Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (9): 111-125.DOI: 10.11686/cyxb2023393
Hong-li CUI1(), Ming-zhe SUN1, Bo-wei JIA1,2(), Xiao-li SUN1()
Received:
2023-10-19
Revised:
2023-11-29
Online:
2024-09-20
Published:
2024-06-20
Contact:
Bo-wei JIA,Xiao-li SUN
Hong-li CUI, Ming-zhe SUN, Bo-wei JIA, Xiao-li SUN. Genome-wide analysis and expression of the OSCA family genes from Medicago truncatula in response to low temperature stresses[J]. Acta Prataculturae Sinica, 2024, 33(9): 111-125.
基因名Gene name | 正向引物Forward primer (5'-3') | 反向引物Reverse primer (5'-3') |
---|---|---|
MtOSCA1.1 | GCTGGGTCAGCATTTCAACA | CTTCAGCAGCTATACCAGACCA |
MtOSCA2.2 | CAATATGTGAGGCGGGTGGT | CTTCCTTCCACTGCGGGAAA |
MtOSCA2.5 | CTCCGGCACCTAAGGATGTT | GTTGGTAAGCCCCTGAACGA |
MtOSCA2.6 | CAGAGGCTTCATTGGCAGGA | GAGGTTCTGGAGCCAACTCA |
MtOSCA3.1 | GCCTTGAGCTGTCCCGATTA | AGCGGGGATTCTTGTTGCAT |
MtActin | CCCACTGGATGTCTGTAGGTT | AGAATTAAGTAGCAGCGCAAA |
Table 1 qRT-PCR validation primers
基因名Gene name | 正向引物Forward primer (5'-3') | 反向引物Reverse primer (5'-3') |
---|---|---|
MtOSCA1.1 | GCTGGGTCAGCATTTCAACA | CTTCAGCAGCTATACCAGACCA |
MtOSCA2.2 | CAATATGTGAGGCGGGTGGT | CTTCCTTCCACTGCGGGAAA |
MtOSCA2.5 | CTCCGGCACCTAAGGATGTT | GTTGGTAAGCCCCTGAACGA |
MtOSCA2.6 | CAGAGGCTTCATTGGCAGGA | GAGGTTCTGGAGCCAACTCA |
MtOSCA3.1 | GCCTTGAGCTGTCCCGATTA | AGCGGGGATTCTTGTTGCAT |
MtActin | CCCACTGGATGTCTGTAGGTT | AGAATTAAGTAGCAGCGCAAA |
序号 Number | 基因名 Gene name | 基因ID Gene ID | DNA (bp) | mRNA (bp) | cDNA (bp) | 蛋白Protein (aa) | 分子量 Molecular weight (KD) | 等电点 Isoelectric point (pI) | 跨膜结构域数量Numbers of transmembrane domains | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|---|---|
1 | MtOSCA1.1 | Medtr4g132570 | 5714 | 2325 | 2325 | 774 | 88.26 | 9.22 | 10 | 质膜Plasma membrane |
2 | MtOSCA1.2 | Medtr5g086610 | 6495 | 2919 | 2301 | 766 | 87.40 | 8.83 | 8 | 质膜Plasma membrane |
3 | MtOSCA1.3 | Medtr7g094570 | 5471 | 2295 | 2295 | 764 | 87.18 | 8.29 | 8 | 质膜Plasma membrane |
4 | MtOSCA1.4 | Medtr5g027510 | 6020 | 2899 | 2400 | 799 | 92.16 | 9.35 | 7 | 质膜Plasma membrane |
5 | MtOSCA2.1 | Medtr3g103560 | 9504 | 2211 | 2211 | 736 | 83.45 | 8.90 | 9 | 质膜Plasma membrane |
6 | MtOSCA2.2 | Medtr1g017170 | 9579 | 2961 | 2307 | 768 | 86.60 | 8.93 | 10 | 质膜Plasma membrane |
7 | MtOSCA2.3 | Medtr6g012870 | 6782 | 2697 | 2139 | 712 | 81.25 | 8.72 | 10 | 质膜Plasma membrane |
8 | MtOSCA2.4 | Medtr7g011610 | 5670 | 2373 | 2373 | 790 | 89.60 | 8.09 | 11 | 质膜Plasma membrane |
9 | MtOSCA2.5 | Medtr4g082340 | 4734 | 2911 | 2169 | 722 | 82.28 | 9.01 | 8 | 质膜Plasma membrane |
10 | MtOSCA2.6 | Medtr5g042560 | 6634 | 2593 | 2136 | 711 | 80.74 | 9.12 | 11 | 质膜Plasma membrane |
11 | MtOSCA2.7 | Medtr3g019070 | 5019 | 2136 | 2136 | 711 | 81.10 | 8.80 | 9 | 质膜Plasma membrane |
12 | MtOSCA3.1 | Medtr2g018780 | 5377 | 2916 | 2169 | 722 | 81.61 | 9.25 | 9 | 质膜Plasma membrane |
13 | MtOSCA4.1 | Medtr8g074970 | 3216 | 3216 | 2406 | 801 | 90.09 | 6.81 | 9 | 质膜Plasma membrane |
Table 2 Information of OSCA gene family in M. truncatula
