Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (11): 65-80.DOI: 10.11686/cyxb2023005
Previous Articles Next Articles
Dai-xiang XU1,2(), Jian-feng YANG2,3, Hang SU3, Jian-rong ZHAI3, Cai QI3, Long-gang ZHAO2,4, Yan-jun GUO2,4()
Received:
2023-01-05
Revised:
2023-02-13
Online:
2023-11-20
Published:
2023-09-27
Contact:
Yan-jun GUO
Dai-xiang XU, Jian-feng YANG, Hang SU, Jian-rong ZHAI, Cai QI, Long-gang ZHAO, Yan-jun GUO. Effect of the metabolites in rhizosphere soil on microbial communities of crop intercropping system[J]. Acta Prataculturae Sinica, 2023, 32(11): 65-80.
年份 Year | 处理 Treatments | 籽粒产量Grain yield (kg·hm-2) | 千粒重Thousand kernel weight (g) | ||||
---|---|---|---|---|---|---|---|
玉米Maize | 高粱Sorghum | 大豆Soybean | 玉米Maize | 高粱Sorghum | 大豆Soybean | ||
2019 | 单作Monoculture | 7005.33±52.26 | 3208.44±53.46 | 1105.04±80.08 | 257.36±6.84 | 20.87±0.09 | 153.50±6.79 |
间作Intercropping | 7111.84±36.84 | 3374.29±66.76 | 1555.63±42.97**① | 258.63±12.79 | 21.74±0.84 | 170.33±1.01*① | |
1540.77±53.09**② | 162.67±2.62② | ||||||
2020 | 单作Monoculture | 7094.69±38.41 | 3209.20±53.44 | 1101.71±67.06 | 270.91±2.87 | 21.14±0.28 | 155.17±2.19 |
间作Intercropping | 7512.00±39.86** | 3707.99±12.46** | 1688.96±88.13**① | 298.47±1.85* | 21.94±0.28 | 172.00±0.70*① | |
1770.77±56.87**② | 166.00±1.64② | ||||||
变异来源Variation source | |||||||
年份 Year (Y) | ** | ** | * | ns | ns | ns | |
种植模式 Planting pattern (P) | ** | ns | ** | ns | ** | ** | |
年份×种植模式 Y×P | * | ns | * | ns | ns | ns |
Table 1 The effect of crop yield of different plant patterns
年份 Year | 处理 Treatments | 籽粒产量Grain yield (kg·hm-2) | 千粒重Thousand kernel weight (g) | ||||
---|---|---|---|---|---|---|---|
玉米Maize | 高粱Sorghum | 大豆Soybean | 玉米Maize | 高粱Sorghum | 大豆Soybean | ||
2019 | 单作Monoculture | 7005.33±52.26 | 3208.44±53.46 | 1105.04±80.08 | 257.36±6.84 | 20.87±0.09 | 153.50±6.79 |
间作Intercropping | 7111.84±36.84 | 3374.29±66.76 | 1555.63±42.97**① | 258.63±12.79 | 21.74±0.84 | 170.33±1.01*① | |
1540.77±53.09**② | 162.67±2.62② | ||||||
2020 | 单作Monoculture | 7094.69±38.41 | 3209.20±53.44 | 1101.71±67.06 | 270.91±2.87 | 21.14±0.28 | 155.17±2.19 |
间作Intercropping | 7512.00±39.86** | 3707.99±12.46** | 1688.96±88.13**① | 298.47±1.85* | 21.94±0.28 | 172.00±0.70*① | |
1770.77±56.87**② | 166.00±1.64② | ||||||
变异来源Variation source | |||||||
年份 Year (Y) | ** | ** | * | ns | ns | ns | |
种植模式 Planting pattern (P) | ** | ns | ** | ns | ** | ** | |
年份×种植模式 Y×P | * | ns | * | ns | ns | ns |
作物Crops | 处理 Treatments | pH | 碱解氮 Alkaline hydrolyzable nitrogen (mg·kg-1) | 速效磷 Olsen phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|
玉米Maize | 单作Monoculture | 8.96±0.03 | 43.40±0.48 | 9.57±0.25 | 41.66±0.71 |
间作Intercropping | 8.95±0.01 | 43.75±0.25 | 18.15±0.24** | 50.50±0.00* | |
高粱 Sorghum | 单作Monoculture | 8.92±0.00 | 43.05±0.74 | 12.41±0.63 | 51.00±0.71 |
间作Intercropping | 8.85±0.06 | 47.25±0.75* | 16.56±0.24* | 56.22±1.06* | |
大豆 Soybean | 单作Monoculture | 8.67±0.05 | 46.20±0.00 | 14.85±0.27 | 65.00±0.35 |
与玉米间作Intercropping with maize | 8.74±0.07 | 48.01±0.49 | 18.68±0.36* | 79.00±0.71** | |
与高粱间作Intercropping with sorghum | 8.71±0.05 | 49.97±0.50 | 18.22±0.10* | 73.06±2.12* |
Table 2 Physical and chemical indexes of rhizosphere soil
作物Crops | 处理 Treatments | pH | 碱解氮 Alkaline hydrolyzable nitrogen (mg·kg-1) | 速效磷 Olsen phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|
玉米Maize | 单作Monoculture | 8.96±0.03 | 43.40±0.48 | 9.57±0.25 | 41.66±0.71 |
