Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (10): 41-52.DOI: 10.11686/cyxb2021476
Previous Articles Next Articles
Yong-hong WANG1(), Li-ming TIAN2, Yi AI1, Shi-yong CHEN3(), Tserang-donko MIPAM1()
Received:
2021-12-22
Revised:
2022-04-13
Online:
2022-10-20
Published:
2022-09-14
Contact:
Shi-yong CHEN,Tserang-donko MIPAM
Yong-hong WANG, Li-ming TIAN, Yi AI, Shi-yong CHEN, Tserang-donko MIPAM. Effects of short-term yak grazing on soil fungal communities in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2022, 31(10): 41-52.
环境指标 Environmental indicators | 对照组 Control | 轻度放牧 Light grazing | 中度放牧 Moderate grazing | 重度放牧 Heavy grazing |
---|---|---|---|---|
丰富度 Richness | 25.50±0.50a | 25.92±2.77a | 29.33±2.50a | 26.67±2.13a |
多样性Shannon-Wiener | 2.34±0.11b | 2.39±0.17ab | 2.53±0.21a | 2.63±0.06a |
均匀度 Pielou | 0.69±0.03b | 0.74±0.04ab | 0.75±0.05ab | 0.80±0.01a |
地上净初级生产力ANPP (g·cm-2) | 299.52±17.83b | 426.51±88.17a | 448.47±43.29a | 336.34±62.99ab |
含水率Soil moisture (%) | 21.26±3.03a | 24.70±2.29a | 24.96±1.36a | 24.45±3.65a |
土壤容重Bulk density (g·cm-3) | 1.32±0.02a | 1.19±0.02b | 1.25±0.02ab | 1.18±0.08b |
全氮 TN (g·kg-1) | 2.97±0.24a | 3.21±0.22a | 3.18±0.26a | 3.62±0.53a |
全磷 TP (g·kg-1) | 0.77±0.03a | 0.89±0.07a | 0.82±0.06a | 0.81±0.13a |
全钾 TK (g·kg-1) | 16.97±1.04a | 17.00±1.09a | 16.42±0.83a | 15.75±0.36a |
碱解氮 AN (mg·kg-1) | 225.44±34.75a | 272.34±30.98a | 268.34±21.74a | 273.44±34.00a |
速效磷 AP (mg·kg-1) | 3.96±0.53b | 4.50±0.38ab | 5.08±1.00ab | 5.53±0.35a |
速效钾 AK (mg·kg-1) | 134.68±67.78a | 161.61±55.06a | 192.38±15.37a | 165.06±38.52a |
pH | 5.92±0.09a | 5.83±0.06ab | 5.68±0.05c | 5.74±0.05bc |
有机质 SOM (g·kg-1) | 66.88±6.10a | 74.28±0.91a | 64.86±8.22a | 68.81±9.46a |
Table 1 Effect of different grazing intensities on environmental factors
环境指标 Environmental indicators | 对照组 Control | 轻度放牧 Light grazing | 中度放牧 Moderate grazing | 重度放牧 Heavy grazing |
---|---|---|---|---|
丰富度 Richness | 25.50±0.50a | 25.92±2.77a | 29.33±2.50a | 26.67±2.13a |
多样性Shannon-Wiener | 2.34±0.11b | 2.39±0.17ab | 2.53±0.21a | 2.63±0.06a |
均匀度 Pielou | 0.69±0.03b | 0.74±0.04ab | 0.75±0.05ab | 0.80±0.01a |
地上净初级生产力ANPP (g·cm-2) | 299.52±17.83b | 426.51±88.17a | 448.47±43.29a | 336.34±62.99ab |
含水率Soil moisture (%) | 21.26±3.03a | 24.70±2.29a | 24.96±1.36a | 24.45±3.65a |
土壤容重Bulk density (g·cm-3) | 1.32±0.02a | 1.19±0.02b | 1.25±0.02ab | 1.18±0.08b |
全氮 TN (g·kg-1) | 2.97±0.24a | 3.21±0.22a | 3.18±0.26a | 3.62±0.53a |
全磷 TP (g·kg-1) | 0.77±0.03a | 0.89±0.07a | 0.82±0.06a | 0.81±0.13a |
全钾 TK (g·kg-1) | 16.97±1.04a | 17.00±1.09a | 16.42±0.83a | 15.75±0.36a |
碱解氮 AN (mg·kg-1) | 225.44±34.75a | 272.34±30.98a | 268.34±21.74a | 273.44±34.00a |
速效磷 AP (mg·kg-1) | 3.96±0.53b | 4.50±0.38ab | 5.08±1.00ab | 5.53±0.35a |
速效钾 AK (mg·kg-1) | 134.68±67.78a | 161.61±55.06a | 192.38±15.37a | 165.06±38.52a |
pH | 5.92±0.09a | 5.83±0.06ab | 5.68±0.05c | 5.74±0.05bc |
有机质 SOM (g·kg-1) | 66.88±6.10a | 74.28±0.91a | 64.86±8.22a | 68.81±9.46a |
处理 Treatment | Chao 1丰富度 Chao 1 richness | Shannon多样性 Shannon-Wiener diversity | ||||
---|---|---|---|---|---|---|
平均值 Mean | F | P | 平均值 Mean | F | P | |
对照组 Control | 424.72±34.02 | 0.769 | 0.543 | 5.5833±0.5349 | 0.352 | 0.789 |
轻度放牧 Light grazing | 526.89±72.22 | 6.0477±0.6021 | ||||
中度放牧 Moderate grazing | 504.79±47.69 | 5.6767±0.8937 | ||||