序号 Number | 基因名 Gene name | 基因ID Gene ID | DNA (bp) | mRNA (bp) | cDNA (bp) | 蛋白Protein (aa) | 分子量 Molecular weight (KD) | 等电点 Isoelectric point (pI) | 跨膜结构域数量Numbers of transmembrane domains | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|---|---|
1 | MtOSCA1.1 | Medtr4g132570 | 5714 | 2325 | 2325 | 774 | 88.26 | 9.22 | 10 | 质膜Plasma membrane |
2 | MtOSCA1.2 | Medtr5g086610 | 6495 | 2919 | 2301 | 766 | 87.40 | 8.83 | 8 | 质膜Plasma membrane |
3 | MtOSCA1.3 | Medtr7g094570 | 5471 | 2295 | 2295 | 764 | 87.18 | 8.29 | 8 | 质膜Plasma membrane |
4 | MtOSCA1.4 | Medtr5g027510 | 6020 | 2899 | 2400 | 799 | 92.16 | 9.35 | 7 | 质膜Plasma membrane |
5 | MtOSCA2.1 | Medtr3g103560 | 9504 | 2211 | 2211 | 736 | 83.45 | 8.90 | 9 | 质膜Plasma membrane |
6 | MtOSCA2.2 | Medtr1g017170 | 9579 | 2961 | 2307 | 768 | 86.60 | 8.93 | 10 | 质膜Plasma membrane |
7 | MtOSCA2.3 | Medtr6g012870 | 6782 | 2697 | 2139 | 712 | 81.25 | 8.72 | 10 | 质膜Plasma membrane |
8 | MtOSCA2.4 | Medtr7g011610 | 5670 | 2373 | 2373 | 790 | 89.60 | 8.09 | 11 | 质膜Plasma membrane |
9 | MtOSCA2.5 | Medtr4g082340 | 4734 | 2911 | 2169 | 722 | 82.28 | 9.01 | 8 | 质膜Plasma membrane |
10 | MtOSCA2.6 | Medtr5g042560 | 6634 | 2593 | 2136 | 711 | 80.74 | 9.12 | 11 | 质膜Plasma membrane |
11 | MtOSCA2.7 | Medtr3g019070 | 5019 | 2136 | 2136 | 711 | 81.10 | 8.80 | 9 | 质膜Plasma membrane |
12 | MtOSCA3.1 | Medtr2g018780 | 5377 | 2916 | 2169 | 722 | 81.61 | 9.25 | 9 | 质膜Plasma membrane |
13 | MtOSCA4.1 | Medtr8g074970 | 3216 | 3216 | 2406 | 801 | 90.09 | 6.81 | 9 | 质膜Plasma membrane |
1 | Ahanger M A, Alyemeni M N, Wijaya L, et al. Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS One, 2018, 13(9): e0202175. |
2 | Scheres B, van der Putten W H. The plant perceptron connects environment to development. Nature, 2017, 543: 337-345. |
3 | Hubbard K E, Siegel R S, Valerio G, et al. Abscisic acid and CO2 signalling via calcium sensitivity priming in guard cells, new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus-response analyses. Annals of Botany, 2012, 109(1): 5-17. |
4 | Steinhorst L, Jörg K. Calcium-A central regulator of pollen germination and tube growth. Biochimica et Biophysica Acta, 2013, 1833(7): 1573-1581. |
5 | Yuan F, Yang H, Xue Y, et al. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature, 2014, 514(7522): 367-371. |
6 | Chai L F. Origin and evolution of OSCA family in plants. Taiyuan: Shanxi Normal University, 2019. |
柴利芳. 植物OSCA家族的起源与进化. 太原: 山西师范大学, 2019. | |
7 | Hou C C, Tian W, Kleist T, et al. DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Research, 2014, 24(5): 632-635. |
8 | Li J W, Yang J K, Jia B W, et al. Evolution and expression analysis of OSCA gene family in soybean. Chinese Journal of Oil Crop Sciences, 2017, 39(5): 589-599. |
李建伟, 杨珺凯, 贾博为, 等. 大豆基因组中OSCA基因家族的进化和表达分析. 中国油料作物学报, 2017, 39(5): 589-599. | |
9 | Ding S C, Feng X, Du H W, et al. Genome-wide analysis of maize OSCA family members and their involvement in drought stress. PeerJ, 2019, 7: e6765. |