间作Intercropping | 8.95±0.01 | 43.75±0.25 | 18.15±0.24** | 50.50±0.00* | |
高粱 Sorghum | 单作Monoculture | 8.92±0.00 | 43.05±0.74 | 12.41±0.63 | 51.00±0.71 |
间作Intercropping | 8.85±0.06 | 47.25±0.75* | 16.56±0.24* | 56.22±1.06* | |
大豆 Soybean | 单作Monoculture | 8.67±0.05 | 46.20±0.00 | 14.85±0.27 | 65.00±0.35 |
与玉米间作Intercropping with maize | 8.74±0.07 | 48.01±0.49 | 18.68±0.36* | 79.00±0.71** | |
与高粱间作Intercropping with sorghum | 8.71±0.05 | 49.97±0.50 | 18.22±0.10* | 73.06±2.12* |
Fig.3 The content of soil microbial biomass C and soil microbial biomass N in rhizosphere soil of maize, soybean and sorghum with different plant patterns
作物 Crops | 处理 Treatments | Shannon指数 Shannon index (H′) | Simpson指数 Simpson index (D) | McIntosh指数 McIntosh index (U) |
---|---|---|---|---|
玉米Maize | 单作Monoculture | 3.27±0.00 | 0.95±4.15 | 7.20±0.00 |
间作Intercropping | 3.22±0.00 | 0.95±0.00 | 7.26±0.34 | |
高粱Sorghum | 单作Monoculture | 3.00±0.13 | 0.95±2.67 | 6.01±0.00 |
间作Intercropping | 3.22±0.00* | 0.94±0.00 | 6.51±0.50* | |
大豆Soybean | 单作Monoculture | 2.98±0.04 | 0.95±0.00 | 5.42±0.07 |
与玉米间作Intercropping with maize | 3.29±0.00* | 0.93±0.00 | 6.97±0.31** | |
与高粱间作Intercropping with sorghum | 3.21±0.04* | 0.96±2.83 | 8.23±0.00** |
Table 3 Functional diversity indices of soil community after 120 h incubation
作物 Crops | 处理 Treatments | Shannon指数 Shannon index (H′) | Simpson指数 Simpson index (D) | McIntosh指数 McIntosh index (U) |
---|---|---|---|---|
玉米Maize | 单作Monoculture | 3.27±0.00 | 0.95±4.15 | 7.20±0.00 |
间作Intercropping | 3.22±0.00 | 0.95±0.00 | 7.26±0.34 | |
高粱Sorghum | 单作Monoculture | 3.00±0.13 | 0.95±2.67 | 6.01±0.00 |
间作Intercropping | 3.22±0.00* | 0.94±0.00 | 6.51±0.50* | |
大豆Soybean | 单作Monoculture | 2.98±0.04 | 0.95±0.00 | 5.42±0.07 |
与玉米间作Intercropping with maize | 3.29±0.00* | 0.93±0.00 | 6.97±0.31** | |
与高粱间作Intercropping with sorghum | 3.21±0.04* | 0.96±2.83 | 8.23±0.00** |
类别 Category | 编号 Code | 组分 Components | 玉米Maize | 高粱Sorghum | 大豆Soybean | ||||
---|---|---|---|---|---|---|---|---|---|
单作 Monoculture | 间作 Intercropping | 单作 Monoculture | 间作 Intercropping | 单作 Monoculture | 与玉米间作Intercropping with maize | 与高粱间作Intercropping with sorghum | |||
有机酸类 Organic acids | OA01 | 吲哚乙酸Indoleacetic acid | Y | Y | Y | Y | Y | Y | Y |
OA02 | 吲哚-3-羧醛Indole-3-carboxylaldehyde | Y | Y | Y | Y | Y | Y | Y | |
OA03 | 1H-吲哚-3-羧酸1H-INDOLE-3-CARBOXYLIC ACID | Y | Y | Y | Y | - | Y | Y | |
OA04 | 1H-吲哚-3-羧酸1H-indole-3-carboxylic acid | Y | Y | Y | Y | Y | Y | Y | |
OA05 | 芥子酰基苹果酸Sinapyl malate | Y | Y | Y | Y | Y | Y | Y | |
OA06 | 芥子酸Sinapic acid | Y | Y | Y | Y | Y | Y | Y | |
OA07 | 咖啡酸Caffeic acid | Y | Y | Y | Y | Y | Y | Y | |
氨基酸类 Amino acids | AA01 | L-谷氨酸L-glutamic acid | Y | Y | Y | Y | Y | Y | Y |
AA02 | L-(-)-苯丙氨酸L-(-)-phenylalanine | Y | Y | Y | Y | Y | Y | Y | |
AA03 | 肌氨酸Creatine | - | - | Y | - | - | - | - | |
AA04 | L-色氨酸L-tryptophan | - | - | - | - | - | Y | - | |
硫苷类 Glucosinolates | GS01 | 4-甲基亚磺酰基硫代葡萄糖苷4-methylsulfinylbutyl glucosinolate | Y | Y | Y | Y | - | Y | Y |
GS02 | 4-甲基亚磺酰基硫代葡萄糖苷4-METHYLSULFINYLBUTYL GLUCOSINOLATE | - | - | - | - | - | Y | - | |
GS03 | R-2-羟基-3-丁烯基硫代葡萄糖苷R-2-hydroxy-3-butenyl glucosinolate | - | Y | - | - | - | - | - | |
GS04 | 异鼠李素-3-O-芥子苷-7-O-葡萄糖苷Isorhamnetin-3-O-sinapoyldiglu-coside-7-O-glucoside | Y | - | - | - | - | - | - | |
GS05 | 3-丁烯基硫代葡萄糖苷3-butenyl glucosinolate | - | - | Y | - | - | Y | - | |