重度放牧 Heavy grazing | 502.67±42.08 | 6.3700±0.1795 |
Table 2 Results of One-way ANOVA analysis of soil fungal community α diversity at different grazing intensities
处理 Treatment | Chao 1丰富度 Chao 1 richness | Shannon多样性 Shannon-Wiener diversity | ||||
---|---|---|---|---|---|---|
平均值 Mean | F | P | 平均值 Mean | F | P | |
对照组 Control | 424.72±34.02 | 0.769 | 0.543 | 5.5833±0.5349 | 0.352 | 0.789 |
轻度放牧 Light grazing | 526.89±72.22 | 6.0477±0.6021 | ||||
中度放牧 Moderate grazing | 504.79±47.69 | 5.6767±0.8937 | ||||
重度放牧 Heavy grazing | 502.67±42.08 | 6.3700±0.1795 |
1 | Xie G D, Lu C X, Leng Y F, et al. Ecological assets valuation of the Tibetan Plateau. Journal of Natural Resources, 2003, 18(2): 189-196. |
谢高地, 鲁春霞, 冷允法, 等. 青藏高原生态资产的价值评估. 自然资源学报, 2003, 18(2): 189-196. | |
2 | Zhang Y L, Liu L S, Wang Z F, et al. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau. Chinese Science Bulletin, 2019, 64(27): 2865-2875. |
张镱锂, 刘林山, 王兆锋, 等. 青藏高原土地利用与覆被变化的时空特征. 科学通报, 2019, 64(27): 2865-2875. | |
3 | Yang Y S, Li H Q, Zhang L, et al. Characteristics of soil water percolation and dissolved organic carbon leaching and their response to long-term fencing in an alpine meadow on the Tibetan Plateau. Environmental Earth Sciences, 2016, 75(23): 1-10. |
4 | Piao S L, Fang J Y, He J S, et al. Spatial distribution of grassland biomass in China. Chinese Journal of Plant Ecology, 2004, 28(4): 491-498. |
朴世龙, 方精云, 贺金生, 等. 中国草地植被生物量及其空间分布格局. 植物生态学报, 2004, 28(4): 491-498. | |
5 | Yang Y F, Wu L W, Lin Q Y, et al. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Global Change Biology, 2013, 19(2): 637-648. |
6 | Zhou H K, Zhao X Q, Zhou L, et al. A study on correlations between vegetation degradation and soil degradation in the “Alpine Meadow” of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2005, 14(3): 31-40. |
周华坤, 赵新全, 周立, 等. 青藏高原高寒草甸的植被退化与土壤退化特征研究. 草业学报, 2005, 14(3): 31-40. | |
7 | Zhang X S, Tang H P, Dong X B, et al. The dilemma of steppe and it’s transformation in China. Chinese Science Bulletin, 2016, 61(2): 165-177. |
张新时, 唐海萍, 董孝斌, 等. 中国草原的困境及其转型. 科学通报, 2016, 61(2): 165-177. | |
8 | Ren J Z. Grazing, the basic form of grassland ecosystem and its transformation. Journal of Natural Resources, 2012, 27(8): 1259-1275. |
任继周. 放牧、草原生态系统存在的基本方式-兼论放牧的转型. 自然资源学报, 2012, 27(8): 1259-1275. | |
9 | Delgado-Baquerizo M, Maestre F T, Reich P B, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 2016, 7(1): 1-8. |
10 | Bagchi S, Ritchie M E. Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition. Ecology Letters, 2010, 13(8): 959-968. |
11 | Piccini C, Conde D, Pernthaler J, et al. Alteration of chromophoric dissolved organic matter by solar UV radiation causes rapid changes in bacterial community composition. Photochemical and Photobiological Sciences, 2009, 8(9): 1321-1328. |
12 | Xun W B, Yan R R, Ren Y, et al. Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe. Microbiome, 2018, 6(1): 1-13. |
13 | Wang X X, Zhang W, Liu Y, et al. Identification of microbial strategies for labile substrate utilization at phylogenetic classification using a microcosm approach. Soil Biology and Biochemistry, 2021, 153: 107970. |
14 | Tedersoo L, Bahram M, Põlme S, et al. Global diversity and geography of soil fungi. Science, 2014, 346(6213): 1052-1053. |
