Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (9): 222-230.DOI: 10.11686/cyxb2022395
Jing TIAN1,2(), Cai-xia CAO3, Li-ying HUANG1, Juan-yan WU1, Jian-guo ZHANG1()
Received:
2022-10-06
Revised:
2022-12-15
Online:
2023-09-20
Published:
2023-07-12
Contact:
Jian-guo ZHANG
Jing TIAN, Cai-xia CAO, Li-ying HUANG, Juan-yan WU, Jian-guo ZHANG. Screening low-nutrient-tolerant lactic acid bacteria and their effects on the fermentation quality of silages from poor materials[J]. Acta Prataculturae Sinica, 2023, 32(9): 222-230.
菌株 Strain | 葡萄糖浓度Glucose concentration (g·L-1) | ||||
---|---|---|---|---|---|
0.002 | 0.02 | 0.2 | 2 | 20 | |
SCLN1 | 0.726±0.01a | 0.728±0.01a | 0.704±0.01b | 0.902±0.01bc | 2.157±0.01d |
LA1 | 0.709±0.01a | 0.780±0.00a | 0.765±0.01a | 1.052±0.07ab | 1.645±0.01f |
LA2 | 0.083±0.00f | 0.087±0.00e | 0.206±0.01g | 0.599±0.02de | 2.521±0.01a |
LA3 | 0.297±0.01c | 0.433±0.05c | 0.473±0.01c | 0.473±0.20e | 2.483±0.01a |
LA4 | 0.260±0.01d | 0.285±0.01d | 0.317±0.00e | 0.821±0.02bcd | 1.959±0.01e |
LA5 | 0.135±0.00e | 0.167±0.02e | 0.260±0.02f | 0.721±0.15cde | 2.117±0.00d |
LA6 | 0.095±0.01f | 0.132±0.01e | 0.373±0.01d | 0.937±0.01bc | 2.325±0.09bc |
LM1 | 0.154±0.00e | 0.153±0.00e | 0.203±0.00g | 0.654±0.00de | 2.119±0.00d |
CCZZ1 | 0.306±0.01c | 0.459±0.09c | 0.765±0.02a | 0.912±0.01bc | 2.236±0.00cd |
HT1 | 0.585±0.02b | 0.590±0.01b | 0.688±0.01b | 1.231±0.03a | 2.416±0.05ab |
Table 1 OD600 values of lactic acid bacteria cultured in medium with different glucose concentration for 48 h
菌株 Strain | 葡萄糖浓度Glucose concentration (g·L-1) | ||||
---|---|---|---|---|---|
0.002 | 0.02 | 0.2 | 2 | 20 | |
SCLN1 | 0.726±0.01a | 0.728±0.01a | 0.704±0.01b | 0.902±0.01bc | 2.157±0.01d |
LA1 | 0.709±0.01a | 0.780±0.00a | 0.765±0.01a | 1.052±0.07ab | 1.645±0.01f |
LA2 | 0.083±0.00f | 0.087±0.00e | 0.206±0.01g | 0.599±0.02de | 2.521±0.01a |
LA3 | 0.297±0.01c | 0.433±0.05c | 0.473±0.01c | 0.473±0.20e | 2.483±0.01a |
LA4 | 0.260±0.01d | 0.285±0.01d | 0.317±0.00e | 0.821±0.02bcd | 1.959±0.01e |
LA5 | 0.135±0.00e | 0.167±0.02e | 0.260±0.02f | 0.721±0.15cde | 2.117±0.00d |
LA6 | 0.095±0.01f | 0.132±0.01e | 0.373±0.01d | 0.937±0.01bc | 2.325±0.09bc |
LM1 | 0.154±0.00e | 0.153±0.00e | 0.203±0.00g | 0.654±0.00de | 2.119±0.00d |
CCZZ1 | 0.306±0.01c | 0.459±0.09c | 0.765±0.02a | 0.912±0.01bc | 2.236±0.00cd |
HT1 | 0.585±0.02b | 0.590±0.01b | 0.688±0.01b | 1.231±0.03a | 2.416±0.05ab |
特性Characteristics | 生长状况Growth situation | 特性Characteristics | 生长状况Growth situation |
---|---|---|---|
形状Shape | 杆状Rod | NaCl生长Growth in NaCl | |
革兰氏染色Gram stain | + | 3.0% | + |
过氧化氢酶反应Catalase reaction | - | 6.5% | ± |
发酵类型Type of fermentation | 同型Homo | 10.0% | - |
生长温度Growth temperature | pH生长Growth at pH | ||
10 ℃ | ± | 3.5 | ± |
15 ℃ | + | 4.0 | ++ |
45 ℃ | + | 4.5 | ++ |
50 ℃ | ± | 7.5 | + |
8.0 | ± |
Table 2 Physiological and biochemical properties of strain SCLN1
特性Characteristics | 生长状况Growth situation | 特性Characteristics | 生长状况Growth situation |
---|---|---|---|