GS06 | 4-甲基硫丁基硫代葡萄糖酸盐4-methylthiobutyl glucoerucine | - | - | - | - | - | Y | - | |
GS07 | 4-羟基吲哚-3-甲基硫代葡萄糖苷4-hydroxyindole-3-methyl glucosinolate | - | - | - | - | - | Y | - | |
GS08 | 吲哚甲基硫代葡萄糖苷Indolyl methyl glucosinolate | - | - | - | - | - | Y | - | |
GS09 | 2-苯乙基硫代葡萄糖苷2-phenylethyl glucosinolate | - | - | - | - | - | Y | - | |
GS10 | 5-甲基硫喷妥钠硫代葡萄糖苷5-methylthiopental glucosinolate | - | - | - | - | - | Y | - | |
黄酮类 Flavonoids | FS01 | 柚皮素Naringenin | Y | Y | Y | Y | - | Y | - |
FS02 | 山柰酚Kaempferol | - | - | Y | Y | - | - | Y | |
FS03 | 山柰酚-3-O-槐苷-7-O-葡萄糖苷Kaempferol-3-O-sophoroside-7-O-glucoside | - | - | - | - | - | Y | - |
Table 4 The metabolic components of the rhizosphere soil in different treatments
类别 Category | 编号 Code | 组分 Components | 玉米Maize | 高粱Sorghum | 大豆Soybean | ||||
---|---|---|---|---|---|---|---|---|---|
单作 Monoculture | 间作 Intercropping | 单作 Monoculture | 间作 Intercropping | 单作 Monoculture | 与玉米间作Intercropping with maize | 与高粱间作Intercropping with sorghum | |||
有机酸类 Organic acids | OA01 | 吲哚乙酸Indoleacetic acid | Y | Y | Y | Y | Y | Y | Y |
OA02 | 吲哚-3-羧醛Indole-3-carboxylaldehyde | Y | Y | Y | Y | Y | Y | Y | |
OA03 | 1H-吲哚-3-羧酸1H-INDOLE-3-CARBOXYLIC ACID | Y | Y | Y | Y | - | Y | Y | |
OA04 | 1H-吲哚-3-羧酸1H-indole-3-carboxylic acid | Y | Y | Y | Y | Y | Y | Y | |
OA05 | 芥子酰基苹果酸Sinapyl malate | Y | Y | Y | Y | Y | Y | Y | |
OA06 | 芥子酸Sinapic acid | Y | Y | Y | Y | Y | Y | Y | |
OA07 | 咖啡酸Caffeic acid | Y | Y | Y | Y | Y | Y | Y | |
氨基酸类 Amino acids | AA01 | L-谷氨酸L-glutamic acid | Y | Y | Y | Y | Y | Y | Y |
AA02 | L-(-)-苯丙氨酸L-(-)-phenylalanine | Y | Y | Y | Y | Y | Y | Y | |
AA03 | 肌氨酸Creatine | - | - | Y | - | - | - | - | |
AA04 | L-色氨酸L-tryptophan | - | - | - | - | - | Y | - | |
硫苷类 Glucosinolates | GS01 | 4-甲基亚磺酰基硫代葡萄糖苷4-methylsulfinylbutyl glucosinolate | Y | Y | Y | Y | - | Y | Y |
GS02 | 4-甲基亚磺酰基硫代葡萄糖苷4-METHYLSULFINYLBUTYL GLUCOSINOLATE | - | - | - | - | - | Y | - | |
GS03 | R-2-羟基-3-丁烯基硫代葡萄糖苷R-2-hydroxy-3-butenyl glucosinolate | - | Y | - | - | - | - | - | |
GS04 | 异鼠李素-3-O-芥子苷-7-O-葡萄糖苷Isorhamnetin-3-O-sinapoyldiglu-coside-7-O-glucoside | Y | - | - | - | - | - | - | |
GS05 | 3-丁烯基硫代葡萄糖苷3-butenyl glucosinolate | - | - | Y | - | - | Y | - | |
GS06 | 4-甲基硫丁基硫代葡萄糖酸盐4-methylthiobutyl glucoerucine | - | - | - | - | - | Y | - | |
GS07 | 4-羟基吲哚-3-甲基硫代葡萄糖苷4-hydroxyindole-3-methyl glucosinolate | - | - | - | - | - | Y | - | |
GS08 | 吲哚甲基硫代葡萄糖苷Indolyl methyl glucosinolate | - | - | - | - | - | Y | - | |
GS09 | 2-苯乙基硫代葡萄糖苷2-phenylethyl glucosinolate | - | - | - | - | - | Y | - | |
GS10 | 5-甲基硫喷妥钠硫代葡萄糖苷5-methylthiopental glucosinolate | - | - | - | - | - | Y | - | |
黄酮类 Flavonoids | FS01 | 柚皮素Naringenin | Y | Y | Y | Y | - | Y | - |
FS02 | 山柰酚Kaempferol | - | - | Y | Y | - | - | Y | |
FS03 | 山柰酚-3-O-槐苷-7-O-葡萄糖苷Kaempferol-3-O-sophoroside-7-O-glucoside | - | - | - | - | - | Y | - |
因子Factors | 微生物量氮MBN | H′ | D | U | OA02 | OA03 | OA04 | OA06 | AA01 |
---|---|---|---|---|---|---|---|---|---|
微生物量碳MBC | 0.76 | -0.32 | -0.15 | -0.01 | 0.71 | 0.97** | 0.96** | -0.90* | 0.98** |
微生物量氮MBN | -0.02 | 0.37 | 0.31 | 0.85* | 0.84* | 0.89* | -0.91* | 0.85* | |
H′ | 0.77 | 0.68 | -0.24 | -0.39 | -0.20 | 0.12 | -0.30 | ||
D | 0.85* | -0.01 | -0.11 | 0.04 | -0.23 | -0.07 | |||
U | -0.20 | 0.04 | 0.17 | -0.26 | 0.08 | ||||
OA02 | 0.76 | 0.78 | -0.74 | 0.77 | |||||
OA03 | 0.98** | -0.91* | 0.99** | ||||||
OA04 | -0.94** | 0.99** | |||||||
OA06 | -0.92* |
Table 5 Correlation analysis of microbial indexes and key metabolites of rhizosphere soil in maize
