Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (1): 89-98.DOI: 10.11686/cyxb2021494
Previous Articles Next Articles
Tong PENG1,2(), Shao-lan MA3, Cai-xia MA3, Yan-fang SONG1,2, Na GAO1,2, Kai-le LI1,2, Chuan-ji ZHANG1,2, Jing-wen LI4, Xiao-fan NA1,2, Li-guang WANG4()
Received:
2021-12-28
Revised:
2022-04-09
Online:
2023-01-20
Published:
2022-11-07
Contact:
Li-guang WANG
Tong PENG, Shao-lan MA, Cai-xia MA, Yan-fang SONG, Na GAO, Kai-le LI, Chuan-ji ZHANG, Jing-wen LI, Xiao-fan NA, Li-guang WANG. Effects of long-term monocropping on soil microbial metabolic activity and diversity in topsoil and subsoil horizons of Lycium barbarum fields[J]. Acta Prataculturae Sinica, 2023, 32(1): 89-98.
底物 Substrate | 表层土壤Topsoil | 亚表层土壤Subsoil | ||
---|---|---|---|---|
r | P | r | P | |
β-甲基-D-葡萄糖苷β-methyl-D-glucoside | -0.136 | 0.557 | 0.038 | 0.870 |
D-半乳糖内酯D-galactonic acid γ-lactone | -0.074 | 0.751 | -0.093 | 0.688 |
L-精氨酸L-arginine | 0.015 | 0.950 | -0.212 | 0.356 |
丙酮酸甲酯Pyruvic acid methyl ester | -0.047 | 0.841 | -0.357 | 0.112 |
D-木糖D-xylose | 0.244 | 0.287 | 0.001 | 0.997 |
D-半乳糖醛酸D-galacturonic acid | 0.358 | 0.111 | -0.016 | 0.946 |
L-天冬酰胺酸L-asparagine | 0.139 | 0.548 | -0.206 | 0.371 |
吐温40 Tween 40 | 0.098 | 0.674 | -0.052 | 0.823 |
I-赤藻糖醇I-erythritol | -0.157 | 0.496 | 0.092 | 0.691 |
2-羟苯甲酸2-Hydroxy benzoic acid | -0.367 | 0.102 | -0.326 | 0.149 |
L-苯基丙氨酸L-phenylalanine | -0.093 | 0.689 | 0.354 | 0.116 |
吐温80 Tween 80 | 0.462 | 0.035* | 0.088 | 0.705 |
D-甘露醇D-mannitol | 0.042 | 0.858 | -0.300 | 0.187 |
4-羟基苯甲酸4-Hydroxy benzoic acid | 0.142 | 0.540 | -0.223 | 0.331 |
L-丝氨酸L-serine | 0.009 | 0.970 | -0.063 | 0.787 |
α-环式糊精α-cyclodextrin | 0.186 | 0.419 | 0.101 | 0.664 |
N-乙酰基-D-葡萄胺N-acetyl-D-glucosamine | -0.140 | 0.546 | 0.000 | 0.999 |
γ-羟基丁酸γ-hydroxybutyric acid | 0.222 | 0.333 | -0.268 | 0.240 |
L-苏氨酸L-threonine | 0.139 | 0.547 | -0.057 | 0.806 |
肝糖Glycogen | 0.416 | 0.061 | 0.261 | 0.253 |
D-葡萄氨酸D-glucosaminic acid | -0.126 | 0.586 | -0.560 | 0.008* |
衣康酸Itaconic acid | 0.434 | 0.050* | -0.068 | 0.770 |
甘氨酰-L-谷氨酸Glycyl-L-glutamic acid | 0.314 | 0.166 | 0.100 | 0.666 |
D-纤维二糖D-cellobiose | 0.174 | 0.450 | 0.166 | 0.471 |
葡萄糖-1-磷酸盐Glucose-1-phosphate | 0.036 | 0.877 | 0.286 | 0.209 |
α-丁酮酸α-ketobutyric acid | 0.210 | 0.362 | 0.303 | 0.182 |
苯乙基胺Phenylethyl-amine | 0.020 | 0.932 | -0.510 | 0.019* |
α-D-乳糖α-D-lactose | 0.180 | 0.436 | 0.059 | 0.800 |
D, L-α-甘油D, L-α-glycerol phosphate | 0.221 | 0.336 | 0.052 | 0.821 |
D-苹果酸D-malic acid | 0.354 | 0.116 | 0.170 | 0.460 |
腐胺Putrescine | 0.069 | 0.765 | -0.197 | 0.391 |
Table 1 Pearson’s correlation between stand age and the utilization rates of different carbon sources of soil microorganisms in L. barbarum fields
底物 Substrate | 表层土壤Topsoil | 亚表层土壤Subsoil | ||
---|---|---|---|---|
r | P | r | P | |
β-甲基-D-葡萄糖苷β-methyl-D-glucoside | -0.136 | 0.557 | 0.038 | 0.870 |
