Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (7): 160-174.DOI: 10.11686/cyxb2022316
Xiao-qin LIAO(), Chang-ting WANG(), Dan LIU, Guo TANG, Jun MAO
Received:
2022-08-09
Revised:
2022-10-31
Online:
2023-07-20
Published:
2023-05-26
Contact:
Chang-ting WANG
Xiao-qin LIAO, Chang-ting WANG, Dan LIU, Guo TANG, Jun MAO. Effects of combined nitrogen and phosphorus application on root characteristics of alpine meadow[J]. Acta Prataculturae Sinica, 2023, 32(7): 160-174.
土层 Soil layer (cm) | 处理 Treatment | 土壤紧实度 SC (%) | 土壤含水率 SWC (%) | 全碳 TC (g·kg-1) | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | C∶N | C∶P | N∶P |
---|---|---|---|---|---|---|---|---|---|
0~10 | CK | 126.00±16.44Aa | 36.67±2.15Aa | 62.75±1.45Aab | 5.59±0.16Ab | 1.13±0.03Aa | 11.22±0.07Aa | 55.43±2.37Ab | 4.94±0.24Ab |
NP10 | 109.33±2.96Ba | 32.61±0.40Aa | 67.87±3.68Aa | 6.31±0.12Aa | 0.93±0.00Aa | 10.09±0.48Aa | 45.14±2.57Abc | 4.47±0.14Abc | |
NP20 | 161.00±2.08Aa | 34.85±0.18Aa | 56.78±1.47Ab | 5.63±0.16Aab | 1.01±0.08Aa | 10.78±0.75Aa | 72.48±3.98Aa | 6.74±0.13Aa | |
NP30 | 155.00±17.34Aa | 34.23±1.00Aa | 66.79±1.30Aab | 5.68±0.14Aab | 1.11±0.09Aa | 10.27±0.44Aa | 42.39±1.85Bc | 4.12±0.00Bc | |
10~20 | CK | 115.66±12.99Ab | 36.50±0.28Aa | 51.10±1.52Bb | 5.07±0.14Aa | 1.13±0.03Aa | 10.09±0.49Aa | 56.34±3.21Aa | 5.62±0.51Aa |
NP10 | 242.33±8.68Aa | 34.85±0.91Aab | 44.42±1.27Bc | 4.33±0.12Bb | 1.04±0.02Aa | 10.81±0.15Aa | 56.80±5.90Aa | 5.24±0.52Aa | |
NP20 | 195.33±13.04Aa | 32.91±0.47Bb | 51.00±1.33Bb | 4.71±0.16Bab | 0.92±0.11Aa | 11.77±0.47Aa | 60.36±3.96Aa | 5.17±0.55Ba | |
NP30 | 121.66±23.94Ab | 32.26±0.83Ab | 56.66±0.40Ba | 5.10±0.19Aa | 1.02±0.06Aa | 11.13±0.34Aa | 55.50±3.40Aa | 4.97±0.17Aa |
Table 1 Effect of combined application of nitrogen and phosphorus on soil physical and chemical properties (mean±SE, n=3)
土层 Soil layer (cm) | 处理 Treatment | 土壤紧实度 SC (%) | 土壤含水率 SWC (%) | 全碳 TC (g·kg-1) | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | C∶N | C∶P | N∶P |
---|---|---|---|---|---|---|---|---|---|
0~10 | CK | 126.00±16.44Aa | 36.67±2.15Aa | 62.75±1.45Aab | 5.59±0.16Ab | 1.13±0.03Aa | 11.22±0.07Aa | 55.43±2.37Ab | 4.94±0.24Ab |
NP10 | 109.33±2.96Ba | 32.61±0.40Aa | 67.87±3.68Aa | 6.31±0.12Aa | 0.93±0.00Aa | 10.09±0.48Aa | 45.14±2.57Abc | 4.47±0.14Abc | |
NP20 | 161.00±2.08Aa | 34.85±0.18Aa | 56.78±1.47Ab | 5.63±0.16Aab | 1.01±0.08Aa | 10.78±0.75Aa | 72.48±3.98Aa | 6.74±0.13Aa | |
NP30 | 155.00±17.34Aa | 34.23±1.00Aa | 66.79±1.30Aab | 5.68±0.14Aab | 1.11±0.09Aa | 10.27±0.44Aa | 42.39±1.85Bc | 4.12±0.00Bc | |
10~20 | CK | 115.66±12.99Ab | 36.50±0.28Aa | 51.10±1.52Bb | 5.07±0.14Aa | 1.13±0.03Aa | 10.09±0.49Aa | 56.34±3.21Aa | 5.62±0.51Aa |
NP10 | 242.33±8.68Aa | 34.85±0.91Aab | 44.42±1.27Bc | 4.33±0.12Bb | 1.04±0.02Aa | 10.81±0.15Aa | 56.80±5.90Aa | 5.24±0.52Aa | |
NP20 | 195.33±13.04Aa | 32.91±0.47Bb | 51.00±1.33Bb | 4.71±0.16Bab | 0.92±0.11Aa | 11.77±0.47Aa | 60.36±3.96Aa | 5.17±0.55Ba | |
NP30 | 121.66±23.94Ab | 32.26±0.83Ab | 56.66±0.40Ba | 5.10±0.19Aa | 1.02±0.06Aa | 11.13±0.34Aa | 55.50±3.40Aa | 4.97±0.17Aa |