15 | Yang T, Adams J M, Shi Y, et al. Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity. New Phytologist, 2017, 215(2): 756-765. |
16 | Fan D D, Kong W D, Wang F, et al. Fencing decreases microbial diversity but increases abundance in grassland soils on the Tibetan Plateau. Land Degradation & Development, 2020, 31(17): 2577-2590. |
17 | Wang J T, Zheng Y M, Hu H W, et al. Soil pH determines the alpha diversity but not beta diversity of soil fungal community along altitude in a typical Tibetan forest ecosystem. Journal of Soils and Sediments, 2015, 15(5): 1224-1232. |
18 | Liu M, Mipam T D, Wang X X, et al. Contrasting effects of mammal grazing on foliar fungal diseases: patterns and potential mechanisms. New Phytologist, 2021, 232(1): 345-355. |
19 | Eldridge D J, Delgado-Baquerizo M. Functional groups of soil fungi decline under grazing. Plant and Soil, 2018, 426(1/2): 51-60. |
20 | Yang X, Chen J S, Shen Y, et al. Global negative effects of livestock grazing on arbuscular mycorrhizas: A meta-analysis. Science of the Total Environment, 2020, 708: 134553. |
21 | Mipam T D, Chen S Y, Liu J Q, et al. Short-term yak-grazing alters plant-soil stoichiometric relations in an alpine meadow on the eastern Tibetan Plateau. Plant and Soil, 2021, 458(1/2SI): 125-137. |
22 | Barberan A, Bates S T, Casamayor E O, et al. Using network analysis to explore co-occurrence patterns in soil microbial communities. The International Society for Microbial Ecology Journal, 2012, 6(2): 343-351. |
23 | Guidi L, Chaffron S, Bittner L, et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature, 2016, 532(7600): 465-470. |
24 | Mipam T D, Zhong L L, Liu J Q, et al. Productive overcompensation of alpine meadows in response to yak grazing in the eastern Qinghai-Tibet Plateau. Frontiers in Plant Science, 2019, 10: 925. |
25 | Bao S D. Soil analysis in agricultural chemistry. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
26 | Eldridge D J, Delgado-Baquerizo M, Travers S K, et al. Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores. Ecology, 2017, 98(7): 1922-1931. |
27 | Vidal A, Schucknecht A, Toechterle P, et al. High resistance of soils to short-term re-grazing in a long-term abandoned alpine pasture. Agriculture, Ecosystems & Environment, 2020, 300: 107008. |
28 | Yang W G. Effects of yak dung decomposition on plant community characteristics and soil microenvironment of alpine meadow in Northwest Sichuan, China. Chengdu: Southwest Minzu University, 2020. |
杨文高. 牦牛粪分解对川西北高寒草甸植物群落和土壤微环境的影响. 成都: 西南民族大学, 2020. | |
29 | Singh S, Madlala A M, Prior B A. Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiology Reviews, 2003, 27(1): 3-16. |
30 | Fontaine S, Henault C, Aamor A, et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology and Biochemistry, 2011, 43(1): 86-96. |
31 | Hu J, Wu J, Ma M, et al. Nematode communities response to long-term grazing disturbance on Tibetan plateau. European Journal of Soil Biology, 2015, 100(69): 24-32. |
32 | Bauhus J, Khanna P K. Carbon and nitrogen turnover in two acid forest soils of southeast Australia as affected by phosphorus addition and drying and rewetting cycles. Biology and Fertility of Soils, 1994, 17(3): 212-218. |
33 | Mori T, Lu X K, Aoyagi R, et al. Reconsidering the phosphorus limitation of soil microbial activity in tropical forests. Functional Ecology, 2018, 32(5): 1145-1154. |
