Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (7): 94-104.DOI: 10.11686/cyxb2023417
Previous Articles Next Articles
Shu-zhen SONG1(), Cai-ye ZHU2, Li-shan LIU1, Xu-ying GONG1, Rui-rui LUO1
Received:
2023-11-01
Revised:
2023-12-14
Online:
2024-07-20
Published:
2024-04-08
Contact:
Shu-zhen SONG
Shu-zhen SONG, Cai-ye ZHU, Li-shan LIU, Xu-ying GONG, Rui-rui LUO. The effect of tail-docking on adipocyte structure and lipid metabolism-related gene expression in Lanzhou fat-tailed sheep[J]. Acta Prataculturae Sinica, 2024, 33(7): 94-104.
项目Items | 含量Content |
---|---|
原料Ingredients | |
苜蓿干草Alfalfa hay (%) | 6.00 |
玉米秆Corn straw (%) | 20.00 |
小麦秆Wheat straw (%) | 4.00 |
玉米Corn (%) | 36.00 |
大豆粕Soybean meal (%) | 14.00 |
麸皮Wheat bran (%) | 8.00 |
菜籽粕Rapeseed meal (%) | 4.00 |
玉米胚芽粕Corn germ meal (%) | 6.00 |
磷酸氢钙CaHPO4 (%) | 0.20 |
碳酸钙CaCO3 (%) | 0.30 |
氯化钠NaCl (%) | 0.50 |
预混料Premixture1) (%) | 1.00 |
合计Total (%) | 100.00 |
营养水平Nutrient levels2) | |
消化能Digestible energy (DE, MJ·kg-1) | 12.50 |
代谢能Metabolic energy (ME, MJ·kg-1) | 10.32 |
粗蛋白质Crude protein (CP,%) | 15.80 |
粗脂肪Ether extract (EE,%) | 3.02 |
钙Ca (%) | 0.56 |
总磷Total phosphorus (TP,%) | 0.45 |
中性洗涤纤维Neutral detergent fiber (NDF,%) | 35.20 |
酸性洗涤纤维Acid detergent fiber (ADF,%) | 22.53 |
Table 1 Composition and nutrient levels of experimental diets (DM basis)
项目Items | 含量Content |
---|---|
原料Ingredients | |
苜蓿干草Alfalfa hay (%) | 6.00 |
玉米秆Corn straw (%) | 20.00 |
小麦秆Wheat straw (%) | 4.00 |
玉米Corn (%) | 36.00 |
大豆粕Soybean meal (%) | 14.00 |
麸皮Wheat bran (%) | 8.00 |
菜籽粕Rapeseed meal (%) | 4.00 |
玉米胚芽粕Corn germ meal (%) | 6.00 |
磷酸氢钙CaHPO4 (%) | 0.20 |
碳酸钙CaCO3 (%) | 0.30 |
氯化钠NaCl (%) | 0.50 |
预混料Premixture1) (%) | 1.00 |
合计Total (%) | 100.00 |
营养水平Nutrient levels2) | |
消化能Digestible energy (DE, MJ·kg-1) | 12.50 |
代谢能Metabolic energy (ME, MJ·kg-1) | 10.32 |
粗蛋白质Crude protein (CP,%) | 15.80 |
粗脂肪Ether extract (EE,%) | 3.02 |
钙Ca (%) | 0.56 |
总磷Total phosphorus (TP,%) | 0.45 |
中性洗涤纤维Neutral detergent fiber (NDF,%) | 35.20 |
酸性洗涤纤维Acid detergent fiber (ADF,%) | 22.53 |
名称 Name | 序列 Accession number | 引物序列 Primer sequence (5′-3′) | 片段大小 Product length (bp) | 退火温度 Annealing temperature (℃) |
---|---|---|---|---|
SCD | NM_001009254 | F: GAAGAAGACATCCGCCCTGA R: GCAGCCGAGCTTTGTAGGTT | 271 | 56 |
PPARγ | NM_001100921 | F: CGAACTTGGGCTCCATAAAG R: GCTGGCCTCCTTGATGAATA | 119 | 63 |
LPL | NM_001009394 | F: TACCCTAACGGAGGCACTTTCC R: TGCAATCACACGGAGAGCTTC | 63 | 54 |
LEP | XM_027968780 | F: TGTTGCTTTTGGAGTGAGGA R: TCCAGTGTGCACCTGTTTGT | 118 | 60 |
ADPN | NM_001308565 | F: CTGTTGCTTCTGGTCAAAATGTC R: TTCTTTCTCTGCCCTACTTGGTC | 191 | 60 |
CEBP-β | XM_004014883.5 | F: CCGGTTTCGAAGTTGATGC R: TGTTCTTAATGCTCGAAACGG | 271 | 59 |