项目Item | 现存量Standing crop | 生产量Production | 死亡量Mortality | 周转率Turnover |
---|---|---|---|---|
处理Treatment (T) | 14.771*** | 11.383*** | 6.811*** | 3.226* |
土层Soil layer (S) | 1419.057*** | 311.049*** | 440.862*** | 0.605 |
直径等级Diameter class (D) | 198.509*** | 36.325*** | 59.704*** | 11.280*** |
处理×土层 T×S | 14.316*** | 9.961*** | 7.211*** | 1.148 |
处理×直径等级 T×D | 2.091 | 2.460* | 1.151 | 1.595 |
土层×直径等级 S×D | 130.872*** | 21.276*** | 27.598*** | 0.890 |
处理×土层×直径等级 T×S×D | 2.178* | 1.483 | 0.480 | 0.830 |
Table 2 Multi-way ANOVA of root standing crop, production, mortality and turnover under nitrogen and phosphorus fertilization gradients
项目Item | 现存量Standing crop | 生产量Production | 死亡量Mortality | 周转率Turnover |
---|---|---|---|---|
处理Treatment (T) | 14.771*** | 11.383*** | 6.811*** | 3.226* |
土层Soil layer (S) | 1419.057*** | 311.049*** | 440.862*** | 0.605 |
直径等级Diameter class (D) | 198.509*** | 36.325*** | 59.704*** | 11.280*** |
处理×土层 T×S | 14.316*** | 9.961*** | 7.211*** | 1.148 |
处理×直径等级 T×D | 2.091 | 2.460* | 1.151 | 1.595 |
土层×直径等级 S×D | 130.872*** | 21.276*** | 27.598*** | 0.890 |
处理×土层×直径等级 T×S×D | 2.178* | 1.483 | 0.480 | 0.830 |
土层 Soil layer (cm) | 处理 Treatment | 直径≤0.3 mm根系 Root system with diameter≤0.3 mm | 直径>0.3 mm根系 Root system with diameter>0.3 mm | 总根系 Total root |
---|---|---|---|---|
0~10 | CK | 1.39±0.19Aa | 0.54±0.02Aa | 0.91±0.22Aa |
NP10 | 1.81±0.15Aa | 1.13±0.23Aa | 1.35±0.12Aa | |
NP20 | 1.66±0.11Aa | 1.42±0.32Aa | 1.44±0.25Aa | |
NP30 | 1.58±0.11Aa | 1.12±0.06Aa | 1.29±0.07Aa | |
10~20 | CK | 2.21±0.46Aa | 0.54±0.31Aa | 1.69±0.41Aa |
NP10 | 2.23±0.48Aa | 1.29±0.44Aa | 1.82±0.52Aa | |
NP20 | 1.72±0.37Aa | 1.17±0.36Aa | 1.35±0.36Aa | |
NP30 | 1.17±0.33Aa | 1.20±0.22Aa | 1.15±0.22Aa |
Table 3 Root turnover of alpine meadow under different fertilization treatments (mean±SE, n=3) (a-1)
土层 Soil layer (cm) | 处理 Treatment | 直径≤0.3 mm根系 Root system with diameter≤0.3 mm | 直径>0.3 mm根系 Root system with diameter>0.3 mm | 总根系 Total root |
---|---|---|---|---|
0~10 | CK | 1.39±0.19Aa | 0.54±0.02Aa | 0.91±0.22Aa |
NP10 | 1.81±0.15Aa | 1.13±0.23Aa | 1.35±0.12Aa | |
NP20 | 1.66±0.11Aa | 1.42±0.32Aa | 1.44±0.25Aa | |
NP30 | 1.58±0.11Aa | 1.12±0.06Aa | 1.29±0.07Aa | |
10~20 | CK | 2.21±0.46Aa | 0.54±0.31Aa | 1.69±0.41Aa |
NP10 | 2.23±0.48Aa | 1.29±0.44Aa | 1.82±0.52Aa | |
NP20 | 1.72±0.37Aa | 1.17±0.36Aa | 1.35±0.36Aa | |
NP30 | 1.17±0.33Aa | 1.20±0.22Aa | 1.15±0.22Aa |
1 | Sun Y F, Wan H W, Zhao Y J, et al. Spatial patterns and drivers of root turnover in grassland ecosystems in China. Chinese Journal of Plant Ecology, 2018, 42(3): 337-348. |
孙元丰, 万宏伟, 赵玉金, 等. 中国草地生态系统根系周转的空间格局和驱动因子. 植物生态学报, 2018, 42(3): 337-348. | |
2 | Wu Y B, Che R X, Ma S, et al. Estimation of root production and turnover in an alpine meadow: Comparison of three measurement methods. Acta Ecologica Sinica, 2014, 34(13): 3529-3537. |
吴伊波, 车荣晓, 马双, 等. 高寒草甸植被细根生产和周转的比较研究. 生态学报, 2014, 34(13): 3529-3537. | |
3 | Tang G, Hu L, Song X Y, et al. Response of plant roots in different diameter classes to changing precipitation in an alpine meadow. Acta Ecologica Sinica, 2022, 42(15): 6250-6264. |