34 | Liu Y R, Delgado-Baquerizo M, Trivedi P, et al. Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change. Soil Biology and Biochemistry, 2017, 107: 208-217. |
35 | Yao F, Yang S, Wang Z R, et al. Microbial taxa distribution is associated with ecological trophic cascades along an elevation gradient. Frontiers in Microbiology, 2017, 8: 2071. |
36 | Lehmann A, Zheng W S, Soutschek K, et al. Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi. Scientific Reports, 2019, 9(1): 1-9. |
37 | Hernandez D J, David A S, Menges E S, et al. Environmental stress destabilizes microbial networks. The International Society for Microbial Ecology Journal, 2021, 15(6): 1722-1734. |
38 | Wagg C, Schlaeppi K, Banerjee S, et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 2019, 10(1): 4841. |
39 | Allison S D, Martiny J B. Colloquium paper: resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(Suppl 1): 11512-11519. |
40 | Stouffer D B, Bascompte J. Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(9): 3648-3652. |
41 | Yin Y L, Wang Y Q, Li S X, et al. Effects of enclosing on soil microbial community diversity and soil stoichiometric characteristics in a degraded alpine meadow. Chinese Journal of Applied Ecology, 2019, 30(1): 127-136. |
尹亚丽, 王玉琴, 李世雄, 等. 围封对退化高寒草甸土壤微生物群落多样性及土壤化学计量特征的影响. 应用生态学报, 2019, 30(1): 127-136. | |
42 | Peng L, Shan X L, Yang Y Z, et al. Facultative symbiosis with a saprotrophic soil fungus promotes potassium uptake in American sweetgum trees. Plant, Cell & Environment, 2021, 44(8): 2793-2809. |
43 | Xu Z, Qu M S, Liu S L, et al. Carbon addition reduces labile soil phosphorus by increasing microbial biomass phosphorus in intensive agricultural systems. Soil Use and Management, 2020, 36(3): 536-546. |
44 | Liu J, Jia X Y, Yan W M, et al. Changes in soil microbial community structure during long‐term secondary succession. Land Degradation & Development, 2020, 31(9): 1151-1166. |
45 | Chai J L, Xu C L, Zhang J W, et al. Response of soil physical properties and microbial quantities to simulated trampling on alpine meadow. Acta Agrestia Sinica, 2016, 24(6): 1234-1240. |
柴锦隆, 徐长林, 张建文, 等. 高寒草甸土壤物理特性和微生物数量对模拟践踏的响应. 草地学报, 2016, 24(6): 1234-1240. | |
46 | Lin X R, Alspaugh J A, Liu H P, et al. Fungal morphogenesis. Cold Spring Harbor Perspectives in Medicine, 2015, 5(2): a19679. |
47 | Zheng Q, Hu Y, Zhang S, et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biology and Biochemistry, 2019, 136: 107521. |
[1] | Guo-hong YOU, Dan LIU, Yan-li WANG, Chang-ting WANG. Response of plant leaf ecological stoichiometric characteristics to long-term nitrogen addition in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(9): 50-62. |
[2] | Yan PENG, Jing-yuan SUN, Su-jie MA, Xiang-tao WANG, Xue-hong WEI, Lei SUN. Plant community composition and soil nutrient status of degraded alpine meadow sites in Northern Tibet [J]. Acta Prataculturae Sinica, 2022, 31(8): 49-60. |
[3] | Yu-zhuo ZHANG, Zhi-gui YANG, Hong-yan YU, Qiang ZHANG, Shu-xia YANG, Ting ZHAO, Hua-hua XU, Bao-ping MENG, Yan-yan LV. Estimating grassland above ground biomass based on the STARFM algorithm and remote sensing data——A case study in the Sangke grassland in Xiahe County, Gansu Province [J]. Acta Prataculturae Sinica, 2022, 31(6): 23-34. |