形状Shape | 杆状Rod | NaCl生长Growth in NaCl | |
革兰氏染色Gram stain | + | 3.0% | + |
过氧化氢酶反应Catalase reaction | - | 6.5% | ± |
发酵类型Type of fermentation | 同型Homo | 10.0% | - |
生长温度Growth temperature | pH生长Growth at pH | ||
10 ℃ | ± | 3.5 | ± |
15 ℃ | + | 4.0 | ++ |
45 ℃ | + | 4.5 | ++ |
50 ℃ | ± | 7.5 | + |
8.0 | ± |
可利用的糖Available sugar | 生长状况Growth situation | 可利用的糖Available sugar | 生长状况Growth situation |
---|---|---|---|
D/L-阿拉伯糖Arabinose | ± | 七叶灵Esculin | + |
D-木糖Xylose | ± | 水杨苷Salicin | + |
甲基-βD吡喃木糖苷Methyl-βD xylopyranoside | ± | D-纤维二糖Cellobiose | + |
D-葡萄糖Glucose | + | D-麦芽糖Maltose | + |
D-果糖Fructose | + | D-蔗糖Sucrose | + |
D-甘露糖Mannose | + | 菊粉Inulin | ± |
L-鼠李糖Rhamnose | + | 糖原Glycogen | ± |
肌醇Inositol | ± | D-龙胆二糖Gentian disaccharide | + |
甘露醇Mannitol | ± | D-松二糖Turanose | ± |
N-乙酰葡萄糖苷Acetyl-glucosamine | + | D-塔格糖Tagatose | + |
苦杏仁苷Amygdalin | + | 葡萄糖酸盐Potassium gluconate | ± |
ARBULIN | + |
Table 3 Available sugars of strain SCLN1
可利用的糖Available sugar | 生长状况Growth situation | 可利用的糖Available sugar | 生长状况Growth situation |
---|---|---|---|
D/L-阿拉伯糖Arabinose | ± | 七叶灵Esculin | + |
D-木糖Xylose | ± | 水杨苷Salicin | + |
甲基-βD吡喃木糖苷Methyl-βD xylopyranoside | ± | D-纤维二糖Cellobiose | + |
D-葡萄糖Glucose | + | D-麦芽糖Maltose | + |
D-果糖Fructose | + | D-蔗糖Sucrose | + |
D-甘露糖Mannose | + | 菊粉Inulin | ± |
L-鼠李糖Rhamnose | + | 糖原Glycogen | ± |
肌醇Inositol | ± | D-龙胆二糖Gentian disaccharide | + |
甘露醇Mannitol | ± | D-松二糖Turanose | ± |
N-乙酰葡萄糖苷Acetyl-glucosamine | + | D-塔格糖Tagatose | + |
苦杏仁苷Amygdalin | + | 葡萄糖酸盐Potassium gluconate | ± |
ARBULIN | + |
项目Items | 柱花草Stylo | 苏丹草Sudan grass | 显著性Significance |
---|---|---|---|
干物质Dry matter (DM, % FM) | 34.17±0.33 | 34.33±0.26 | NS |
粗蛋白Crude protein (CP, % DM) | 15.25±0.32 | 8.16±0.34 | ** |
中性洗涤纤维Neutral detergent fiber (NDF, % DM) | 68.15±2.33 | 61.42±0.92 | ** |
酸性洗涤纤维Acid detergent fiber (ADF, % DM) | 39.04±1.43 | 31.78±1.03 | ** |
水溶性碳水化合物Water-soluble carbohydrate (WSC, % DM) | 4.74±0.12 | 9.26±0.34 | ** |
pH | 5.57±0.03 | 5.51±0.02 | NS |
缓冲能Buffering capacity (mEq·kg-1 DM) | 569.97±40.12 | 441.98±34.32 | NS |
乳酸菌Lactic acid bacteria (log10 cfu·g-1 FM) | 2.32±0.13 | 2.75±0.46 | NS |
好氧细菌Aerobic bacteria (log10 cfu·g-1 FM) | 4.96±0.25 | 7.16±0.09 | ** |
酵母Yeasts (log10 cfu·g-1 FM) | 4.26±0.00 | 5.66±0.16 | ** |
霉菌Molds (log10 cfu·g-1 FM) | 1.75±0.10 | 3.75±0.10 | ** |
Table 4 The chemical characteristic and microbial population of stylo and sudan grass prior to ensiling
项目Items | 柱花草Stylo | 苏丹草Sudan grass | 显著性Significance |
---|---|---|---|
干物质Dry matter (DM, % FM) | 34.17±0.33 | 34.33±0.26 | NS |
粗蛋白Crude protein (CP, % DM) | 15.25±0.32 | 8.16±0.34 | ** |
中性洗涤纤维Neutral detergent fiber (NDF, % DM) | 68.15±2.33 | 61.42±0.92 | ** |
酸性洗涤纤维Acid detergent fiber (ADF, % DM) | 39.04±1.43 | 31.78±1.03 | ** |
水溶性碳水化合物Water-soluble carbohydrate (WSC, % DM) | 4.74±0.12 | 9.26±0.34 | ** |
pH | 5.57±0.03 | 5.51±0.02 | NS |
缓冲能Buffering capacity (mEq·kg-1 DM) | 569.97±40.12 | 441.98±34.32 | NS |
乳酸菌Lactic acid bacteria (log10 cfu·g-1 FM) | 2.32±0.13 | 2.75±0.46 | NS |