FABP4 | NM_001114667 | F: TCAGTGTAAATGGGGATGTGGT R: GATTTCCCATCCCAGTTTTGT | 178 | 59 |
FAS | AF_479289 | F: TGGTATCAACTCTGAGGGGCT R: TCTGGCATATCTCCGTCGC | 156 | 60 |
PEPCK | XM_004014441 | F: TGTGCCCACCCCAACTCA R: GCCAAAGTTGTAGCCGAAGA | 279 | 60 |
PLIN1 | XM_042234957 | F: GCTCCAATGGCAGTTAACAAGG R: TGGTGCTGGCGTAGGTCTTC | 139 | 61 |
UCP1 | NM_001280694.1 | F: CCACTGACCAGAAGTCGGAGA R: CCACTGACCAGAAGTCGGAGA | 233 | 60 |
RXRα | XM_027966139 | F: TGTCCAGCGGGAAGGTGAT R: CTCGGGGTACTTGTGTTTGC | 118 | 60 |
Beta-actin | NM_001009784 | F: AGCCTTCCTTCCTGGGCATGGA R: GGACAGCACCGTGTTGGCGTAGA | 113 | 56~63 |
Table 2 The primer sequences for qPCR
名称 Name | 序列 Accession number | 引物序列 Primer sequence (5′-3′) | 片段大小 Product length (bp) | 退火温度 Annealing temperature (℃) |
---|---|---|---|---|
SCD | NM_001009254 | F: GAAGAAGACATCCGCCCTGA R: GCAGCCGAGCTTTGTAGGTT | 271 | 56 |
PPARγ | NM_001100921 | F: CGAACTTGGGCTCCATAAAG R: GCTGGCCTCCTTGATGAATA | 119 | 63 |
LPL | NM_001009394 | F: TACCCTAACGGAGGCACTTTCC R: TGCAATCACACGGAGAGCTTC | 63 | 54 |
LEP | XM_027968780 | F: TGTTGCTTTTGGAGTGAGGA R: TCCAGTGTGCACCTGTTTGT | 118 | 60 |
ADPN | NM_001308565 | F: CTGTTGCTTCTGGTCAAAATGTC R: TTCTTTCTCTGCCCTACTTGGTC | 191 | 60 |
CEBP-β | XM_004014883.5 | F: CCGGTTTCGAAGTTGATGC R: TGTTCTTAATGCTCGAAACGG | 271 | 59 |
FABP4 | NM_001114667 | F: TCAGTGTAAATGGGGATGTGGT R: GATTTCCCATCCCAGTTTTGT | 178 | 59 |
FAS | AF_479289 | F: TGGTATCAACTCTGAGGGGCT R: TCTGGCATATCTCCGTCGC | 156 | 60 |
PEPCK | XM_004014441 | F: TGTGCCCACCCCAACTCA R: GCCAAAGTTGTAGCCGAAGA | 279 | 60 |
PLIN1 | XM_042234957 | F: GCTCCAATGGCAGTTAACAAGG R: TGGTGCTGGCGTAGGTCTTC | 139 | 61 |
UCP1 | NM_001280694.1 | F: CCACTGACCAGAAGTCGGAGA R: CCACTGACCAGAAGTCGGAGA | 233 | 60 |
RXRα | XM_027966139 | F: TGTCCAGCGGGAAGGTGAT R: CTCGGGGTACTTGTGTTTGC | 118 | 60 |
Beta-actin | NM_001009784 | F: AGCCTTCCTTCCTGGGCATGGA R: GGACAGCACCGTGTTGGCGTAGA | 113 | 56~63 |
成分Composition | 体积 Volume (μL) |
---|---|
2×SYBR Green Fast Qpcr Mix | 10 |
正向引物 Forward primer (10 μmol·L-1) | 1 |
反向引物 Reverse primer (10 μmol·L-1) | 1 |
cDNA模板 cDNA template | 2 |
无核酸酶去离子水 RNase-free ddH2O | 6 |
Table 3 The reaction system of qPCR
成分Composition | 体积 Volume (μL) |
---|---|
2×SYBR Green Fast Qpcr Mix | 10 |
正向引物 Forward primer (10 μmol·L-1) | 1 |
反向引物 Reverse primer (10 μmol·L-1) | 1 |
cDNA模板 cDNA template | 2 |
无核酸酶去离子水 RNase-free ddH2O | 6 |
指标Index | 项目Item | C 组C group | T 组T group |
---|---|---|---|
生长性能Growth performance | 日增重Average daily gain (g·d-1) | 223.12±2.37a | 216.83±4.55a |
料重比Feeding intake/gain weight (%) | 6.57±0.05a | 6.44±0.08a | |
脂肪沉积Fat deposition | 尾部脂肪指数Tail fat index (%) | 7.24±0.63a | 1.86±0.31b |
皮下脂肪指数Subcutaneous fat index (%) | 2.49±0.12b | 2.89±0.05a | |