唐国, 胡雷, 宋小艳, 等. 高寒草甸植物群落不同根序根系特征对降雨量变化的响应. 生态学报, 2022, 42(15): 6250-6264. | |
4 | Xu M H, Liu M, Zhai D T, et al. Effects of experimental warming on the root biomass of an alpine meadow on the Qinghai-Tibetan Plateau, China. Acta Ecologica Sinica, 2016, 36(21): 6812-6822. |
徐满厚, 刘敏, 翟大彤, 等. 模拟增温对青藏高原高寒草甸根系生物量的影响. 生态学报, 2016, 36(21): 6812-6822. | |
5 | Li P, Li Z B, Lu K X. Relationship between herbaceous root system and vertical soil sediment yield in loess area. Journal of Plant Ecology, 2006(2): 302-306. |
李鹏, 李占斌, 鲁克新. 黄土区草本植被根系与土壤垂直侵蚀产沙关系研究. 植物生态学报, 2006(2): 302-306. | |
6 | Mccormack M L, Dickie I A, Eissenstat D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 2015, 207(3): 505-518. |
7 | Wang W, Mo Q, Han X, et al. Fine root dynamics responses to nitrogen addition depend on root order, soil layer, and experimental duration in a subtropical forest. Biology and Fertility of Soils, 2019, 55(7): 723-736. |
8 | Luo Y Q, Zhao X Y, Wang T, et al. Plant root decomposition and its responses to biotic and abiotic factors. Acta Prataculturae Sinica, 2017, 26(2): 197-207. |
罗永清, 赵学勇, 王涛, 等. 植物根系分解及其对生物和非生物因素的响应机理研究进展. 草业学报, 2017, 26(2): 197-207. | |
9 | Yu S Q, Wang J B, Hao Q W, et al. Fine root lifespan and influencing factors of four tree species with different life forms. Acta Ecologica Sinica, 2020, 40(9): 3040-3047. |
于水强, 王静波, 郝倩葳, 等. 四种不同生活型树种细根寿命及影响因素. 生态学报, 2020, 40(9): 3040-3047. | |
10 | Wu Y, Deng Y, Zhang J, et al. Root size and soil environments determine root lifespan: Evidence from an alpine meadow on the Tibetan Plateau. Ecological Research, 2013(28): 493-501. |
11 | Ruess R W, Cleve K V, Yarie J, et al. Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior. Canadian Journal of Forest Research, 1996, 26(8): 1326-1336. |
12 | Goebel M, Hobbie S E, Bulaj B, et al. Decomposition of the finest root branching orders: Linking belowground dynamics to fine-root function and structure. Ecological Monographs, 2011, 81(1): 89-102. |
13 | Zi H B, Chen Y, Hu L, et al. Effects of nitrogen addition on root dynamics in an alpine meadow, Northwestern Sichuan. Chinese Journal of Plant Ecology, 2018, 42(1): 38-49. |
字洪标, 陈焱, 胡雷, 等. 氮肥添加对川西北高寒草甸植物群落根系动态的影响. 植物生态学报, 2018, 42(1): 38-49. | |
14 | Wang X Z, Jiang H L, Xu K W, et al. Influence of phosphorus addition on shoot and root growth patterns of Medicago sativa. Journal of Lanzhou University (Natural Sciences), 2013, 49(1): 87-91, 99. |
王先之, 蒋海亮, 许可旺, 等. 磷添加对紫花苜蓿幼苗地上部及根系生长模式的影响. 兰州大学学报(自然科学版), 2013, 49(1): 87-91, 99. | |
15 | Tang L T, Mao R, Wang C T, et al. Effects of nitrogen and phosphorus addition on root characteristics of alpine meadow. Acta Prataculturae Sinica, 2021, 30(9): 105-116. |
唐立涛, 毛睿, 王长庭, 等. 氮磷添加对高寒草甸植物群落根系特征的影响. 草业学报, 2021, 30(9): 105-116. | |
16 | Wang C T, Wang G X, Liu W, et al. Effects of fertilization gradients on plant community structure and soil characteristics in alpine meadow. Acta Ecologica Sinica, 2013, 33(10): 3103-3113. |
王长庭, 王根绪, 刘伟, 等. 施肥梯度对高寒草甸群落结构、功能和土壤质量的影响. 生态学报, 2013, 33(10): 3103-3113. | |