好氧细菌Aerobic bacteria (log10 cfu·g-1 FM) | 4.96±0.25 | 7.16±0.09 | ** |
酵母Yeasts (log10 cfu·g-1 FM) | 4.26±0.00 | 5.66±0.16 | ** |
霉菌Molds (log10 cfu·g-1 FM) | 1.75±0.10 | 3.75±0.10 | ** |
牧草 Grass | 处理 Treatments | 干物质 DM (% FM) | pH | 有机酸Organic acid (% DM) | 氨态氮 NH3-N (% TN) | 微生物Microorganism (log10 cfu·g-1 FM) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
乳酸 Lactic acid | 乙酸 Acetic acid | 丙酸 Propionic acid | 丁酸 Butyric acid | 乳酸菌 LAB | 好氧细菌Aerobic bacteria | 酵母Yeasts | 霉菌Molds | |||||
柱花草 Stylo | CK | 26.70a | 5.36a | 2.00bc | 4.82ab | 3.99a | 3.64b | 30.50a | 4.75 | 4.78 | 2.73c | <2 |
SCLN1 | 24.97b | 4.67c | 4.16a | 2.98b | 2.11b | 1.76b | 11.24d | 5.61 | 5.74 | 5.47a | <2 | |
LM1 | 24.49b | 4.93b | 2.35abc | 3.26ab | 3.34ab | 3.35b | 13.17cd | 5.39 | 4.86 | 4.49ab | <2 | |
HT1 | 24.18b | 5.00b | 1.27bc | 3.47ab | 1.53b | 4.58ab | 19.23bc | 5.18 | 5.29 | 4.03b | <2 | |
SCLN1+LM1 | 24.52b | 4.72c | 2.93ab | 3.49ab | 1.75b | 4.29ab | 10.48d | 5.81 | 5.69 | 5.10ab | <2 | |
LM1+HT1 | 24.52b | 5.23a | 0.82c | 5.31a | 1.59b | 6.83a | 24.77ab | 5.37 | 5.05 | 4.46ab | <2 | |
标准差 Standard deviation | 0.196 | 0.056 | 0.319 | 0.294 | 0.285 | 0.451 | 1.867 | 0.139 | 0.163 | 0.232 | - | |
显著性Significance | ** | ** | * | NS | * | * | ** | NS | NS | ** | - | |
苏丹草 Sudan grass | CK | 27.65b | 5.19a | 1.82b | 2.09ab | 1.76b | 3.38ab | 29.01a | 5.38 | 5.66 | 4.28 | <2 |
SCLN1 | 28.70a | 4.10c | 8.29a | 1.77ab | 2.02ab | 0.00c | 12.69c | 5.68 | 4.99 | 4.13 | <2 | |
LM1 | 27.97ab | 4.72b | 2.40b | 2.21ab | 1.32b | 2.12b | 21.42b | 5.31 | 5.22 | 4.35 | <2 | |
HT1 | 27.77ab | 4.85b | 1.89b | 1.46b | 1.18b | 3.58ab | 15.92bc | 5.10 | 5.09 | 3.53 | <2 | |
SCLN1+LM1 | 26.98b | 4.79b | 2.46b | 2.75a | 2.99a | 3.63ab | 16.52bc | 5.45 | 5.42 | 4.08 | <2 | |
LM1+HT1 | 27.17ab | 5.07a | 1.24b | 2.47ab | 1.96ab | 3.94a | 20.61b | 5.15 | 5.06 | 3.60 | <2 | |
标准差 Standard deviation | 0.206 | 0.076 | 0.557 | 0.148 | 0.178 | 0.351 | 1.358 | 0.173 | 0.143 | 0.180 | - | |
显著性Significance | NS | ** | ** | NS | * | ** | ** | NS | NS | NS | - |
Table 5 Comparison of the fermentation quality of stylo and sudan grass silage inoculated low-nutrient-tolerant lactic acid bacteria
牧草 Grass | 处理 Treatments | 干物质 DM (% FM) | pH | 有机酸Organic acid (% DM) | 氨态氮 NH3-N (% TN) | 微生物Microorganism (log10 cfu·g-1 FM) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
乳酸 Lactic acid | 乙酸 Acetic acid | 丙酸 Propionic acid | 丁酸 Butyric acid | 乳酸菌 LAB | 好氧细菌Aerobic bacteria | 酵母Yeasts | 霉菌Molds | |||||
柱花草 Stylo | CK | 26.70a | 5.36a | 2.00bc | 4.82ab | 3.99a | 3.64b | 30.50a | 4.75 | 4.78 | 2.73c | <2 |
SCLN1 | 24.97b | 4.67c | 4.16a | 2.98b | 2.11b | 1.76b | 11.24d | 5.61 | 5.74 | 5.47a | <2 | |
LM1 | 24.49b | 4.93b | 2.35abc | 3.26ab | 3.34ab | 3.35b | 13.17cd | 5.39 | 4.86 | 4.49ab | <2 | |
HT1 | 24.18b | 5.00b | 1.27bc | 3.47ab | 1.53b | 4.58ab | 19.23bc | 5.18 | 5.29 | 4.03b | <2 | |
SCLN1+LM1 | 24.52b | 4.72c | 2.93ab | 3.49ab | 1.75b | 4.29ab | 10.48d | 5.81 | 5.69 | 5.10ab | <2 | |
