Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (10): 187-201.DOI: 10.11686/cyxb2024424
Xiao-fang QIN(
), Zhi-rui HE, Tong JIA, Yu-jiao YANG, Wei FU, Hang LI, Yan PENG(
)
Received:2024-10-28
Revised:2024-12-16
Online:2025-10-20
Published:2025-07-11
Contact:
Yan PENG
Xiao-fang QIN, Zhi-rui HE, Tong JIA, Yu-jiao YANG, Wei FU, Hang LI, Yan PENG. Identification of the chitinase gene family and functional analysis of TrChit3 from white clover[J]. Acta Prataculturae Sinica, 2025, 34(10): 187-201.
| 基因ID Gene ID | 上游引物Forward primer (5′-3′) | 下游引物Reverse primer (5′-3′) |
|---|---|---|
| gene-P8452_04698 | CCGAACCCCTAAATTGAAC | CCACCGATAGAAAGCAACA |
| gene-P8452_70179 | TCAAATTATGTCAATCCAAAGG | GAGTTTCCGCCTAAGAAGTTAT |
| gene-P8452_47669 | AGCCCAAGAGTTAGGGTTTAC | ACAAGCAGGTTCTGATGATGT |
| gene-P8452_10179 | CATTGATCCTTTTGTTGGTCT | GTACCATCTCCTAAGTTTTGGC |
| gene-P8452_42935 | TTCTTGACGGCATTGATTT | GCATTTCCTATCCAAGCATC |
| gene-P8452_00576 | CATCGGAGGAGGTAATAGCA | AAGTCAACACCATCAAACCC |
| gene-P8452_23770 | CAGGGACAGATTGGTATGG | TTGAGAAAGAGCCCAGTTG |
| gene-P8452_72355 | TATTCTCTTTCATCGCCTCA | TGTTCATTTCGTTTGTGGTT |
| gene-P8452_10178 | AGTCCACAATCACAAAAGAAAA | TCCAAACATAATCAAATAAACCA |
| gene-P8452_10182 | TAGGTGATGCTGTTTTAGATGG | TTTGCTTTTGTGATTGTGAACT |
Table 1 Primer sequences
| 基因ID Gene ID | 上游引物Forward primer (5′-3′) | 下游引物Reverse primer (5′-3′) |
|---|---|---|
| gene-P8452_04698 | CCGAACCCCTAAATTGAAC | CCACCGATAGAAAGCAACA |
| gene-P8452_70179 | TCAAATTATGTCAATCCAAAGG | GAGTTTCCGCCTAAGAAGTTAT |
| gene-P8452_47669 | AGCCCAAGAGTTAGGGTTTAC | ACAAGCAGGTTCTGATGATGT |
| gene-P8452_10179 | CATTGATCCTTTTGTTGGTCT | GTACCATCTCCTAAGTTTTGGC |
| gene-P8452_42935 | TTCTTGACGGCATTGATTT | GCATTTCCTATCCAAGCATC |
| gene-P8452_00576 | CATCGGAGGAGGTAATAGCA | AAGTCAACACCATCAAACCC |
| gene-P8452_23770 | CAGGGACAGATTGGTATGG | TTGAGAAAGAGCCCAGTTG |
| gene-P8452_72355 | TATTCTCTTTCATCGCCTCA | TGTTCATTTCGTTTGTGGTT |
| gene-P8452_10178 | AGTCCACAATCACAAAAGAAAA | TCCAAACATAATCAAATAAACCA |
| gene-P8452_10182 | TAGGTGATGCTGTTTTAGATGG | TTTGCTTTTGTGATTGTGAACT |
基因ID Gene ID | 氨基酸长度Aminoacids length (aa) | 分子量Molecular weight (Da) | 等电点Isoelectric point (PI) | 不稳定指数 Instability index | 脂肪族氨基酸指数 Aliphatic index | 平均疏水性Grand average of hydrophobicity |
|---|---|---|---|---|---|---|
| gene-P8452_04693 | 298 | 32361.98 | 9.16 | 34.30 | 86.74 | 0.009 |
| gene-P8452_04697 | 362 | 39842.48 | 9.26 | 34.73 | 86.22 | -0.050 |
| gene-P8452_04698 | 291 | 32409.61 | 5.60 | 40.36 | 87.22 | -0.105 |
| gene-P8452_04688 | 275 | 29055.34 | 4.37 | 31.32 | 82.04 | -0.011 |