内脏脂肪指数Visceral fat index (%) | 2.85±0.20b | 3.55±0.17a | |
总脂肪指数Total fat index (%) | 12.58±0.66a | 8.30±0.41b | |
背最长肌肌内脂肪Intramuscular fat of longissimus dorsi (%) | 6.96±0.10a | 6.05±0.12b |
Table 4 The effect of tail docking on average daily gain and fat deposition in Lanzhou fat-tailed sheep
指标Index | 项目Item | C 组C group | T 组T group |
---|---|---|---|
生长性能Growth performance | 日增重Average daily gain (g·d-1) | 223.12±2.37a | 216.83±4.55a |
料重比Feeding intake/gain weight (%) | 6.57±0.05a | 6.44±0.08a | |
脂肪沉积Fat deposition | 尾部脂肪指数Tail fat index (%) | 7.24±0.63a | 1.86±0.31b |
皮下脂肪指数Subcutaneous fat index (%) | 2.49±0.12b | 2.89±0.05a | |
内脏脂肪指数Visceral fat index (%) | 2.85±0.20b | 3.55±0.17a | |
总脂肪指数Total fat index (%) | 12.58±0.66a | 8.30±0.41b | |
背最长肌肌内脂肪Intramuscular fat of longissimus dorsi (%) | 6.96±0.10a | 6.05±0.12b |
项目Item | C 组C group | T 组T group |
---|---|---|
尾部脂肪细胞密度Density of tail fat adipocytes (pieces·mm-2) | 40.25±2.95b | 58.00±2.45a |
尾部脂肪细胞直径Diameter of tail adipocytes (μm) | 100.60±5.09a | 85.12±1.34b |
尾部脂肪脂滴面积比Ratio lipid droplets of tail fat (%) | 97.58±0.61a | 87.43±2.28b |
背最长肌脂滴面积比Ratio lipid droplets of longissimus dorsi (%) | 3.04±0.12b | 4.28±0.05a |
Table 5 The effect of tail docking on fat content and structure of adipocytes in Lanzhou fat-tailed sheep
项目Item | C 组C group | T 组T group |
---|---|---|
尾部脂肪细胞密度Density of tail fat adipocytes (pieces·mm-2) | 40.25±2.95b | 58.00±2.45a |
尾部脂肪细胞直径Diameter of tail adipocytes (μm) | 100.60±5.09a | 85.12±1.34b |
尾部脂肪脂滴面积比Ratio lipid droplets of tail fat (%) | 97.58±0.61a | 87.43±2.28b |
背最长肌脂滴面积比Ratio lipid droplets of longissimus dorsi (%) | 3.04±0.12b | 4.28±0.05a |
1 | Song S Z. The effect of energy restriction on fat deposition and mechanism in sheep. Lanzhou: Gansu Agricultural University, 2017. |
宋淑珍. 能量限制对绵羊脂肪沉积的影响及其机理研究. 兰州: 甘肃农业大学, 2017. | |
2 | Song S Z, Liu J B, Zhu C Y, et al. The effect of tail-docking on growth performance, fat deposition distribution and slaughter performance in Lanzhou fat-tailed sheep. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 642-655. |
宋淑珍, 刘俊斌, 朱才业, 等. 断尾对兰州大尾羊生长性能、脂肪沉积分布和屠宰性能的影响. 畜牧兽医学报, 2023, 54(2): 642-655. | |
3 | Bakhtiarizadeh M R, Alamouti A A. RNA-Seq based genetic variant discovery provides new insights into controlling fat deposition in the tail of sheep. Scientific Reports, 2020, 10(1): 13525. |
4 | Zeng J, Zhou S W, Yang Y X, et al. Effect of dietary nutrition on tail fat deposition and evaluation of tail-related genes in fat-tailed sheep. Electronic Journal of Biotechnology, 2020, 46: 30-37. |
5 | Yuan Z, Liu E, Liu Z, et al. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Animal Genetics, 2016, 48(1): 55-66. |