LM1+HT1 | 24.52b | 5.23a | 0.82c | 5.31a | 1.59b | 6.83a | 24.77ab | 5.37 | 5.05 | 4.46ab | <2 | |
标准差 Standard deviation | 0.196 | 0.056 | 0.319 | 0.294 | 0.285 | 0.451 | 1.867 | 0.139 | 0.163 | 0.232 | - | |
显著性Significance | ** | ** | * | NS | * | * | ** | NS | NS | ** | - | |
苏丹草 Sudan grass | CK | 27.65b | 5.19a | 1.82b | 2.09ab | 1.76b | 3.38ab | 29.01a | 5.38 | 5.66 | 4.28 | <2 |
SCLN1 | 28.70a | 4.10c | 8.29a | 1.77ab | 2.02ab | 0.00c | 12.69c | 5.68 | 4.99 | 4.13 | <2 | |
LM1 | 27.97ab | 4.72b | 2.40b | 2.21ab | 1.32b | 2.12b | 21.42b | 5.31 | 5.22 | 4.35 | <2 | |
HT1 | 27.77ab | 4.85b | 1.89b | 1.46b | 1.18b | 3.58ab | 15.92bc | 5.10 | 5.09 | 3.53 | <2 | |
SCLN1+LM1 | 26.98b | 4.79b | 2.46b | 2.75a | 2.99a | 3.63ab | 16.52bc | 5.45 | 5.42 | 4.08 | <2 | |
LM1+HT1 | 27.17ab | 5.07a | 1.24b | 2.47ab | 1.96ab | 3.94a | 20.61b | 5.15 | 5.06 | 3.60 | <2 | |
标准差 Standard deviation | 0.206 | 0.076 | 0.557 | 0.148 | 0.178 | 0.351 | 1.358 | 0.173 | 0.143 | 0.180 | - | |
显著性Significance | NS | ** | ** | NS | * | ** | ** | NS | NS | NS | - |
1 | McDonald P, Henderson A R, Heron S J E. The biochemistry of silage. London: Chalcombe Publications, 1991. |
2 | Kung L M, Shaver R D, Grant R J, et al. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 2018, 101(5): 4020-4033. |
3 | Muck R E, Nadeau E M G, McAllister T A, et al. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 2018, 101(5): 3980-4000. |
4 | Duniere L, Sindou J, Chaucheyras-Durand F, et al. Silage processing and strategies to prevent persistence of undesirable microorganisms. Animal Feed Science and Technology, 2013, 182: 1-15. |
5 | Puntillo M, Peralta G H, Burgi M D M, et al. Metaprofiling of the bacterial community in sorghum silages inoculated with lactic acid bacteria. Journal of Applied Microbiology, 2022, 133(4): 2375-2389. |
6 | Wu B Y L, Hu Z F, Wei M L, et al. Effects of inoculation of Lactiplantibacillus plantarum and Lentilactobacillus buchneri on fermentation quality, aerobic stability, and microbial community dynamics of wilted Leymus chinensis silage. Frontiers in Microbiology, 2022, 13: 928731. |
7 | Drouin P, Tremblay J, Silva E B D, et al. Changes to the microbiome of alfalfa during the growing season and after ensiling with Lentilactobacillus buchneri and Lentilactobacillus hilgardii inoculant. Journal of Applied Microbiology, 2022, 133(4): 2331-2347. |
8 | Li M, Zhou H L, Zi X J, et al. Silage fermentation and ruminal degradation of stylo prepared with lactic acid bacteria and cellulase. Animal Science Journal, 2017, 88(10): 1531-1537. |
9 | Zhang J G, Kawamoto H, Cai Y M. Relationships between the addition rates of cellulase or glucose and silage fermentation at different temperatures. Animal Science Journal, 2011, 81(3): 325-330. |
10 | Saarisalo E, Skytta E, Haikara A, et al. Screening and selection of lactic acid bacteria strains suitable for ensiling grass. Journal of Applied Microbiology, 2007, 102(2): 327-336. |