D-半乳糖内酯D-galactonic acid γ-lactone | -0.074 | 0.751 | -0.093 | 0.688 |
L-精氨酸L-arginine | 0.015 | 0.950 | -0.212 | 0.356 |
丙酮酸甲酯Pyruvic acid methyl ester | -0.047 | 0.841 | -0.357 | 0.112 |
D-木糖D-xylose | 0.244 | 0.287 | 0.001 | 0.997 |
D-半乳糖醛酸D-galacturonic acid | 0.358 | 0.111 | -0.016 | 0.946 |
L-天冬酰胺酸L-asparagine | 0.139 | 0.548 | -0.206 | 0.371 |
吐温40 Tween 40 | 0.098 | 0.674 | -0.052 | 0.823 |
I-赤藻糖醇I-erythritol | -0.157 | 0.496 | 0.092 | 0.691 |
2-羟苯甲酸2-Hydroxy benzoic acid | -0.367 | 0.102 | -0.326 | 0.149 |
L-苯基丙氨酸L-phenylalanine | -0.093 | 0.689 | 0.354 | 0.116 |
吐温80 Tween 80 | 0.462 | 0.035* | 0.088 | 0.705 |
D-甘露醇D-mannitol | 0.042 | 0.858 | -0.300 | 0.187 |
4-羟基苯甲酸4-Hydroxy benzoic acid | 0.142 | 0.540 | -0.223 | 0.331 |
L-丝氨酸L-serine | 0.009 | 0.970 | -0.063 | 0.787 |
α-环式糊精α-cyclodextrin | 0.186 | 0.419 | 0.101 | 0.664 |
N-乙酰基-D-葡萄胺N-acetyl-D-glucosamine | -0.140 | 0.546 | 0.000 | 0.999 |
γ-羟基丁酸γ-hydroxybutyric acid | 0.222 | 0.333 | -0.268 | 0.240 |
L-苏氨酸L-threonine | 0.139 | 0.547 | -0.057 | 0.806 |
肝糖Glycogen | 0.416 | 0.061 | 0.261 | 0.253 |
D-葡萄氨酸D-glucosaminic acid | -0.126 | 0.586 | -0.560 | 0.008* |
衣康酸Itaconic acid | 0.434 | 0.050* | -0.068 | 0.770 |
甘氨酰-L-谷氨酸Glycyl-L-glutamic acid | 0.314 | 0.166 | 0.100 | 0.666 |
D-纤维二糖D-cellobiose | 0.174 | 0.450 | 0.166 | 0.471 |
葡萄糖-1-磷酸盐Glucose-1-phosphate | 0.036 | 0.877 | 0.286 | 0.209 |
α-丁酮酸α-ketobutyric acid | 0.210 | 0.362 | 0.303 | 0.182 |
苯乙基胺Phenylethyl-amine | 0.020 | 0.932 | -0.510 | 0.019* |
α-D-乳糖α-D-lactose | 0.180 | 0.436 | 0.059 | 0.800 |
D, L-α-甘油D, L-α-glycerol phosphate | 0.221 | 0.336 | 0.052 | 0.821 |
D-苹果酸D-malic acid | 0.354 | 0.116 | 0.170 | 0.460 |
腐胺Putrescine | 0.069 | 0.765 | -0.197 | 0.391 |
Fig.4 Analysis of the explanatory factors for the shift in soil microbial substrate utilization profile of L. barbarum fields using variance partitioning analysis
微生物群落水平生理特征 Community-level physiological profiles (CLPP) | 所有样本All sample | 表层土壤Topsoil | 亚表层土壤Subsoil | |||
---|---|---|---|---|---|---|
r | P | r | P | r | P | |
土壤理化性质Soil abiotic property | 0.265 | 0.001** | 0.181 | 0.081 | 0.287 | 0.001** |
土壤酶活性Soil enzyme activity | 0.084 | 0.150 | 0.011 | 0.423 | -0.091 | 0.786 |
土壤微生物特征Soil microbial character | 0.214 | 0.013* | 0.075 | 0.257 | 0.073 | 0.227 |
细菌群落组成Bacterial community composition | 0.065 | 0.114 | 0.008 | 0.441 | 0.036 | 0.251 |
真菌群落组成Fungal community composition | 0.140 | 0.038* | 0.084 | 0.208 | 0.125 | 0.114 |
Table 2 Mantel test detects the relationships between soil microbial community-level physiological profiles and soil abiotic property, enzyme activity, and soil microbial community composition in L. barbarum fields
微生物群落水平生理特征 Community-level physiological profiles (CLPP) | 所有样本All sample | 表层土壤Topsoil | 亚表层土壤Subsoil | |||
---|---|---|---|---|---|---|
r | P | r | P | r | P | |