因子Factors | 微生物量氮MBN | H′ | D | U | OA02 | OA03 | OA04 | OA06 | AA01 |
---|---|---|---|---|---|---|---|---|---|
微生物量碳MBC | 0.76 | -0.32 | -0.15 | -0.01 | 0.71 | 0.97** | 0.96** | -0.90* | 0.98** |
微生物量氮MBN | -0.02 | 0.37 | 0.31 | 0.85* | 0.84* | 0.89* | -0.91* | 0.85* | |
H′ | 0.77 | 0.68 | -0.24 | -0.39 | -0.20 | 0.12 | -0.30 | ||
D | 0.85* | -0.01 | -0.11 | 0.04 | -0.23 | -0.07 | |||
U | -0.20 | 0.04 | 0.17 | -0.26 | 0.08 | ||||
OA02 | 0.76 | 0.78 | -0.74 | 0.77 | |||||
OA03 | 0.98** | -0.91* | 0.99** | ||||||
OA04 | -0.94** | 0.99** | |||||||
OA06 | -0.92* |
因子Factors | 微生物量氮MBN | H′ | D | U | OA02 | OA04 | OA05 | FS02 |
---|---|---|---|---|---|---|---|---|
微生物量碳MBC | 0.95** | 0.82* | -0.44 | 0.68 | -0.97** | 0.96** | -0.81 | -0.73 |
微生物量氮MBN | 0.78 | -0.48 | 0.59 | -0.86* | 0.88* | -0.74 | -0.71 | |
H′ | -0.06 | 0.60 | -0.86* | 0.78 | -0.65 | -0.37 | ||
D | 0.10 | 0.31 | -0.26 | -0.02 | 0.92* | |||
U | -0.78 | 0.86* | -0.72 | -0.14 | ||||
OA02 | -0.97** | 0.80 | 0.62 | |||||
OA04 | -0.87* | -0.56 | ||||||
OA05 | 0.33 |
Table 6 Correlation analysis of microbial indexes and key metabolites of rhizosphere soil in sorghum
因子Factors | 微生物量氮MBN | H′ | D | U | OA02 | OA04 | OA05 | FS02 |
---|---|---|---|---|---|---|---|---|
微生物量碳MBC | 0.95** | 0.82* | -0.44 | 0.68 | -0.97** | 0.96** | -0.81 | -0.73 |
微生物量氮MBN | 0.78 | -0.48 | 0.59 | -0.86* | 0.88* | -0.74 | -0.71 | |
H′ | -0.06 | 0.60 | -0.86* | 0.78 | -0.65 | -0.37 | ||
D | 0.10 | 0.31 | -0.26 | -0.02 | 0.92* | |||
U | -0.78 | 0.86* | -0.72 | -0.14 | ||||
OA02 | -0.97** | 0.80 | 0.62 | |||||
OA04 | -0.87* | -0.56 | ||||||
OA05 | 0.33 |
因子Factors | 微生物量氮MBN | H′ | D | U | OA03 | AA01 |
---|---|---|---|---|---|---|
微生物量碳MBC | 0.81** | 0.86* | 0.03 | 0.86** | 0.57 | -0.94** |
微生物量氮MBN | 0.85** | -0.18 | 0.59 | 0.22 | -0.87** | |
H′ | -0.27 | 0.72* | 0.30 | -0.85** | ||
D | 0.09 | 0.44 | 0.17 | |||
U | 0.85** | -0.85** | ||||
OA03 | -0.52 |
Table 7 Correlation analysis of microbial indexes and key metabolites of rhizosphere soil in soybean
因子Factors | 微生物量氮MBN | H′ | D | U | OA03 | AA01 |
---|---|---|---|---|---|---|
微生物量碳MBC | 0.81** | 0.86* | 0.03 | 0.86** | 0.57 | -0.94** |
微生物量氮MBN | 0.85** | -0.18 | 0.59 | 0.22 | -0.87** | |
H′ | -0.27 | 0.72* | 0.30 | -0.85** | ||
D | 0.09 | 0.44 | 0.17 | |||
U | 0.85** | -0.85** | ||||
OA03 | -0.52 |
1 | Gou F, Martin K I, Elisabeth S, et al. Intercropping wheat and maize increases total radiation interception and wheat RUE but lowers maize RUE. European Journal of Agronomy, 2017, 84: 125-139. |
2 | Lithourgidis A S, Dordas C A, Damalas C A, et al. Annual intercrops: An alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 2011, 5(4): 396-410. |
3 | Dhima K V, Lithourgidis A S, Vasilakoglou I B, et al. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Research, 2007, 100(2/3): 249-256. |
4 | van Oort P A J, Gou F, Stomph T J, et al. Effects of strip width on yields in relay-strip intercropping: A simulation study. European Journal of Agronomy, 2020, 112: 125936. |
5 | Duchene O, Vian J F, Celette F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms: A review. Agriculture Ecosystems and Environment, 2017, 240: 148-161. |
6 | Bedoussac L, Journet E P, Hauggaard N H, et al. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming: A review. Agronomy for Sustainable Development, 2015, 35(3): 911-935. |
7 | Zhang F, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil, 2003, 248(1): 305-312. |