6 | Stacheck A J, Woszuk N, Kolodziejski P A, et al. The importance of the nuclear positioning of the PPARG gene for its expression during porcine in vitro adipogenesis. Chromosome Research, 2019, 27(3): 271-284. |
7 | Li K, Liu W Z, Zhang R X, et al. AMPK regulates sheep muscle derived preadipocytes differentiation. Acta Veterinaria et Zootechnica Sinica, 2018, 49(8): 1594-1604. |
李戡, 刘文忠, 张瑞鑫, 等. AMPK调控绵羊肌内前体脂肪细胞分化的研究. 畜牧兽医学报, 2018, 49(8): 1594-1604. | |
8 | Jia Y Y, Wu C Y, Kim J Y, et al. Astaxanthin reduces hepatic lipid accumulations in high-fat-fed C57BL/6J mice via activation of peroxisome proliferator-activated receptor (PPAR) alpha and inhibition of PPAR gamma and Akt. The Journal of Nutritional Biochemistry, 2016, 28: 9-18. |
9 | Resnyk C W, Carré W, Wang X, et al. Transcriptional analysis of abdominal fat in chickens divergently selected on body weight at two ages reveals novel mechanisms controlling adiposity: Validating visceral adipose tissue as a dynamic endocrine and metabolic organ. BMC Genomics, 2017, 18(1): 626-657. |
10 | Batu M K, Nuer G L, Xie L S. The numbering and tail docking method of lambs. Hubei Journal of Animal and Veterinary Sciences, 2014, 35(12): 54-55. |
巴图孟克, 奴尔古丽, 解立松. 羔羊的编号和断尾方法. 湖北畜牧兽医, 2014, 35(12): 54-55. | |
11 | National Research Council (NRC). Nutrient requirements of small ruminants: Sheep, goats, cervids and new world camelids. Washington DC: National Academy Press, 2007. |
12 | Gao L S. Effect of energy levels on fat metabolism in Altay lamb. Lanzhou: Gansu Agricultural University, 2020. |
高良霜. 能量水平对阿勒泰羔羊脂肪代谢的影响. 兰州: 甘肃农业大学, 2020. | |
13 | Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 2008, 3(6): 1101-1108. |
14 | Cui F, Liu C, Yang J M, et al. Adipose tissue sample preparation for scanning electron microscopy. Journal of Southern Medical University, 2012, 32(3): 435-436. |
崔芳, 刘超, 杨建民, 等. 脂肪组织扫描电镜样品制备方法. 南方医科大学学报, 2012, 32(3): 435-436. | |
15 | Zhai S H, Xiang W W, Hu M H, et al. Comparison of the microstructure and ultrastructure of fat cells in the tail of Hetian sheep and Smalltailed Han sheep. Animal Husbandry & Veterinary Medicine, 2021, 53(8): 45-49. |
翟少华, 向微微, 胡美荷, 等. 和田羊和小尾寒羊尾脂的显微和超微结构比较. 畜牧与兽医, 2021, 53(8): 45-49. | |
16 | Zhang C H. Lanzhou fat tailed sheep germplasm conservation and development. Chinese Journal of Animal Science, 2010, 46(18): 7-9. |
张成虎. 兰州大尾羊种质资源的保护和发展. 中国畜牧杂志, 2010, 46(18): 7-9. | |
17 | Kang D J, Zhou G X, Zhou S W, et al.Comparative transcriptome analysis reveals potentially novel roles of homeobox genes in adipose deposition in fat-tailed sheep. Scientific Reports, 2017, 7(1): 14491-14514. |