土壤理化性质Soil abiotic property | 0.265 | 0.001** | 0.181 | 0.081 | 0.287 | 0.001** |
土壤酶活性Soil enzyme activity | 0.084 | 0.150 | 0.011 | 0.423 | -0.091 | 0.786 |
土壤微生物特征Soil microbial character | 0.214 | 0.013* | 0.075 | 0.257 | 0.073 | 0.227 |
细菌群落组成Bacterial community composition | 0.065 | 0.114 | 0.008 | 0.441 | 0.036 | 0.251 |
真菌群落组成Fungal community composition | 0.140 | 0.038* | 0.084 | 0.208 | 0.125 | 0.114 |
1 | Lee S R, An M Y, Hwang H J, et al. Antioxidant effect of Lycium barbarum leaf through inflammatory and endoplasmic reticulum stress mechanism. Antioxidants, 2020, DOI: 10.3390/ANTIOX10010020. |
2 | Luo Q, Cai Y, Yan J, et al. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sciences, 2004, 76(2): 137-149. |
3 | Wei Y, Xu X, Tao H, et al. Growth performance and physiological response in the halophyte Lycium barbarum grown at salt-affected soil. Annals of Applied Biology, 2006, 149(3): 263-269. |
4 | Li Y K, Ma Q L, Wang Y L, et al. Effects of medlar planting on active organic carbon and carbon pool management index in secondary salinized soil. Arid Zone Research, 2015, 32(2): 235-239. |
李银科, 马全林, 王耀琳, 等. 种植枸杞对次生盐渍化土壤活性有机碳和碳库管理指数的影响. 干旱区研究, 2015, 32(2): 235-239. | |
5 | Intelligence Research Group. Forecast report on operation dynamics and investment trend of Chinese wolfberry industry from 2022 to 2028. Beijing: Intelligence Research Group, 2021: 7-11. |
智研咨询. 2022-2028年中国枸杞行业运行动态及投资趋势预测报告. 北京: 智研咨询, 2021: 7-11. | |
6 | Li Y X, Zhang X J, Liu X T, et al. Variation of soil fertility in wolfberry orchards of different growing years. Ningxia Journal of Agriculture and Forestry Science and Technology, 2018, 59(9): 48-50. |
李云翔, 张学军, 刘晓彤, 等. 不同种植年限枸杞园土壤肥力变异特征. 宁夏农林科技, 2018, 59(9): 48-50. | |
7 | Na X F, Zheng G Q, Peng L, et al. Microbial biodiversity in rhizosphere of Lycium bararum L. relative to cultivation history. Acta Pedologica Sinica, 2016, 53(1): 241-252. |
纳小凡, 郑国琦, 彭励, 等. 不同种植年限宁夏枸杞根际微生物多样性变化. 土壤学报, 2016, 53(1): 241-252. | |
8 | Zhang J H, Zheng G Q. Soil nematode community structure in the rhizosphere of Lycium barbarum. Chinese Journal of Applied Ecology, 2016, 27(5): 1647-1656. |
张俊华, 郑国琦. 宁夏枸杞根际土壤线虫群落特征. 应用生态学报, 2016, 27(5): 1647-1656. | |
9 | Xu S R, Zhang E H, Ma R L, et al. Effects of planting years on the root system and soil environment of Lycium barbarum L. Acta Agronomica Sinica, 2018, 44(11): 1725-1732. |
胥生荣, 张恩和, 马瑞丽, 等. 不同种植年限对枸杞根系及土壤环境的影响. 作物学报, 2018, 44(11): 1725-1732. | |
10 | Ma S L, Ma C X, Xu P X, et al. Effects of long-term monocropping of Lycium barbarum L. on function and composition of fungal community in rhizosphere of replanted Lycium barbarum L. Acta Pedologica Sinica, 2019, 56(6): 1493-1503. |
马少兰, 马彩霞, 徐鹏鑫, 等. 再植枸杞根际真菌群落对长期连作的响应研究. 土壤学报, 2019, 56(6): 1493-1503. | |