17 | Wang J, Gao Y, Zhang Y, et al. Asymmetry in above and belowground productivity responses to N addition in a semiarid temperate steppe. Global Change Biology, 2019, 25(9): 2958-2969. |
18 | Bai W M, Wang Z W, Chen Q S, et al. Spatial and temporal effects of nitrogen addition on root life span of Leymus chinensis in a typical steppe of Inner Mongolia. Functional Ecology, 2008, 22(4): 583-591. |
19 | Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20(1): 5-15. |
20 | Dessureault-Rompré J, Zebarth B J, Georgallas A, et al. Temperature dependence of soil nitrogen mineralization rate: Comparison of mathematical models, reference temperatures and origin of the soils. Geoderma, 2010, 157(3/4): 97-108. |
21 | Shen Z B, Qi Z Y, Jin J. Effect of phosphorus application on morphological characters of root under drought stress at different reproductive stages in soybean. Soybean Science, 2007(4): 528-532. |
申忠宝, 齐志勇, 金剑. 大豆不同生殖生长期干旱胁迫条件下施磷对根系形态性状的影响. 大豆科学, 2007(4): 528-532. | |
22 | Li F, Pan X H. The research development of morphological and physiological characteristics of plant root system under phosphorus deficiency. Chinese Agricultural Science Bulletin, 2002(5): 65-69, 76. |
李锋, 潘晓华. 植物适应缺磷胁迫的根系形态及生理特征研究进展. 中国农学通报, 2002(5): 65-69, 76. | |
23 | Mei L, Wang Z Q, Cheng Y H, et al. A review: Factors influencing fine root longevity in forest ecosystems. Acta Phytoecologica Sinica, 2004(5): 704-710. |
梅莉, 王政权, 程云环, 等. 林木细根寿命及其影响因子研究进展. 植物生态学报, 2004(5): 704-710. | |
24 | Pregitzer K S, Jared L D, Burton A J, et al. Fine root architecture of nine north American trees. Ecological Monographs, 2002, 72(2): 293-309. |
25 | Cormier N, Twilley R R, Ewel K C, et al. Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia. Hydrobiologia, 2015, 750(1): 69-87. |
26 | Shi J W, Qin Q, Chen J W. Estimating fine root longevity among different branching order root for Caragana korshinskii plantation using Minirhizotron. Acta Ecologica Sinica, 2015, 35(12): 4045-4052. |
史建伟, 秦晴, 陈建文. 柠条人工林细根不同分枝根序寿命估计. 生态学报, 2015, 35(12): 4045-4052. | |
27 | Yu G, Lu C X, Xie G D. Soil conservation capacity of alpine meadow ecosystem and its economic value in the Northern Qinghai Tibetan Plateau. Journal of Beijing Forestry University, 2006(4): 57-61. |
于格, 鲁春霞, 谢高地. 青藏高原北缘地区高寒草甸土壤保持功能及其价值的实验研究. 北京林业大学学报, 2006(4): 57-61. | |
28 | Ade L J, Zi H B, Liu M, et al. Response of belowground root growth dynamics to snow cover change in alpine meadow. Acta Ecologica Sinica, 2017, 37(20): 6773-6784. |
阿的鲁骥, 字洪标, 刘敏, 等. 高寒草甸地下根系生长动态对积雪变化的响应. 生态学报, 2017, 37(20): 6773-6784. | |
29 | Luo X P, Ade L J, Zi H B, et al. Response of soil microbial function diversity to snow cover gradient in alpine meadow soil of Qinghai-Tibet Plateau. Journal of Glaciology and Geocryology, 2018, 40(5): 1016-1027. |
罗雪萍, 阿的鲁骥, 字洪标, 等. 高寒草甸土壤微生物功能多样性对积雪变化的响应. 冰川冻土, 2018, 40(5): 1016-1027. | |
30 | Wu Y, Zhang J, Deng Y, et al. Effects of warming on root diameter, distribution, and longevity in an alpine meadow. Plant Ecology, 2014, 9(215): 1057-1066. |