8 | Iqbal N, Hussain S, Ahmed Z, et al. Comparative analysis of maize-soybean strip intercropping systems: A review. Plant Production Science, 2018, 22(2): 131-142. |
9 | Wang G, Duan B H, Shi S B. Crop intercropping. Beijing: China Agricultural Science and Technology Press, 2013. |
王恭, 段碧华, 石书兵. 作物间作. 北京: 中国农业科学技术出版社, 2013. | |
10 | Hinsinger P, Bengough A G, Vetterlein D, et al. Rhizosphere: Biophysics, biogeochemistry and ecological relevance. Plant and Soil, 2009, 321(1): 117-152. |
11 | Li L C, Wang W Q, Dan S B, et al. Analysis on ecological effects and economic benefits of sorghum-soybean hybrid planting model. Journal of Soybean Science and Technology, 2019, 162(5): 24-25. |
李霖超, 王武全, 但松柏, 等. 高粱-大豆复合种植模式的生态效应和经济效益分析. 大豆科技, 2019, 162(5): 24-25. | |
12 | Chen P, Du Q, Pang T, et al. Effects of root interaction intensity on crop roots distribution above-ground growth in a maize/soybean relay intercropping system. Journal of Sichuan Agricultural University, 2018, 36(1): 28-37, 59. |
陈平, 杜青, 庞婷, 等. 根系互作强度对玉米/大豆套作系统下作物根系分布及地上部生长的影响. 四川农业大学学报, 2018, 36(1): 28-37, 59. | |
13 | Bargaz A, Isaac M E, Jensen E S, et al. Intercropping of faba bean with wheat under low water availability promotes faba bean nodulation and root growth in deeper soil layers. Procedia Environmental Sciences, 2015, 29: 111-112. |
14 | Malezieux E, Crozat Y, Dupraz C, et al. Mixing plant species in cropping systems concepts, tools and models: A review. Agronomy for Sustainable Development, 2009, 29(1): 329-353. |
15 | Hauggaard N H, Gooding M, Ambus P, et al. Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Research, 2009, 113(1): 64-71. |
16 | Ehrmann J, Ritz K. Plant: Soil interactions in temperate multi-cropping production systems. Plant and Soil, 2013, 376(1/2): 1-29. |
17 | Li S, Wu F. Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Frontiers in Microbiology, 2018, 9: 1521. |
18 | Zaeem M, Nadeem M, Pham T H, et al. The potential of corn-soybean intercropping to improve the soil health status and biomass production in cool climate boreal ecosystems. Scientific Reports, 2019, 9(1): 1-17. |
19 | Berendsen R L, Pieterse C M J, Bakker P A H M. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8): 478-486. |
20 | Qiao Y J, Guo L C, Ge J Y, et al. Effect of oat-legume intercropping on soil enzyme activities and abundance of soil microbe. Journal of Gansu Agricultural University, 2020, 55(3): 54-61. |
乔月静, 郭来春, 葛军勇, 等. 燕麦与豆科作物间作对土壤酶活和微生物量的影响. 甘肃农业大学学报, 2020, 55(3): 54-61. | |
21 | Chaudhry V, Runge P, Sengupta P, et al. Shaping the leaf microbiota: Plant-microbe-microbe interactions. Journal of Experimental Botany, 2021, 72(1): 36-56. |
22 | Baxendale C, Orwin K H, Poly F, et al. Are plant-soil feedback responses explained by plant traits? New Phytologist, 2014, 204(2): 408-423. |
23 | Tkacz A, Bestion E, Bo Z, et al. Influence of plant fraction, soil, and plant species on microbiota: A multikingdom comparison. mBio, 2020, 11(1): e02785-02719. |
24 | Li Q L, Xiao Z, Ren M B, et al. Effect of Gardenia jasmidoides Ellis with different intercropping crops on soil microecology. Microbiology China, 2021, 48(10): 3588-3602. |
李巧玲, 肖忠, 任明波, 等. 间作不同作物对栀子根际土壤微生态的影响. 微生物学通报, 2021, 48(10): 3588-3602. | |
25 | Arafat Y, Ud Din I, Tayyab M, et al. Soil sickness in aged tea plantation is associated with a shift in microbial communities as a result of plant polyphenol accumulation in the tea gardens. Frontiers in Plant Science, 2020, 11: 601-614. |