10 | Zhang H J, Zhu D H, Du L Y, et al. Genome-wide identification and expression analysis of the OSCA gene family in wheat. Journal of Northwest A&F University (Natural Science Edition), 2022, 50(12): 25-33. |
张红娟, 朱德鹤, 杜琳颖, 等. 小麦OSCA基因家族全基因组鉴定及表达分析. 西北农林科技大学学报(自然科学版), 2022, 50(12): 25-33. | |
11 | Li Y S, Yuan F, Wen Z H, et al. Genome-wide survey and expression analysis of the OSCA gene family in rice. BMC Plant Biology, 2015, 15: 261. |
12 | Li J Q, Luo S L, Zhang S L, et al. Genome-wide identification of pepper OSCA gene family and expression analysis under different stress conditions. Plant Science Journal, 2022, 40(2): 187-196. |
李嘉琪, 罗石磊, 张帅磊, 等. 辣椒OSCA 基因家族的全基因组鉴定及不同胁迫条件下表达分析. 植物科学学报, 2022, 40(2): 187-196. | |
13 | Li S S, Li H, Yang W G, et al. Physiology and molecular mechanism of drought resistance in alfalfa. Pratacultural Science, 2018, 35(2): 331-340. |
李莎莎, 李红, 杨伟光, 等. 苜蓿抗旱生理与分子机制. 草业科学, 2018, 35(2): 331-340. | |
14 | Blondon F, Marie D, Brown S, et al. Genome size and base composition in Medicago sativa and M. truncatula species. Genome, 1994, 37(2): 264-270. |
15 | Tian J Y, Wang Q X, Zheng S W, et al. Genome-wide identification and expression profile analysis of the CPP gene family in Medicago truncatula. Acta Prataculturae Sinica, 2022, 31(7): 111-121. |
田骄阳, 王秋霞, 郑淑文, 等. 全基因组水平蒺藜苜蓿CPP基因家族的鉴定及表达模式分析. 草业学报, 2022, 31(7): 111-121. | |
16 | Huang S Y, Hu T M, Yang P Z. Identification and function analysis of the PYL gene family in Medicago truncatula. Pratacultural Science, 2019, 36(2): 422-433. |
黄思源, 呼天明, 杨培志. 蒺藜苜蓿PYL基因家族的全基因组鉴定、表达和功能分析. 草业科学, 2019, 36(2): 422-433. | |
17 | He H L, Piao J P, Sun J N, et al. Genome-wide identification and expression analysis of CIPK gene family in Medicago truncatula. Chinese Journal of Grassland, 2021, 43(9): 1-13. |
贺红利, 朴京培, 孙嘉囡, 等. 蒺藜苜蓿CIPK基因家族全基因组鉴定及表达分析. 中国草地学报, 2021, 43(9): 1-13. | |
18 | Wang C N, Wang H, Zhu H, et al. Genome-wide identification and characterization of cytokinin oxidase/dehydrogenase family genes in Medicago truncatula. Journal of Plant Physiology, 2021, 256: 153308. |
19 | Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Research, 2018, 46(D1): D493-D496. |
20 | El-Gebali S, Mistry J, Bateman A, et al. The pfam protein families database in 2019. Nucleic Acids Research, 2019, 47(D1): D427-D432. |
21 | Marchler-Bauer A, Bryant S H. CD-Search: protein domain annotations on the fly. Nucleic Acids Research, 2004, 32(Web Server issue2): W327-W331. |
22 | Xu L, Dong Z B, Fang L, et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Research, 2019, 47(W1): W52-W58. |
23 | Bailey T L, Boden M, Buske F A, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(Web Server issue2): W202-W208. |
24 | Chen C J, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. |
25 | Lescot M, Déhais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30(1): 325-327. |