| gene-P8452_00576 | 383 | 43275.95 | 8.33 | 31.26 | 78.69 | -0.205 |
| gene-P8452_04690 | 278 | 29609.18 | 5.15 | 34.46 | 86.44 | 0.059 |
| gene-P8452_06296 | 383 | 43255.08 | 8.80 | 29.62 | 79.48 | -0.199 |
| gene-P8452_10187 | 297 | 32149.64 | 8.96 | 32.32 | 84.07 | 0.028 |
| gene-P8452_10182 | 275 | 28960.20 | 4.41 | 33.27 | 82.76 | -0.002 |
| gene-P8452_10188 | 292 | 32297.52 | 5.74 | 37.78 | 86.61 | -0.063 |
| gene-P8452_10178 | 297 | 31928.65 | 5.02 | 35.58 | 82.83 | -0.142 |
| gene-P8452_10179 | 206 | 22738.68 | 5.11 | 31.38 | 87.14 | -0.035 |
| gene-P8452_13386 | 207 | 22795.73 | 5.11 | 30.86 | 86.71 | -0.037 |
| gene-P8452_18384 | 303 | 33888.14 | 6.93 | 42.01 | 82.38 | -0.194 |
| gene-P8452_17128 | 621 | 68415.97 | 5.22 | 28.83 | 92.17 | 0.005 |
| gene-P8452_23770 | 365 | 39463.67 | 4.55 | 28.88 | 75.51 | -0.168 |
| gene-P8452_28219 | 132 | 14603.66 | 6.25 | 32.11 | 72.50 | -0.164 |
| gene-P8452_29322 | 362 | 39410.05 | 8.96 | 33.69 | 74.56 | -0.281 |
| gene-P8452_33777 | 331 | 35611.74 | 5.37 | 34.50 | 56.40 | -0.303 |
| gene-P8452_39032 | 256 | 27187.40 | 7.44 | 46.42 | 56.52 | -0.245 |
| gene-P8452_42935 | 294 | 31613.91 | 6.70 | 33.99 | 85.37 | -0.010 |
| gene-P8452_47669 | 294 | 31587.88 | 6.70 | 33.02 | 86.36 | 0.009 |
| gene-P8452_53931 | 212 | 22708.93 | 4.37 | 28.04 | 61.75 | -0.321 |
| gene-P8452_53932 | 211 | 22945.46 | 5.46 | 31.39 | 57.82 | -0.280 |
| gene-P8452_53933 | 186 | 20238.60 | 4.99 | 28.93 | 60.91 | -0.175 |
| gene-P8452_53934 | 283 | 30502.81 | 4.71 | 32.67 | 59.36 | -0.297 |
| gene-P8452_53930 | 275 | 29591.09 | 6.83 | 36.52 | 62.22 | -0.135 |
| gene-P8452_53929 | 278 | 29839.26 | 5.27 | 31.46 | 59.78 | -0.204 |
| gene-P8452_54091 | 411 | 45795.84 | 5.50 | 47.07 | 87.83 | -0.215 |
| gene-P8452_58401 | 391 | 43516.31 | 5.45 | 45.42 | 90.77 | -0.177 |
| gene-P8452_58243 | 284 | 30703.01 | 4.66 | 33.45 | 58.10 | -0.322 |
| gene-P8452_58237 | 235 | 25189.95 | 4.57 | 35.09 | 67.36 | -0.093 |
| gene-P8452_58242 | 178 | 19133.09 | 4.55 | 21.51 | 65.84 | -0.152 |
| gene-P8452_58236 | 241 | 25954.70 | 4.81 | 31.04 | 64.85 | -0.166 |
| gene-P8452_63358 | 328 | 36123.93 | 9.07 | 42.80 | 80.49 | -0.256 |
| gene-P8452_59011 | 322 | 35664.54 | 6.23 | 24.44 | 73.63 | -0.159 |
| gene-P8452_68078 | 303 | 33447.00 | 8.72 | 35.38 | 82.61 | -0.176 |
| gene-P8452_63938 | 322 | 35664.54 | 6.23 | 24.44 | 73.63 | -0.159 |
| gene-P8452_70179 | 298 | 32589.35 | 6.71 | 23.03 | 96.54 | 0.063 |
| gene-P8452_70182 | 297 | 31644.73 | 5.32 | 32.97 | 79.93 | -0.004 |