26 | Bao S D. Soil analysis of chemical and agronomic trait. Beijing: China Agriculture Press, 2005. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2005. | |
27 | Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology, 1991, 57(8): 2351-2359. |
28 | Mcrae G, Monreal C M. LC-MS/MS quantitative analysis of reducing carbohydrates in soil solutions extracted from crop rhizospheres. Analytical and Bioanalytical Chemistry, 2011, 400(7): 2205-2215. |
29 | Ghosh P K, Manna M C, Bandyopadhyay K K, et al. Interspecific interaction and nutrient use in soybean/sorghum intercropping system. Agronomy Journal, 2006, 98(4): 1097-1108. |
30 | Ghaffarzadeh M, Préchac F G, Cruse R M. Grain yield response of corn, soybean, and oat grown in a strip intercropping system. American Journal of Alternative Agriculture, 2009, 9(4): 171-177. |
31 | Chen P, Du Q, Liu X, et al. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PLoS One, 2017, 12(9): e0184503. |
32 | Wang J X, Zhu K, Zhang Z P, et al. Effect of sorghum-peanut intercropping on root traits and soil microorganisms of single-row crops. Agricultural Research in the Arid Areas, 2022, 40(4): 51-59. |
王佳旭, 朱凯, 张志鹏, 等. 高粱花生间作对不同单行作物根系性状及土壤微生物的影响. 干旱地区农业研究, 2022, 40(4): 51-59. | |
33 | Fujita K, Ogata S, Matsumoto K, et al. Nitrogen transfer and dry matter production in soybean and sorghum mixed cropping system at different population densities. Soil Science and Plant Nutrition, 1990, 36(2): 233-241. |
34 | Wang S, Wang L B, Li Y X, et al. Effects of corn monoculture and intercropped with Medicago sativa L. on corn yield and nutrient contents of albic soil under different N levels. Journal of Henan Agricultural Sciences, 2018, 47(2): 22-28. |
王帅, 王立波, 李玉玺, 等. 不同施氮水平下玉米单作及间作紫花苜蓿对玉米产量及白浆土养分含量的影响. 河南农业科学, 2018, 47(2): 22-28. | |
35 | Mafham J P, Boddy L, Randerson P F. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles-A critique. FEMS Microbiology Ecology, 2002, 42(1): 1-14. |
36 | Bell L, Wagstaff C. Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). Journal of Agriculture and Food Chemistry, 2014, 62(20): 4481-4492. |
37 | Idrees N, Tabassum B, Sarah R, et al. Natural compound from genus Brassica and their therapeutic activities//Akhtar M, Swamy M, Sinniah U. Natural bio-active compounds. Singapore: Springer, 2019. |
38 | Tagele S B, Kim R H, Shin J H. Interactions between Brassica biofumigants and soil microbiota: Causes and impacts. Journal of Agriculture and Food Chemistry, 2021, 69(39): 11538-11553. |
39 | Badri D V, Chaparro J M, Zhang R, et al. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. Journal of Biological Chemistry, 2013, 288(7): 4502-4512. |
40 | Zhalnina K, Louie K B, Hao Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 2018, 3(4): 470-480. |
41 | Kim D R, Jeon C W, Cho G, et al. Glutamic acid reshapes the plant microbiota to protect plants against pathogens. Microbiome, 2021, 9(1): 244. |
42 | Zhang W, Ma W, Ji Y, et al. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutrient Cycling in Agroecosystems, 2007, 80(2): 131-144. |
43 | Song Y N, Petra M, Zhang F S, et al. Effect of intercropping on bacterial community composition in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.) and faba bean (Vicia faba L.). Acta Ecologica Sinica, 2006, 26(7): 2268-2274. |