26 | Sebastien C, Jerome V, Pascal G. MtExpress, a comprehensive and curated RNAseq-based gene expression atlas for the model legume Medicago truncatula. Plant and Cell Physiology, 2021, 62(9): 1494-1500. |
27 | Shu Y J, Liu Y, Zhang J, et al. Genome-wide analysis of the AP2/ERF superfamily genes and their responses to abiotic stress in Medicago truncatula. Frontiers in Plant Science, 2015, 6: 1247. |
28 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. |
29 | Hartmann F P, Tinturier E, Julien J L, et al. Between stress and response: function and localization of mechanosensitive Ca2+ channels in herbaceous and perennial plants. International Journal of Molecular Sciences, 2021, 22(20): 11043. |
30 | Zhang M, Wang D, Kang Y, et al. Structure of the mechanosensitive OSCA channels. Nature Structural & Molecular Biology, 2018, 25(9): 850-858. |
31 | Priest H D, Filichkin S A, Mockler T C. Cis-regulatory elements in plant cell signaling. Current Opinion in Plant Biology, 2009, 12(5): 643-649. |
32 | Biłas R, Szafran K, Hnatuszko-Konka K, et al. Cis-regulatory elements used to control gene expression in plants. Plant Cell, Tissue and Organ Culture, 2016, 127: 269-287. |
33 | Wu T, Liu Y M, Jin J, et al. Identification and expression characteristics of a cation/H+ exchanger gene family in Medicago truncatula. Acta Prataculturae Sinica, 2022, 31(1): 181-194. |
吴彤, 刘云苗, 金军, 等. 蒺藜苜蓿cation/H+ exchanger基因家族鉴定及表达特征分析. 草业学报, 2022, 31(1): 181-194. | |
34 | Li F, He X H, Zhang X M, et al. Identification, evolution and characteristic analysis of 14-3-3 gene family in Medicago. Genomics and Applied Biology, 2017, 36(12): 5238-5243. |
李菲, 何小红, 张习敏, 等. 苜蓿14-3-3基因家族的鉴定与进化和特征分析. 基因组学与应用生物学, 2017, 36(12): 5238-5243. | |
35 | Yang C L, Duan R J, Wu X X, et al. Genome-wide identification, sequence variation and expression analysis of GPAT gene family in Medicago truncatula L. Pratacultural Science, 2021, 38(10): 1966-1974. |
杨成兰, 段瑞君, 武雄雄, 等. 蒺藜苜蓿GPAT基因家族的全基因组鉴定、序列变异和表达分析. 草业科学, 2021, 38(10): 1966-1974. | |
36 | Zhang X Z, Huang H J, Sun Y W, et al. Genome identification and expression analysis of CBL gene family in Medicago truncatula L. Chinese Journal of Grassland, 2021, 43(7): 1-11. |
张兴政, 黄浩捷, 孙一闻, 等. 蒺藜苜蓿CBL基因家族全基因组鉴定及表达分析. 中国草地学报, 2021, 43(7): 1-11. | |
37 | Murthy S E, Dubin A E, Whitwam T, et al. OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. eLife, 2018, 7: e41844. |
38 | Zhai Y J, Wen Z H, Han Y, et al. Heterogeneous expression of plasma-membrane-localised OsOSCA1.4 complements osmotic sensing based on hyperosmolality and salt stress in Arabidopsis osca1 mutant. Cell Calcium, 2020, 91: 102261. |
39 | Cao L, Zhang P, Lu X, et al. Systematic analysis of the maize OSCA genes revealing ZmOSCA family members involved in osmotic stress and ZmOSCA2.4 confers enhanced drought tolerance in transgenic Arabidopsis. International Journal of Molecular Sciences, 2020, 21(1): 351. |
40 | Zeng C T, Qiu X W, Li D, et al. Bioinformatics analysis of the OSCA gene family in Vigna unguiculata (L.) Walp. Molecular Plant Breeding. (2023-02-16)[2023-10-10]. https://kns.cnki.net/kcms/detail//46.1068.S.20230216.0841.002.html. |