31 | Majdi H, öhrvik J. Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden. Global Change Biology, 2004, 10(2): 182-188. |
32 | Taylor H M, Huck M G, Klepper B, et al. Measurement of soil-grown roots in a rhizotron. Agronomy Journal, 1970, 62(6): 807-809. |
33 | Zhang W, Fu Y, Li J F, et al. Comparative study on Kjeldahl method and dumas combustion method for total nitrogen measurement in soil. Chinese Agricultural Science Bulletin, 2015, 31(35): 172-175. |
张薇, 付昀, 李季芳, 等. 基于凯氏定氮法与杜马斯燃烧法测定土壤全氮的比较研究. 中国农学通报, 2015, 31(35): 172-175. | |
34 | Wu Y P, Li Y J, Zhao L H, et al. Determination of total phosphorus content and total potassium content in soil with continuous flow analytical method. Southwest China Journal of Agricultural Sciences, 2013, 26(5): 1941-1945. |
吴玉萍, 李应金, 赵立红, 等. 连续流动分析法测定土壤中全磷、全钾的含量. 西南农业学报, 2013, 26(5): 1941-1945. | |
35 | Li J, Pan P, Wang C T, et al. Root dynamics of artificial grassland for swards of differing ages in the ‘Three-River Source’ region. Acta Prataculturae Sinica, 2021, 30(3): 28-40. |
李洁, 潘攀, 王长庭, 等. 三江源区不同建植年限人工草地根系动态特征. 草业学报, 2021, 30(3): 28-40. | |
36 | Ghestem M, Veylon G, Bernard A, et al. Influence of plant root system morphology and architectural traits on soil shear resistance. Plant and Soil, 2014, 377(1/2): 43-61. |
37 | Zhou L P, Qi R S. Effect of unreasonable fertilizer on soil property and its controlling measures. Gansu Agriculture Science and Technology, 2017(1): 74-78. |
周丽萍, 戚瑞生. 不合理施肥对土壤性质的影响及其防治措施探讨. 甘肃农业科技, 2017(1): 74-78. | |
38 | Ren S R, Shao Y C, Gao B Y, et al. Effects of long-term located fertilization on heavy-metal content of soil. Journal of Soil and Water Conservation, 2005, 19(4): 96-99. |
任顺荣, 邵玉翠, 高宝岩, 等. 长期定位施肥对土壤重金属含量的影响. 水土保持学报, 2005, 19(4): 96-99. | |
39 | Pei Z Q, Zhou Y, Zheng Y R, et al. Contribution of fine root turnover to the soil organic carbon cycling in a Reaumuria soongorica community in an arid ecosystem of Xinjiang Uygur Autonomous Region, China. Chinese Journal of Plant Ecology, 2011, 35(11): 1182-1191. |
裴智琴, 周勇, 郑元润, 等. 干旱区琵琶柴群落细根周转对土壤有机碳循环的贡献. 植物生态学报, 2011, 35(11): 1182-1191. | |
40 | Zi H B, Dai D, Hu L, et al. Responses of soil microbial functional diversity to phosphorus addition in an alpine meadow on Northwestern plateau of Sichuan Province. Chinese Journal of Soil Science, 2017, 48(3): 647-655. |
字洪标, 代迪, 胡雷, 等. 川西北高寒草甸土壤微生物功能多样性对磷(P)添加的响应. 土壤通报, 2017, 48(3): 647-655. | |
41 | Wang W Y, Zhou H K, Yang L, et al. The uptake strategy of soil nitrogen nutrients by different plant species in alpine Kobresia tibetica meadow on the Qinghai-Tibet Plateau. Journal of Natural Resources, 2014, 29(2): 249-255. |
王文颖, 周华坤, 杨莉, 等. 高寒藏嵩草(Kobresia tibetica)草甸植物对土壤氮素利用的多元化特征. 自然资源学报, 2014, 29(2): 249-255. | |
42 | Tang L T. Effects of phosphorus addition on plant root characteristics and leaf traits in an alpine meadow of the Northwestern Sichuan, China. Chengdu: Southwest Minzu University, 2020. |
唐立涛. 磷添加对川西北高寒草甸植物根系特征及叶片属性的影响. 成都: 西南民族大学, 2020. | |
43 | Zhang Y K, Zhang L F, Zhang X Z, et al. Effects of different range restorations on the root traits of vegetation in the alpine meadow. Journal of Lanzhou University (Natural Sciences), 2014, 50(1): 107-111. |