18 | Semenkovich C F. Regulation of fatty acid synthase (FAS). Progress in Lipid Research, 1997, 36(1): 45243-45253. |
19 | Sampath H, Miyazaki M, Dobrzyn A, et al. Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat. Journal of Biological Chemistry, 2007, 282(4): 2483-2493. |
20 | Ntambi J M, Miyazaki M. Regulation of stearoyl-CoA desaturases and role in metabolism. Progress in Lipid Research, 2004, 43(2): 91-104. |
21 | Goldberg I J, Merkel M. Lipoprotein lipase: Physiology, biochemistry, and molecular biology. Frontiers in Bioscience, 2001(3): 388-405. |
22 | Sun S S, Meng Q W, Luo Z, et al. Effects of dietary resveratrol supplementation during gestation and lactation of sows on milk composition of sows and fat metabolism of sucking piglets. Journal of Animal Physiology and Animal Nutrition, 2019, 103(3): 813-821. |
23 | Yu J H, Ge X P, Tang Y K, et al. Effects of carbohydrate, lipid in diets on the PEPCK gene expression of Eryghroculter ilishaeformis. Journal of Fisheries of China, 2007, 31(3): 369-373. |
俞菊华, 戈贤平, 唐永凯, 等.碳水化合物、脂肪对翘嘴红鲌PEPCK基因表达的影响. 水产学报, 2007, 31(3): 369-373. | |
24 | Wan Z, Matravadia S, Holloway G P, et al. FAT/CD36 regulates PEPCK expression in adipose tissue. American Journal of Physiology-Cell Physiology, 2013, 304(5): C478-C484. |
25 | Li S J, Raza S H A, Zhao C P, et al. Overexpression of PLIN1 promotes lipid metabolism in bovine adipocytes. Animals, 2020, 10(1994): 1-14. |
26 | Li S J. Transcriptional regulation mechanism of bovine PLIN1 gene and its effect on proliferation, differentiation and lipid metabolism of preadipocytes. Yangling: Northwest A&F University, 2020. |
李世军. 牛PLIN1基因转录调控机制及其对前体脂肪细胞增殖、分化和脂类代谢的作用研究. 杨凌: 西北农林科技大学, 2020. | |
27 | Li Y, Schwalie P C, Bast-Habersbrunner A, et al. Systems-genetics-based inference of a core regulatory network underlying white fat browning. Cell Reports, 2019, 29(12): 4099-4113. |
28 | Gao C Y, Sun S S, Li J B, et al. Lycopene modulates lipid metabolism in rats and their offspring under a high-fat diet. Food & Function, 2021, 12(19): 8960-8975. |
29 | Li D, Zhang F, Zhang X, et al. Distinct functions of PPARγ isoforms in regulating adipocyte plasticity. Biochemical and Biophysical Research Communications, 2016, 481(1/2): 132-138. |
30 | Keinan O, Valentine J M, Xiao H P, et al. Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes. Nature, 2021, 599(7884): 296-301. |
31 | Havel P J. Role of adipose tissue in body-weight regulation: Mechanisms regulating leptin production and energy balance. Proceedings of the Nutrition Society, 2000, 59(3): 359-371. |
32 | Oswal A, Yeo G. Leptin and the control of body weight: A review of its diverse central targets, signaling mechanisms, and role in pathogenesis of obesity. Obesity, 2010, 18(2): 221-229. |