曾春涛, 仇学文, 李丹, 等. 豇豆OSCA基因家族生物信息学分析. 分子植物育种. (2023-02-16)[2023-10-10]. https://kns.cnki.net/kcms/detail//46.1068.S.20230216.0841.002.html. | |
41 | Lackey J A. Chromosome numbers in the Phaseoleae (Fabaceae: Faboideae) and their relation to taxonomy. American Journal of Botany, 1980, 67(4): 595-602. |
42 | Jojoa-Cruz S, Saotome K, Murthy S E, et al. Cryo-EM structure of the mechanically activated ion channel OSCA1.2. eLife, 2018, 7: e41845. |
43 | Liu X, Wang J W, Sun L F. Structure of the hyperosmolality-gated calcium-permeable channel OSCA1.2. Nature Communications, 2018, 9(1): 5060. |
44 | Maity K, Heumann J M, McGrath A P, et al. Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(28): 14309-14318. |
45 | Schroeder B C, Cheng T, Jan Y N, et al. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell, 2008, 134(6): 1019-1029. |
46 | Yang S T, Zhu C X, Chen J J, et al. Identification and expression profile analysis of the OSCA gene family related to abiotic and biotic stress response in cucumber. Biology, 2022, 11(8): 1134. |
47 | Li Y Y, Zhang Y B, Li B, et al. Preliminary expression analysis of the OSCA gene family in maize and their involvement in temperature stress. International Journal of Molecular Sciences, 2022, 23(21): 13658. |
48 | Han Y, Wang Y X, Zhai Y J, et al. OsOSCA1.1 mediates hyperosmolality and salt stress sensing in Oryza sativa. Biology, 2022, 11(5): 678. |
49 | She K J, Pan W Q, Yan Y, et al. Genome-wide identification, evolution and expressional analysis of OSCA gene family in barley (Hordeum vulgare L.). International Journal of Molecular Sciences, 2022, 23(21): 13027. |
50 | Shuang M, Li F S, Han Y, et al. Identification of OSCA gene family in Solanum habrochaites and its function analysis under stress. BMC Genomics, 2022, 23(1): 547. |
51 | Zhang Y, Wu C J, Su W Z, et al. Genome-wide identification and stress response analysis of OSCA gene family in watermelon. Journal of Southern Agriculture, 2021, 52(12): 3330-3339. |
张瑜, 吴才君, 苏文桢, 等. 西瓜OSCA基因家族全基因组鉴定及胁迫响应分析. 南方农业学报, 2021, 52(12): 3330-3339. | |
52 | Sanyal S K, Rao S, Mishra L K, et al. Plant stress responses mediated by CBL-CIPK phosphorylation network. The Enzymes, 2016, 40: 31-64. |
53 | Sangwan V, Orvar B L, Beyerly J, et al. Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant Journal, 2002, 31(5): 629-638. |
[1] | Yuan MA, Huan LIU, Gui-qin ZHAO, Jing-long WANG, Ran ZHANG, Rui-rui YAO. Identification of the oat sHSP gene family and its transcript profiles in response to high temperature and aging [J]. Acta Prataculturae Sinica, 2024, 33(8): 145-158. |
[2] | Wen LI, Li-rong ZHAO, Jian-ping ZHANG, Zi-gang LIU, Yan-ni QI, Wen-juan LI, Ya-ping XIE. Genome-wide identification and analysis of the DMP gene family in flax (Linum usitatissimum) [J]. Acta Prataculturae Sinica, 2023, 32(3): 91-106. |