11 | Na X, Ma C, Ma S, et al. Monocropping decouples plant-bacteria interaction and strengthens phytopathogenic fungi colonization in the rhizosphere of a perennial plant species. Plant and Soil, 2019, 445(1): 549-564. |
12 | Na X, Ma S, Ma C, et al. Lycium barbarum L. (goji berry) monocropping causes microbial diversity loss and induces Fusarium spp. enrichment at distinct soil layers. Applied Soil Ecology, 2021, 168(1/2): 104107. |
13 | Na X F, Zheng G Q, Xing Z C, et al. Effects of monocropping on diversity and structure of the bacterial community in rhizosphere of replanted Lycium barbarum L. Acta Pedologica Sinica, 2017, 54(5): 1280-1292. |
纳小凡, 郑国旗, 邢正操, 等. 连作对再植枸杞根际细菌群落多样性和群落结构的影响. 土壤学报, 2017, 54(5): 1280-1292. | |
14 | Andreo-Jimenez B, Schilder M T, Nijhuis E H, et al. Chitin-and keratin-rich soil amendments suppress Rhizoctonia solani disease via changes to the soil microbial community. Applied and Environmental Microbiology, 2021, 87(11): e00318-21. |
15 | Gao R P, Zhao P Y, Han Y F, et al. Effects of straw returning and nitrogen application on soil water, carbon and nitrogen coupling and crop yield. Soils, 2021, 53(5): 952-960. |
高日平, 赵沛义, 韩云飞, 等. 秸秆还田与氮肥运筹对土壤水碳氮耦合及作物产量的影响. 土壤, 2021, 53(5): 952-960. | |
16 | Kushwaha P, Neilson J W, Maier R M, et al. Soil microbial community and abiotic soil properties influence Zn and Cd hyperaccumulation differently in Arabidopsis halleri. Science of the Total Environment, 2022, 803(10): 150006. |
17 | Zheng S, Hu J, Chen K, et al. Soil microbial activity measured by microcalorimetry in response to long-term fertilization regimes and available phosphorous on heat evolution. Soil Biology and Biochemistry, 2009, 41(10): 2094-2099. |
18 | Zhang Y J, Wang B, Li Z C, et al. Effects of fertilization measures on soil labile organic carbon and nutrient of old Torreya grandis. Forest Research, 2019, 32(2): 87-93. |
张雨洁, 王斌, 李正才, 等. 施肥措施对古香榧林地土壤活性有机碳和养分的影响. 林业科学研究, 2019, 32(2): 87-93. | |
19 | Nazaries L, Singh B P, Sarker J R, et al. The response of soil multi-functionality to agricultural management practices can be predicted by key soil abiotic and biotic properties. Agriculture, Ecosystems & Environment, 2021, 307(28): 107206. |
20 | Zhang G L, Gong Z T. Soil survey laboratory methods. Beijing: Science Press, 2012: 47-70. |
张甘霖, 龚子同. 土壤调查实验室分析方法. 北京: 科学出版社, 2012: 47-70. | |
21 | Jiang Q L, Su B Y. Study of spectrophotometry for determining clay concentration. Journal of Qingdao Institute of Chemical Technology, 2000, 21(2): 124-126. |
姜庆利, 苏本寅. 粘土含量测定方法的研究. 青岛化工学院学报, 2000, 21(2): 124-126. | |
22 | Feyzi H, Chorom M, Bagheri G. Urease activity and microbial biomass of carbon in hydrocarbon contaminated soils. A case study of cheshmeh-khosh oil field, Iran. Ecotoxicology and Environmental Safety, 2020, 199(12): 110664. |
23 | Hu W, Jiao Z, Wu F, et al. Long-term effects of fertilizer on soil enzymatic activity of wheat field soil in Loess Plateau, China. Ecotoxicology, 2014, 23(10): 2069-2080. |