11 | Peng C, Sun W T, Dong X, et al. Isolation, identification and utilization of lactic acid bacteria from silage in a warm and humid climate area. Scientific Reports, 2021, 11(1): 12586. |
12 | Liu Q H, Zhang J G, Shi S L, et al. The effects of wilting and storage temperatures on the fermentation quality and aerobic stability of stylo silage. Animal Science Journal, 2011, 82(4): 549-553. |
13 | Silva V P, Pereira O G, Leandro E S, et al. Effects of lactic acid bacteria with bacteriocinogenic potential on the fermentation profile and chemical composition of alfalfa silage in tropical conditions. Journal of Dairy Science, 2016, 99: 1895-1902. |
14 | Pitiwittayakul N, Bureenok S, Schonewille J T. Selective thermotolerant lactic acid bacteria isolated from fermented juice of epiphytic lactic acid bacteria and their effects on fermentation quality of stylo silages. Frontiers in Microbiology, 2021, 12: 673946. |
15 | Zhu Y, Wang X, Huang L, et al. Transcriptomic identification of drought-related genes and SSR markers in sudan grass based on RNA-Seq. Frontiers in Plant Science, 2017, 8: 687. |
16 | Nazar M, Wang S, Zhao J, et al. Abundance and diversity of epiphytic microbiota on forage crops and their fermentation characteristic during the ensiling of sterile sudan grass. World Journal of Microbiology and Biotechnology, 2021, 37: 27. |
17 | Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987, 4(4): 406-425. |
18 | Kozaki M, Uchimura T, Okada S. Experimental manual of lactic acid bacteria. Tokyo: Asakurasyoten Press, 1992: 34-37. |
19 | Association of Official Analytical Chemistry. Official methods of analysis (15th edtion). Arlington (VA): Association of Official Analytical Chemists, 1990. |
20 | Van S P J, Robertsom J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
21 | Murphy R P. A method for the extraction of plant samples and the determination of total soluble carbohydrates. Journal of the Science of Food and Agriculture, 1958, 9: 714-717. |
22 | Nishino N, Miyase K, Ohshima M. Effects of extraction and reconstitution of ryegrass juice on fermentation, digestion and in situ degradation of pressed cake silage. Journal of the Science of Food & Agriculture, 1997, 75: 161-166. |
23 | The Evaluation Council of Self-Feed Quality. The evaluation manual of crude feed. Tokyo: The Association of Grassland and Livestock Products in Japan, 2001: 82-87. |
24 | Wilson M, Lindow S E. Ecological similarity and coexistence of epiphytic ice-nucleating (ice) Pseudomonas syringae strains and a non-ice-nucleating (ice) biological control agent. Applied Environmental Microbiology, 1994, 60(9): 3128-3137. |
25 | Mercier J, Lindow S E. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Applied Environmental Microbiology, 2000, 66(1): 369-374. |
26 | Kuppusamy P, Kim D, Soundharrajan I, et al. Low-carbohydrate tolerant LAB strains identified from rumen fluid: Investigation of probiotic activity and legume silage fermentation. Microorganisms, 2020, 8(7): 1044. |