33 | Kenneth K Y, Karen S L, Baile W, et al. Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin. Baillieres Best Practice & Research Clinical Endocrinology & Metabolism, 2014, 28(1): 3-13. |
34 | Delrue M A, Michaud J L. Fat chance: Genetic syndromes with obesity. Clinical Genetics, 2010, 66(2): 83-93. |
35 | Joubert D M. A study of pre-natal growth and development in the sheep. Journal of Agricultural Science, 1956, 47(4): 382-428. |
36 | Liu Z, Zhao S G, Li H W, et al. Impact on growth performance and fat deposition distribution of ‘Lanzhou fat-tailed sheep’ and ‘Mongolian sheep’ with fat-tail removal. Chinese Agricultural Science Bulletin, 2015, 31(5): 7-11. |
刘政, 赵生国, 李华伟, 等. 脂尾去除对‘兰州大尾羊’和‘蒙古羊’生长性能及脂肪沉积分布的影响. 中国农学通报, 2015, 31(5): 7-11. | |
37 | Wang Y Q, Zhong R Z, Fang Y, et al. Influence of tail docking on carcass characteristics, meat quality and fatty acid composition of fat-tail lambs. Small Ruminant Research, 2018, 162(5): 17-21. |
38 | Tilki M, Saatci M, Aksoy A R, et al. Effect of tail docking on growth performance and carcass traits in Turkish Tuj lambs. Journal of Animal and Veterinary Advances, 2010, 9(15): 2094-2097. |
39 | Masoumi R, Afsharirad A R, Mirzaei-alamouti H, et al. Does fat-tail docking and Zilpaterol hydrochloride (ZH) supplementation affect feedlot performance and carcass characteristics of finishing lambs? Small Ruminant Research, 2021, 205: 106548. |
40 | Meng J J, Sun Z Y, Wang Z B, et al. Ultrastructure comparison of adipocyte in cattle and sheep. Chinese Journal of Veterinary Science, 2018, 38(6): 1192-1196, 1200. |
蒙建菊, 孙宗扬, 王振宝, 等. 牛和羊脂肪细胞超微结构的比较. 中国兽医学报, 2018, 38(6): 1192-1196, 1200. |
[1] | Hai-ming KONG, Jia-xing SONG, Jing YANG, Qian LI, Pei-zhi YANG, Yu-man CAO. Identification and transcript profiling of the CAMTA gene family under abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(5): 143-154. |
[2] | Chao-nan MENG, Yu-jie ZHAO, Jia-xin CHEN, Yi-lu ZHANG, Yan-jia WANG, Li-rong FENG, Yu-gang SUN, Chang-hong GUO. Screening and identification of two strains of nitrogen-fixing bacteria from the silage maize rhizosphere and their roles in plant growth promotion [J]. Acta Prataculturae Sinica, 2024, 33(3): 174-185. |
[3] | Jia-hui CHEN, Wen-xian LIU. Construction and application of a graphic visualization tool for important forage omics data [J]. Acta Prataculturae Sinica, 2024, 33(2): 57-67. |
[4] | Jin GUAN, Yi-di GUO, Ling-yun LIU, Shu-xia YIN, Ke TENG. An efficient protocol for Zoysia japonica mesophyll protoplast isolation and transformation, and its application in subcellular localization and protein interaction analysis [J]. Acta Prataculturae Sinica, 2023, 32(7): 61-71. |