[4] | Yang LI, Yi WANG, Guo-dong HAN, Jian SUN, Ya-feng WANG. Soil microbial biomass carbon and nitrogen levels and their controlling factors in alpine grassland, Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2022, 31(6): 50-60. |
[5] | Xiao-lei ZHOU, Yue-e YAN, Jing ZHANG, Xu-jiao ZHOU, Yong-qin YAN, Fu-qiang YANG, Xue-ping CAO, An ZHAO, Yan-li ZHAO, Jing-yi SU. Vegetation community structure and diversity in a burned area of Picea asperata-Abies fabri forest on different aspects on the northeastern margin of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(5): 144-155. |
[6] | Yong-mei LIU, Xing-zhi DONG, Yong-qing LONG, Zhi-mei ZHU, Lei WANG, Xing-hua GE, Fan ZHAO, Jing-zhong LI. Classification of Stellera chamaejasme communities and their relationships with environmental factors in degraded alpine meadow in the central Qilian Mountains, Qinghai Province [J]. Acta Prataculturae Sinica, 2022, 31(4): 1-11. |
[7] | Xin LI, Xue WEI, Chang-ting WANG, Xiao REN, Peng-fei WU. Effects of exogenous nutrient addition on alpine meadow soil arthropod communities [J]. Acta Prataculturae Sinica, 2022, 31(4): 155-164. |
[8] | Jie SHEN, Lei DING, Xiao-ping XIN, Xiang ZHANG, Da-wei XU, Lu-lu HOU, Rui-rui YAN. Canopy scale characteristics of grassland under different grazing intensities based on UAV lidar and multispectral data [J]. Acta Prataculturae Sinica, 2022, 31(3): 1-15. |
[9] | Cai-cai SUN, Quan-min DONG, Wen-ting LIU, Bin FENG, Guang SHI, Yu-zhen LIU, Yang YU, Chun-ping ZHANG, Xiao-fang ZHANG, Cai-di LI, Zeng-zeng YANG, Xiao-xia YANG. Effects of grazing modes on the community structure and diversity of soil arthropod in an alpine meadow on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(2): 62-75. |
[10] | Li-tao TANG, Rui MAO, Chang-ting WANG, Jie LI, Lei HU, Hong-biao ZI. Effects of nitrogen and phosphorus addition on root characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2021, 30(9): 105-116. |
[11] | Wei ZHANG, Shu-hua YI, Yu QIN, Dong-hui SHANGGUAN, Yan QIN. Analysis of features and influencing factors of alpine meadow surface temperature based on UAV thermal thermography [J]. Acta Prataculturae Sinica, 2021, 30(3): 15-27. |
[12] | Wen-rong LUO, Guo-zheng HU, Ganjurjav H, Qing-zhu GAO, Yan LI, Yi-qing Ge, Yu LI, Shi-cheng HE, Luo-bu DANJIU. Effects of simulated drought on plant phenology and productivity in an alpine meadow in Northern Tibet [J]. Acta Prataculturae Sinica, 2021, 30(2): 82-92. |
[13] | WANG Xiu-yu, HUANG Xiao-xia, HE Ke-jian, SUN Xiao-neng, LÜZENG Zhe-zhou, ZHANG Yong, ZHU Mei, ZENG Rui-qin. The relationship between plant functional traits and soil physicochemical properties in alpine meadows in Northwestern Yunnan Province, China [J]. Acta Prataculturae Sinica, 2020, 29(8): 6-17. |
[14] | SUN Shi-xian, DING Yong, LI Xia-zi, WU Xin-hong, YAN Zhi-jian, YIN Qiang, LI Jin-zhuo. Effects of seasonal regulation of grazing intensity on soil erosion in desert steppe grassland [J]. Acta Prataculturae Sinica, 2020, 29(7): 23-29. |
[15] | XU Tian-wei, ZHAO Jiong-chang, MAO Shao-juan, GENG Yuan-yue, LIU Hong-jin, ZHAO Xin-quan, XU Shi-xiao. Response of plant community structure and biomass to short-term rest grazing in an alpine meadow in Haibei Autonomous Prefecture of Qinghai [J]. Acta Prataculturae Sinica, 2020, 29(4): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||