宋亚娜, Marschner Petra, 张福锁, 等. 小麦/蚕豆,玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响. 生态学报, 2006, 26(7): 2268-2274. | |
44 | Qiao Y J, Li Z H, Wang X, et al. Effect of legume-cereal mixtures on the diversity of bacterial communities in the rhizosphere. Plant Soil Environment, 2012, 58(4): 174-180. |
45 | Li D M. Soil microbial diversity and interspecific facilitation in intercropping between wheat and alfalfa. Harbin: Northeast Forestry University, 2015. |
李冬梅. 小麦/苜蓿间作的土壤微生物多样性和种间促进作用研究. 哈尔滨: 东北林业大学, 2015. | |
46 | Chen F, He H, Zhao S M, et al. Analysis of microbial community succession during methane production from Baiyinhua Lignite. Energy Fuels, 2018, 32(10): 10311-10320. |
47 | Wang Y Y, Ren J B, Zhang Y, et al. Effect of wheat and faba bean intercropping on improving rhizosphere microflora and reducing Fusarium wilt of faba bean. Chinese Journal of Soil Science, 2020, 51(5): 1127-1133. |
王宇蕴, 任家兵, 张莹, 等. 小麦蚕豆间作改善蚕豆根际微生物区系与减轻蚕豆枯萎病的作用. 土壤通报, 2020, 51(5): 1127-1133. | |
48 | Li X F, Wang C B, Zhang W P, et al. The role of complementarity and selection effects in P acquisition of intercropping systems. Plant and Soil, 2017, 422(1/2): 479-493. |
49 | Lin W W, Li N, Chen L S, et al. Effects of interspecific maize and soybean interactions on the community structure and diversity of rhizospheric bacteria. Chinese Journal of Eco-Agriculture, 2022, 30(1): 26-37. |
林伟伟, 李娜, 陈丽珊, 等. 玉米与大豆种间互作对根际细菌群落结构及多样性的影响. 中国生态农业学报, 2022, 30(1): 26-37. | |
50 | Morris R, Garrity D. Resource capture and utilization in intercropping; non-nitrogen nutrients. Field Crops Research, 1993, 34(3/4): 319-334. |
51 | Agboola A, Fayemi A. Fixation and excretion of nitrogen by tropical Legumes. Agronomy Journal, 1972, 64(4): 409-412. |
52 | Burten J W, Brim C A, Rowlings J O. Performance of nodulating and non-nodulating soybean isolines in mixed culture with nodulating cultivars. Crop Science, 1983, 23: 469-473. |
53 | Song R, Mu Y, Wang Y L, et al. Effects of intercropping of maize and soybean on the morphological character of roots. Journal of Northeast Normal University (Natural Science Edition), 2002, 34(3): 83-86. |
宋日, 牟瑛, 王玉兰, 等. 玉米、大豆间作对两种作物根系形态特征的影响. 东北师大学报(自然科学版), 2002, 34(3): 83-86. | |
54 | Wang X, Deng X, Pu T, et al. Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Research, 2017, 204: 12-22. |
55 | Dan C F, Wang J H, Huang L J, et al. Effects of corn/alfalfa intercropping on soil chemical properties. Heilongjiang Animal Husbandry and Veterinary Medicine, 2020, 14: 97-102. |
但春凤, 王家豪, 黄莉娟, 等. 紫花苜蓿间作对土壤化学性质的影响. 黑龙江畜牧兽医, 2020, 14: 97-102. |
[1] | Ying JIANG, Hui-hong ZHANG, Chang WEI, Zheng-yang XU, Ying ZHAO, Fang LIU, Ge-zi LI, Xue-hai ZHANG, Hai-tao LIU. Effects of exogenous melatonin on root development and physiological and biochemical characteristics of maize seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(9): 143-159. |
[2] | Jie ZHAO, Xue-jing YIN, Si-ran WANG, Zhi-hao DONG, Jun-feng LI, Yu-shan JIA, Tao SHAO. Effects of storage time on the fermentation quality, bacterial community composition, and functional profile of sweet sorghum silage [J]. Acta Prataculturae Sinica, 2023, 32(8): 164-175. |
[3] | Rui-jie YANG, Shu-qin HE, Shu-feng ZHOU, Jing-yue YANG, Yu-xian JIN, Zi-cheng ZHENG. Root regulation of soil scourability in hybrid sorghum grass during the growing period [J]. Acta Prataculturae Sinica, 2023, 32(7): 149-159. |