27 | Schiessl J, Kosciow K, Garschagen L S, et al. Degradation of the low-calorie sugar substitute 5-ketofructose by different bacteria. Applied Microbiology and Biotechnology, 2021, 105(6): 2441-2453. |
28 | Silva J S D, Ribeiro K G, Pereira O G, et al. Nutritive value and fermentation quality of palisadegrass and stylo mixed silages. Animal Science Journal, 2018, 89(1): 72-78. |
29 | Li M, Lv R L, Zhang L D, et al. Melatonin is a promising silage additive: Evidence from microbiota and metabolites. Frontiers in Microbiology, 2021, 12: 670764. |
30 | Zou X, Chen D, Lv H, et al. Effect of ellagic acid on fermentation quality and bacterial community of stylo silage. Fermentation, 2021, 7(4): 256. |
31 | Van S P J, Mertens D R, Deinum B. Preharvest factors influencing quality of conserved forage. Journal of Animal Science, 1978, 47(3): 712-720. |
32 | Stojanovic B, Dordevic N, Simic A, et al. The in vitro protein degradability of legume and sudan grass forage types and ensiled mixtures. Ankara Universitesi Veteriner Fakultesi Dergisi, 2020, 67(4): 419-425. |
33 | Chen M M, Liu Q H, Xin G R, et al. Characteristics of lactic acid bacteria isolates and their inoculating effects on the silage fermentation at high temperature. Letters in Applied Microbiology, 2013, 56(1): 71-78. |
34 | Liu Q H, Li J F, Zhao J, et al. Enhancement of lignocellulosic degradation in high-moisture alfalfa via anaerobic bioprocess of engineered Lactococcus lactis with the function of secreting cellulase. Biotechnology for Biofuels, 2019, 12: 8. |
35 | Zhang T, Li L, Wang X F, et al. Effects of Lactobacillus buchneri and Lactobacillus plantarum on fermentation, aerobic stability, bacteria diversity and ruminal degradability of alfalfa silage. World Journal of Microbiology & Biotechnology, 2009, 25(6): 965-971. |
[1] | Jie ZHAO, Xue-jing YIN, Si-ran WANG, Zhi-hao DONG, Jun-feng LI, Yu-shan JIA, Tao SHAO. Effects of storage time on the fermentation quality, bacterial community composition, and functional profile of sweet sorghum silage [J]. Acta Prataculturae Sinica, 2023, 32(8): 164-175. |
[2] | Cong-ze JIANG, Na SHOU, Wei GAO, Ren-shi MA, Yu-ying SHEN, Xian-long YANG. A multivariate evaluation of production performance and nutritional quality of different varieties of silage maize in the dry plateau area of Longdong [J]. Acta Prataculturae Sinica, 2023, 32(7): 216-228. |
[3] | Shi-yang ZHANG, Feng-min LIU, Jun-tao CUI, Lei HE, Yue-yan FENG, Wei-li ZHANG. Effects of three exogenous substances on the physiological and fluorescence characteristics of Stylosanthes guianensis under low-temperature stress [J]. Acta Prataculturae Sinica, 2023, 32(6): 85-99. |
[4] | Li-li ZHU, Ye-meng ZHANG, Wan-cai LI, Ya-li ZHAO, Xiang LI, Zhi-guo CHEN. Adaption to the Plateau climate in Qinghai of 39 silage maize varieties cultivated in different ecological regions of China [J]. Acta Prataculturae Sinica, 2023, 32(4): 68-78. |