[5] | Mu-ye LIU, Li-zhu GUO, Yue-sen YUE, Ju-ying WU, Xi-feng FAN, Guo-zeng XIAO, Ke TENG. Physiological and antioxidant enzyme gene expression differences between female and male Buchloe dactyloides plants under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(10): 93-103. |
[6] | Hao-yu XU, Ying ZHAO, Qian RUAN, Xiao-lin ZHU, Bao-qiang WANG, Xiao-hong WEI. Resistance of quinoa seedlings under different salt-alkali stress levels [J]. Acta Prataculturae Sinica, 2023, 32(1): 122-130. |
[7] | Ling-shuang ZENG, Pei-ying LI, Zong-jiu SUN, Xiao-fan SUN. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance [J]. Acta Prataculturae Sinica, 2022, 31(7): 122-132. |
[8] | Li-juan GAO, Zheng-she ZHANG, Yu WEN, Xi-fang ZONG, Qi YAN, Li-yan LU, Xian-feng YI, Ji-yu ZHANG. Genome-wide identification and expression analysis of the bHLH transcription factor family in Cenchrus purpureus [J]. Acta Prataculturae Sinica, 2022, 31(3): 47-59. |
[9] | Li-qing ZHAO, Zhi-gang HAO, Xiao-yan CUI, Xiang-yong PENG. Effects of gibberellin and its inhibitors on growth and gene expression in Poa pratensis [J]. Acta Prataculturae Sinica, 2022, 31(3): 85-91. |
[10] | Guo-xiang ZHANG, Wei-leng GUO, Ming-yu BI, Li-shuang ZHANG, Dan WANG, Chang-hong GUO. Identification of CAX gene family and expression profile analysis of response to abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2022, 31(12): 106-117. |
[11] | Ning ZHAO, Hui-ling MA, Ran ZHANG, Jin-qing ZHANG, Yi SHI. Regulatory effects of butanediol on the expression level of endogenous hormones and related genes in creeping bentgrass under heat stress [J]. Acta Prataculturae Sinica, 2022, 31(12): 118-132. |
[12] | Na WEI, Yan-peng LI, Yi-tong MA, Wen-xian LIU. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa (Medicago sativa) under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(1): 118-130. |
[13] | Qian MA, Qi YAN, Zheng-she ZHANG, Fan WU, Ji-yu ZHANG. Identification, evolution and expression analysis of the CCoAOMT family genes in Medicago sativa [J]. Acta Prataculturae Sinica, 2021, 30(11): 144-156. |
[14] | JIANG Hong-yan, TENG Ke, TAN Peng-hui, YIN Shu-xia. Heterologous expression of a novel Zoysia japonica C2H2 zinc finger protein gene, ZjZFN1, caused drought sensitivity in Arabidopsis [J]. Acta Prataculturae Sinica, 2019, 28(4): 129-138. |
[15] | LI Wen-juan, QI Yan-ni, WANG Li-min, DANG Zhao, ZHAO Li, ZHAO Wei, XIE Ya-ping, WANG Bin, ZHANG Jian-ping, LI Shu-jie. Correlation between oil content or fatty acid composition and expression levels of genes involved in TAG biosynthesis in flax [J]. Acta Prataculturae Sinica, 2019, 28(1): 138-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||