24 | Kandeler E, Luxhøi J, Tscherko D, et al. Xylanase, invertase and protease at the soil-litter interface of a loamy sand. Soil Biology and Biochemistry, 1999, 31(8): 1171-1179. |
25 | Chen F S, Zeng D H, Chen G S, et al. Comparative analysis on spatial patterns of soil moisture under different land use types in Kerqin sandy land. Chinese Journal of Ecology, 2003(6): 43-48. |
陈伏生, 曾德慧, 陈广生, 等. 不同土地利用方式下沙地土壤水分空间变异规律. 生态学杂志, 2003(6): 43-48. | |
26 | Xie X, Pu L, Zhu M, et al. Linkage between soil salinization indicators and physicochemical properties in a long-term intensive agricultural coastal reclamation area, Eastern China. Journal of Soil & Sediments, 2019, 19(11): 3699-3707. |
27 | Zhou H, Shi H B, Zhang W C, et al. Effects of the combined application of organic and inorganic fertilizers on soil microbial biomass and soil respiration in saline soil. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(15): 86-95. |
周慧, 史海滨, 张文聪, 等. 有机无机肥配施对盐渍化土壤微生物量和呼吸的影响. 农业工程学报, 2021, 37(15): 86-95. | |
28 | Rath K M, Rousk J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biology and Biochemistry, 2015, 81: 108-123. |
29 | Zhang Z, Feng S, Luo J, et al. Evaluation of microbial assemblages in various saline-alkaline soils driven by soluble salt ion components. Journal of Agricultural and Food Chemistry, 2021, 69(11): 3390-3400. |
30 | Zhang T, He J, Feng H, et al. Improvement of soil nutrient and biological properties and establishment of Lycium barbarum L. in an impermeable saline-sodic soil using drip irrigation. Soil Research, 2018, 57(1): 75-84. |
31 | Jones D L, Magthab E A, Gleeson D B, et al. Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biology and Biochemistry, 2018, 117: 72-82. |
[1] | Jiao-yun LU, He-shan ZHANG, Hong TIAN, Jun-bo XIONG, Yang LIU. Research progress on effects of nitrogen deposition on soil nitrogen cycling in grassland ecosystems [J]. Acta Prataculturae Sinica, 2022, 31(6): 221-234. |
[2] | Huan ZHANG, Yi-xiao MU, Gui-jie ZHANG. Effects of Lycium barbarum by-products on fermentation quality and microbial diversity of alfalfa silage [J]. Acta Prataculturae Sinica, 2022, 31(4): 136-144. |
[3] | Yan-xia GUO, Meng-wei LI, Zhen-hua TANG, Li-juan PENG, Kai-ping PENG, Fang XIE, Hua-de XIE, Cheng-jian YANG. Effects of different doses of sodium nitrate on fatty acid composition and microbial population in in vitro simulation of buffalo rumen fermentation with added linoleic acid [J]. Acta Prataculturae Sinica, 2021, 30(9): 159-167. |
[4] | Juan-shan ZHENG, KAO Ren-qing DING, Xin-pu LI, Ze-yi LIANG, Jian-bo ZHANG, Mei DU, Xue-zhi DING. Research progress on rumen microorganisms in the utilization of lignocellulose as an energy resource [J]. Acta Prataculturae Sinica, 2021, 30(9): 182-192. |