[3] | Jiao-yang TIAN, Qiu-xia WANG, Shu-wen ZHENG, Wen-xian LIU. Genome-wide identification and expression profile analysis of the CPP gene family in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(7): 111-121. |
[4] | Ya-nan LIU, Ren-jie YU, Yan-li GAO, Jun-mei KANG, Qing-chuan YANG, Zhi-hai WU, Zhen WANG. Expression pattern and biological functions of an annexin encoding gene MtANN2 in Medicago truncatula under salt stress [J]. Acta Prataculturae Sinica, 2022, 31(5): 124-134. |
[5] | Na WEI, Yan-peng LI, Yi-tong MA, Wen-xian LIU. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa (Medicago sativa) under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(1): 118-130. |
[6] | Tong WU, Yun-miao LIU, Jun JIN, Wei-feng DONG, Xiao-xi CAI, Ming-zhe SUN, Bo-wei JIA, Xiao-li SUN. Identification and expression characteristics of a cation/H+ exchanger gene family in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(1): 181-194. |
[7] | LUO Wei, SHU Jian-hong, LIU Xiao-xia, WANG Zi-yuan, MU Qiong, WANG Xiao-li, WU Jia-hai. Cloning, subcellular localization and expression analysis of the RVE8 gene from Festuca arundinacea [J]. Acta Prataculturae Sinica, 2020, 29(7): 60-69. |
[8] | YANG Ting, ZHANG Jian-ping, LIU Zi-gang, QI Yan-ni, LI Wen-juan, XIE Ya-ping. Molecular cloning and expression of heteromeric ACCase subunit genes from flax [J]. Acta Prataculturae Sinica, 2020, 29(4): 111-120. |
[9] | XIA Zeng-run, WANG Wen-ying, LIU Ya-qi, WANG Suo-min. Cloning and expression analysis of the K+ channel gene AvAKT1 in Apocynum venetum [J]. Acta Prataculturae Sinica, 2019, 28(8): 180-189. |
[10] | LU Shan-shan, HONG Yuan-shu, LIU Ping. Expression analysis of SaLDC promoter from Sophora alopecuroides in Arabidopsis thaliana [J]. Acta Prataculturae Sinica, 2019, 28(11): 159-167. |
[11] | LI Wen-juan, QI Yan-ni, WANG Li-min, DANG Zhao, ZHAO Li, ZHAO Wei, XIE Ya-ping, WANG Bin, ZHANG Jian-ping, LI Shu-jie. Correlation between oil content or fatty acid composition and expression levels of genes involved in TAG biosynthesis in flax [J]. Acta Prataculturae Sinica, 2019, 28(1): 138-149. |
[12] | DONG Di, TENG Ke, YU An-Dong, TAN Peng-Hui, LIANG Xiao-Hong, HAN Lie-Bao. Cloning, subcellular localization and expression analysis of a novel phytoene synthase gene, ZmPSY, in Zoysia matrella [J]. Acta Prataculturae Sinica, 2017, 26(11): 69-76. |
[13] | ZHANG Yin-Bing, SUN Xin-Bo, FAN Bo, HAN Lie-Bao, ZHANG Xue, YUAN Jian-Bo, XU Li-Xin. Cloning and expression of ZjNAC from Zoysia japonica [J]. Acta Prataculturae Sinica, 2016, 25(4): 239-245. |
[14] | DUAN Hui-Rong, WANG Suo-Min. Cloning and expression analysis of a high-affinity K+ transporter gene SsHAK2 in Suaeda salsa [J]. Acta Prataculturae Sinica, 2016, 25(2): 114-123. |
[15] | WANG Jia,ZHENG Lin-lin,GU Tian-pei,WANG Xue-feng,WANG Ying-chun. Cloning and expression analysis of two WRKY transcription factors from the rare recretohalophyte Reaumuria trigyna [J]. Acta Prataculturae Sinica, 2014, 23(4): 122-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||