie KONG, Xin-nian GUO, Yong-dong WEI, Tao ZHOU. Effects of biochar and straw on the C∶N∶P stoichiometry of soil, microbes, and extracellular enzymes in an aeolian sandy soil [J]. Acta Prataculturae Sinica, 2021, 30(11): 29-39. |
[13] | Zhao-bi CHE, Peng-fei XU, Ya-ya GUO, Jia-min CAO, Xing-yu HUANG, Han-jun YANG, Wei-hua LU. Effects of the ant species Formica aquilonia on soil seed banks in mountain meadows [J]. Acta Prataculturae Sinica, 2021, 30(11): 40-51. |
[14] | WAN Fang, MENG Zhong-ju, DANG Xiao-hong, WANG Rui-dong, ZHANG Hui-min. C, N and P ecological stoichiometry characteristics of a Stipa species plant-soil system subject to grazing exclusion in a desert steppe [J]. Acta Prataculturae Sinica, 2020, 29(9): 49-55. |
[15] | WANG Hong-yi, DING Rui, WANG Zhi-hui, YANG Feng-jun. Effects of nitrogen and phosphorus addition on C∶N∶P ecological stoichiometry in leaves and roots of different canopy species in Hulunbuir grassland [J]. Acta Prataculturae Sinica, 2020, 29(8): 37-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||