[5] | Hua-fang SUN, Xi-lai LI, Li-qun JIN, Cheng-yi LI, Jing ZHANG. Change over time in soil microbial diversity of artificial grassland in the Yellow River source zone [J]. Acta Prataculturae Sinica, 2021, 30(2): 46-58. |
[6] | Da-cheng SONG, Li-de WANG, Hao WU, Chun-rong WU, He-ran ZHAO, Sheng-hui HAN, Bao-yi XU. A study of change in soil characteristics with recovery time in degraded grassland in Minqin [J]. Acta Prataculturae Sinica, 2021, 30(2): 59-68. |
[7] | Xiao-wen MA, Fa-di LI, Fei LI, Long GUO. Effect of dietary barley particle size on rumen microflora and muscle fatty acids in Hu sheep [J]. Acta Prataculturae Sinica, 2021, 30(12): 202-211. |
[8] | XU Qi-wen, MA Shu-min, ZHU Bo, ZHANG Xiao-duan, XING Yi, DUAN Mei-chun, WANG Long-chang. Effects of the combined application of biochar and chemical fertilizer on fertility and microbial characteristics of purple soil and yield and quality of oilseed rape [J]. Acta Prataculturae Sinica, 2020, 29(5): 121-131. |
[9] | MA Yuan, ZHANG De-gang. Regulation mechanisms of rhizosphere nutrient cycling processes in grassland: A review [J]. Acta Prataculturae Sinica, 2020, 29(11): 172-182. |
[10] | SHUAI Lin-lin, ZHOU Qing-ping, CHEN You-jun, GOU Xiao-lin, ZHOU Rong. Soil microorganism dynamics during grassland restoration in sub-humid sandy land [J]. Acta Prataculturae Sinica, 2019, 28(9): 11-22. |
[11] | XIE Kui-zhong, HU Xin-yuan, ZHANG Tong-tong, QIU Hui-zhen. Effects of different soil amendment measures on soil water relations, microbial community structure and yield in potato continuous cropping in dry land [J]. Acta Prataculturae Sinica, 2019, 28(7): 103-111. |
[12] | YIN Guo-li, CAI Zhuo-shan, TAO Rong, WU Fang, CHEN Jian-gang, SHI Shang-li. Effects of different crop rotations on soil nutrient, microorganism abundance and soil allelochemical levels in alfalfa [J]. Acta Prataculturae Sinica, 2019, 28(3): 42-50. |
[13] | GAO Ya-min, YAO Tuo, LI Hai-yun, LUO Hui-qin, ZHANG Jian-gui, YANG Yan-shan, LIU Ting. Isolation, screening, and growth-promoting characteristics of plant growth promoting rhizobacteria in the rhizosphere of Kobresia myosuroides and Polygonum viviparum in alpine meadow pasture [J]. Acta Prataculturae Sinica, 2019, 28(11): 114-123. |
[14] | LIU Ming, CHEN Yuan-xue, CHEN Qiang, PENG Dan, YU Xiao, YANG Jun-wei, XU Kai-wei. Effects of a Vicia villosa green-manure crop inoculated rhizobium during winter fallow, on soil fertility factors and fertilizer needs of a summer tobacco crop [J]. Acta Prataculturae Sinica, 2019, 28(1): 162-169. |
[15] | JIN Ji-peng, GUO Wu-jun, ZHANG Xiao-yan, ZHANG Chang-ji, ZHANG Yong, WANG Chun-hui, ZHANG Li-ping. Impact of cold-season grazing and supplementary feeding on rumen metabolic parameters and micro-organisms in the ewes of Gansu Alpine Fine Wool Sheep [J]. Acta Prataculturae Sinica, 2018, 27(7): 93-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||