张燕堃, 张灵菲, 张新中, 等. 不同草地恢复措施对高寒草甸植物根系特征的影响. 兰州大学学报(自然科学版), 2014, 50(1): 107-111. | |
44 | Zhou M, Guo Y, Sheng J, et al. Using anatomical traits to understand root functions across root orders of herbaceous species in a temperate steppe. New Phytologist, 2022(234): 422-434. |
45 | Woodward F I, Osborne C P. The representation of root processes in models addressing the responses of vegetation to global change. New Phytologist, 2000, 147(1): 223-232. |
46 | Wu Y. Low nitrogen induced changes of morphological and anatomical characteristics and its effects on nitrogen uptake and distribution in rice. Wuhan: Huazhong Agricultural University, 2020. |
吴宇. 低氮诱导的水稻根系形态解剖结构变化及其对氮素吸收分配的影响. 武汉: 华中农业大学, 2020. | |
47 | Niu S L, Jiang G M. The importance of Legume in China grassland ecosystem and the advances in physiology and ecology studies. Chinese Bulletin of Botany, 2004, 21(1): 9-18. |
牛书丽, 蒋高明. 豆科植物在中国草原生态系统中的地位及其生理生态研究. 植物学通报, 2004, 21(1): 9-18. | |
48 | Gill R A, Burke I C, Lauenroth W K, et al. Longevity and turnover of roots in the shortgrass steppe: Influence of diameter and depth. Plant Ecology, 2002(159): 241-251. |
49 | Li W, Jin C, Guan D, et al. The effects of simulated nitrogen deposition on plant root traits: A meta-analysis. Soil Biology and Biochemistry, 2015, 82: 112-118. |
50 | Zheng X, Yang Z X, Hao D M, et al. Response of Rumex hanus by roots to drought after rehydration. Arid Zone Research, 2022, 39(1): 240-249. |
郑旭, 杨志鑫, 郝东梅, 等. 盐碱地食叶草细根对干旱复水后的响应. 干旱区研究, 2022, 39(1): 240-249. | |
51 | Liu S L, Wang C T, Zhang C B, et al. A comparative study of root characteristics of three gramineous herbage species in the Northwest Sichuan Plateau. Acta Prataculturae Sinica, 2021, 30(3): 41-53. |
刘斯莉, 王长庭, 张昌兵, 等. 川西北高原3种禾本科牧草根系特征比较研究. 草业学报, 2021, 30(3): 41-53. | |
52 | Burton A J, Pregitzer K S, Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 2000, 125(3): 389-399. |
[1] | Rui-jie YANG, Shu-qin HE, Shu-feng ZHOU, Jing-yue YANG, Yu-xian JIN, Zi-cheng ZHENG. Root regulation of soil scourability in hybrid sorghum grass during the growing period [J]. Acta Prataculturae Sinica, 2023, 32(7): 149-159. |
[2] | Cai-feng LIU, Yuan-yuan DUAN, Ling-ling WANG, Yi-mo WANG, Zheng-gang GUO. Effects of plateau pika (Ochotona curzoniae) disturbance on the relationship between plant species diversity and soil ecological stoichiometry in alpine meadows [J]. Acta Prataculturae Sinica, 2023, 32(6): 157-166. |
[3] | Yu SUN, Yong-sheng YANG, Qi HE, Jun-bang WANG, Xiu-juan ZHANG, Hui-ting LI, Xing-liang XU, Hua-kun ZHOU, Yu-heng ZHANG. Responses of soil water conservation function and soil physicochemical properties to a range of degradation conditions in alpine meadows of the Three River Headwater Region [J]. Acta Prataculturae Sinica, 2023, 32(6): 16-29. |
[4] | Guo-hong YOU, Dan LIU, Yan-li WANG, Chang-ting WANG. Response of plant leaf ecological stoichiometric characteristics to long-term nitrogen addition in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(9): 50-62. |