[4] | Jia LIANG, Zhao-yang HU, Zhi-ming XIE, Liu-feng MA, Yun CHEN, Zhi-gang FANG. Exogenous melatonin alleviates the physiological effects of drought stress in sweet sorghum seedlings [J]. Acta Prataculturae Sinica, 2023, 32(7): 206-215. |
[5] | Cong-ze JIANG, Na SHOU, Wei GAO, Ren-shi MA, Yu-ying SHEN, Xian-long YANG. A multivariate evaluation of production performance and nutritional quality of different varieties of silage maize in the dry plateau area of Longdong [J]. Acta Prataculturae Sinica, 2023, 32(7): 216-228. |
[6] | Li-li ZHU, Ye-meng ZHANG, Wan-cai LI, Ya-li ZHAO, Xiang LI, Zhi-guo CHEN. Adaption to the Plateau climate in Qinghai of 39 silage maize varieties cultivated in different ecological regions of China [J]. Acta Prataculturae Sinica, 2023, 32(4): 68-78. |
[7] | Jia-cheng ZHENG, Jie YU, Fan LI, Xiao-yi HUANG, Jie-qin LI, Hai-zhou CHEN, Xin WANG, Qiu-wen ZHAN, Zhao-shi XU. Functional characterization of the role of SbER10_X1 in regulating photosynthesis and biomass of sorghum forage [J]. Acta Prataculturae Sinica, 2023, 32(4): 91-100. |
[8] | Mao-jian WANG, Wei SHI, Sheng-hua CHANG, Cheng ZHANG, Qian-min JIA, Fu-jiang HOU. Effects of irrigation modes on forage yield, quality and water use of corn-legume intercropping systems in the Hexi irrigation area [J]. Acta Prataculturae Sinica, 2023, 32(3): 13-29. |
[9] | Teng-fei WANG, Bin WANG, Jian-qiang DENG, Man-you LI, Wang NI, Qin FENG, Yun-yun TUO, Jian LAN. Effect of sowing rate on yield and forage quality of a Dolichos lablab-Sorghum bicolor mixture under drip irrigation in arid areas of Ningxia [J]. Acta Prataculturae Sinica, 2023, 32(3): 30-40. |
[10] | Zong-chang XU, Xue-li LU, Yun-chong WEI, Chen MENG, Meng-chao ZHANG, Yuan-yang ZHANG, Meng WANG, Ju-ying WANG, Cheng-sheng ZHANG, Yi-qiang LI. Salt tolerance identification and evaluation of a population of wild soybean SP1 mutants at the seedling stage [J]. Acta Prataculturae Sinica, 2023, 32(11): 168-178. |
[11] | Ren-shi MA, Cong-ze JIANG, Wei GAO, Zhong-li LI, Yu-ying SHEN, Xian-long YANG. Effects of slow-release N fertilizer on growth and water- and N- use efficiencies of forage sweet sorghum under three different irrigation regimes [J]. Acta Prataculturae Sinica, 2023, 32(10): 71-81. |
[12] | Ying JIANG, Chang WEI, Qiu-juan JIAO, Feng-min SHEN, Ge-zi LI, Xue-hai ZHANG, Fang YANG, Hai-tao LIU. Effects of exogenous silicon application on physiological parameters, root architecture and diameter distribution of maize under cadmium stress [J]. Acta Prataculturae Sinica, 2022, 31(9): 139-154. |
[13] | Wei GAO, Na SHOU, Cong-ze JIANG, Ren-shi MA, Yu-ying SHEN, Xian-long YANG. Effect of nitrogen application rate on dry matter accumulation, allocation and water use efficiency of forage sorghum [J]. Acta Prataculturae Sinica, 2022, 31(9): 26-35. |
[14] | Ying-zheng LI, Yu-lin CHENG, Lu-lu XU, Wan-song LI, Xu YAN, Xiao-feng LI, Ru-yu HE, Yang ZHOU, Jun-jun ZHENG, Xing-yu WANG, De-long ZHANG, Ming-jun CHENG, Yun-hong XIA, Jian-mei HE, Qi-lin TANG. A comparative study of silage quality characteristics of whole-plant, whole-ear and whole-straw silage of different maize varieties (lines) [J]. Acta Prataculturae Sinica, 2022, 31(8): 144-156. |
[15] | Ji-peng TIAN, Bei-yi LIU, Hong-ru GU, Cheng-long DING, Yun-hui CHENG, Zhu YU. Effects of lactic acid bacteria and calcium propionate on fermentation quality and mycotoxin contents of whole plant maize and oat silages [J]. Acta Prataculturae Sinica, 2022, 31(8): 157-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||