[5] | Dong-qing FU, Chun-ying JIA, Li ZHANG, Fan-fan ZHANG, Chun-hui MA. Agronomic traits and fermentation quality of maize silage harvested at different grain-development stages in irrigated drought areas of southern Xinjiang [J]. Acta Prataculturae Sinica, 2022, 31(8): 111-125. |
[6] | Ying-zheng LI, Yu-lin CHENG, Lu-lu XU, Wan-song LI, Xu YAN, Xiao-feng LI, Ru-yu HE, Yang ZHOU, Jun-jun ZHENG, Xing-yu WANG, De-long ZHANG, Ming-jun CHENG, Yun-hong XIA, Jian-mei HE, Qi-lin TANG. A comparative study of silage quality characteristics of whole-plant, whole-ear and whole-straw silage of different maize varieties (lines) [J]. Acta Prataculturae Sinica, 2022, 31(8): 144-156. |
[7] | Ji-peng TIAN, Bei-yi LIU, Hong-ru GU, Cheng-long DING, Yun-hui CHENG, Zhu YU. Effects of lactic acid bacteria and calcium propionate on fermentation quality and mycotoxin contents of whole plant maize and oat silages [J]. Acta Prataculturae Sinica, 2022, 31(8): 157-166. |
[8] | Zi-wei JIANG, Gui-yu LIU, Hao-yun AN, Wei SHI, Sheng-hua CHANG, Cheng ZHANG, Qian-min JIA, Fu-jiang HOU. Effects of planting density and nitrogen application on forage yield, quality and nitrogen use efficiency in a maize/forage soybean intercropping system [J]. Acta Prataculturae Sinica, 2022, 31(7): 157-171. |
[9] | Jian-zhen GE, Wen-hui FU, Lu ZHANG, Bao-jun LIN, Shuai ZHAO, Ma-ga-weng BAI, Jian-cun KOU. Degradation of carbendazim in orchard white clover silage and its effect on the microbial fermentative community [J]. Acta Prataculturae Sinica, 2022, 31(7): 64-75. |
[10] | Jing TIAN, Xiang YIN, Yang FAN, Xin-qin LI, Jian-guo ZHANG. Effects of wilting and additives on the fermentation quality and dominant microbial genera in Napier grass silage at different temperatures [J]. Acta Prataculturae Sinica, 2022, 31(7): 76-84. |
[11] | Dou-dou LIN, Ze-liang JU, Ji-kuan CHAI, Gui-qin ZHAO. Screening and identification of low temperature tolerant lactic acid bacterial epiphytes from oats on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(5): 103-114. |
[12] | Di ZHOU, Shuai YANG, Xin-xin ZHANG, Jing YUAN, Yan-xia GAO, Jian-guo LI, Bo WANG, Guang-sheng ZHOU, Ting-dong FU, Jun YE, Li-guo YANG, Guo-hua HUA. Effects of additive types and combinations on silage quality of whole-plant rape after harvesting and air-drying [J]. Acta Prataculturae Sinica, 2022, 31(4): 124-135. |
[13] | Huan ZHANG, Yi-xiao MU, Gui-jie ZHANG. Effects of Lycium barbarum by-products on fermentation quality and microbial diversity of alfalfa silage [J]. Acta Prataculturae Sinica, 2022, 31(4): 136-144. |
[14] | De-zhi YANG, Chen WANG, Ming-jie HOU, Hu-cheng WANG. Effects of sweet sorghum silage and whole-plant corn silage on the forestomach microecology of mutton sheep [J]. Acta Prataculturae Sinica, 2022, 31(4): 145-154. |
[15] | De-kui CHEN, Shuo WU, Xuan ZOU, Wei ZHOU, Xiao-yang CHEN, Qing ZHANG. Effect of catechol on the quality and antioxidant activity of Toona sinensis leaf silage [J]. Acta Prataculturae Sinica, 2022, 31(3): 207-213. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||