[5] | Yan PENG, Jing-yuan SUN, Su-jie MA, Xiang-tao WANG, Xue-hong WEI, Lei SUN. Plant community composition and soil nutrient status of degraded alpine meadow sites in Northern Tibet [J]. Acta Prataculturae Sinica, 2022, 31(8): 49-60. |
[6] | Yu-zhuo ZHANG, Zhi-gui YANG, Hong-yan YU, Qiang ZHANG, Shu-xia YANG, Ting ZHAO, Hua-hua XU, Bao-ping MENG, Yan-yan LV. Estimating grassland above ground biomass based on the STARFM algorithm and remote sensing data——A case study in the Sangke grassland in Xiahe County, Gansu Province [J]. Acta Prataculturae Sinica, 2022, 31(6): 23-34. |
[7] | Yang LI, Yi WANG, Guo-dong HAN, Jian SUN, Ya-feng WANG. Soil microbial biomass carbon and nitrogen levels and their controlling factors in alpine grassland, Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2022, 31(6): 50-60. |
[8] | Xiao-lei ZHOU, Yue-e YAN, Jing ZHANG, Xu-jiao ZHOU, Yong-qin YAN, Fu-qiang YANG, Xue-ping CAO, An ZHAO, Yan-li ZHAO, Jing-yi SU. Vegetation community structure and diversity in a burned area of Picea asperata-Abies fabri forest on different aspects on the northeastern margin of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(5): 144-155. |
[9] | Yong-mei LIU, Xing-zhi DONG, Yong-qing LONG, Zhi-mei ZHU, Lei WANG, Xing-hua GE, Fan ZHAO, Jing-zhong LI. Classification of Stellera chamaejasme communities and their relationships with environmental factors in degraded alpine meadow in the central Qilian Mountains, Qinghai Province [J]. Acta Prataculturae Sinica, 2022, 31(4): 1-11. |
[10] | Xin LI, Xue WEI, Chang-ting WANG, Xiao REN, Peng-fei WU. Effects of exogenous nutrient addition on alpine meadow soil arthropod communities [J]. Acta Prataculturae Sinica, 2022, 31(4): 155-164. |
[11] | Cai-cai SUN, Quan-min DONG, Wen-ting LIU, Bin FENG, Guang SHI, Yu-zhen LIU, Yang YU, Chun-ping ZHANG, Xiao-fang ZHANG, Cai-di LI, Zeng-zeng YANG, Xiao-xia YANG. Effects of grazing modes on the community structure and diversity of soil arthropod in an alpine meadow on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(2): 62-75. |
[12] | Yuan-yuan DUAN, Jing ZHANG, Ling-ling WANG, Cai-feng LIU, Yi-mo WANG, Su ZHOU, Zheng-gang GUO. Effects of plateau pika on the relationship between plant species diversity and functional diversity in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(11): 25-35. |
[13] | Yong-hong WANG, Li-ming TIAN, Yi AI, Shi-yong CHEN, Tserang-donko MIPAM. Effects of short-term yak grazing on soil fungal communities in an alpine meadow on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(10): 41-52. |
[14] | Li-tao TANG, Rui MAO, Chang-ting WANG, Jie LI, Lei HU, Hong-biao ZI. Effects of nitrogen and phosphorus addition on root characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2021, 30(9): 105-116. |
[15] | Wei ZHANG, Shu-hua YI, Yu QIN, Dong-hui SHANGGUAN, Yan QIN. Analysis of features and influencing factors of alpine meadow surface temperature based on UAV thermal thermography [J]. Acta Prataculturae Sinica, 2021, 30(3): 15-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||