| gene-P8452_72355 | 378 | 41722.57 | 6.11 | 28.83 | 84.37 | 0.011 |
| gene-P8452_75297 | 296 | 32327.00 | 6.13 | 24.14 | 95.57 | 0.034 |
| gene-P8452_75301 | 270 | 28454.16 | 5.26 | 34.06 | 86.48 | 0.111 |
| gene-P8452_77241 | 388 | 42619.43 | 6.11 | 33.05 | 82.71 | -0.002 |
Table 2 Physicochemical properties of proteins in the chitinase gene family of white clover
基因ID Gene ID | 氨基酸长度Aminoacids length (aa) | 分子量Molecular weight (Da) | 等电点Isoelectric point (PI) | 不稳定指数 Instability index | 脂肪族氨基酸指数 Aliphatic index | 平均疏水性Grand average of hydrophobicity |
|---|---|---|---|---|---|---|
| gene-P8452_04693 | 298 | 32361.98 | 9.16 | 34.30 | 86.74 | 0.009 |
| gene-P8452_04697 | 362 | 39842.48 | 9.26 | 34.73 | 86.22 | -0.050 |
| gene-P8452_04698 | 291 | 32409.61 | 5.60 | 40.36 | 87.22 | -0.105 |
| gene-P8452_04688 | 275 | 29055.34 | 4.37 | 31.32 | 82.04 | -0.011 |
| gene-P8452_00576 | 383 | 43275.95 | 8.33 | 31.26 | 78.69 | -0.205 |
| gene-P8452_04690 | 278 | 29609.18 | 5.15 | 34.46 | 86.44 | 0.059 |
| gene-P8452_06296 | 383 | 43255.08 | 8.80 | 29.62 | 79.48 | -0.199 |
| gene-P8452_10187 | 297 | 32149.64 | 8.96 | 32.32 | 84.07 | 0.028 |
| gene-P8452_10182 | 275 | 28960.20 | 4.41 | 33.27 | 82.76 | -0.002 |
| gene-P8452_10188 | 292 | 32297.52 | 5.74 | 37.78 | 86.61 | -0.063 |
| gene-P8452_10178 | 297 | 31928.65 | 5.02 | 35.58 | 82.83 | -0.142 |
| gene-P8452_10179 | 206 | 22738.68 | 5.11 | 31.38 | 87.14 | -0.035 |
| gene-P8452_13386 | 207 | 22795.73 | 5.11 | 30.86 | 86.71 | -0.037 |
| gene-P8452_18384 | 303 | 33888.14 | 6.93 | 42.01 | 82.38 | -0.194 |
| gene-P8452_17128 | 621 | 68415.97 | 5.22 | 28.83 | 92.17 | 0.005 |
| gene-P8452_23770 | 365 | 39463.67 | 4.55 | 28.88 | 75.51 | -0.168 |
| gene-P8452_28219 | 132 | 14603.66 | 6.25 | 32.11 | 72.50 | -0.164 |
| gene-P8452_29322 | 362 | 39410.05 | 8.96 | 33.69 | 74.56 | -0.281 |
| gene-P8452_33777 | 331 | 35611.74 | 5.37 | 34.50 | 56.40 | -0.303 |
| gene-P8452_39032 | 256 | 27187.40 | 7.44 | 46.42 | 56.52 | -0.245 |
| gene-P8452_42935 | 294 | 31613.91 | 6.70 | 33.99 | 85.37 | -0.010 |
| gene-P8452_47669 | 294 | 31587.88 | 6.70 | 33.02 | 86.36 | 0.009 |
| gene-P8452_53931 | 212 | 22708.93 | 4.37 | 28.04 | 61.75 | -0.321 |
| gene-P8452_53932 | 211 | 22945.46 | 5.46 | 31.39 | 57.82 | -0.280 |
| gene-P8452_53933 | 186 | 20238.60 | 4.99 | 28.93 | 60.91 | -0.175 |
| gene-P8452_53934 | 283 | 30502.81 | 4.71 | 32.67 | 59.36 | -0.297 |
| gene-P8452_53930 | 275 | 29591.09 | 6.83 | 36.52 | 62.22 | -0.135 |
| gene-P8452_53929 | 278 | 29839.26 | 5.27 | 31.46 | 59.78 | -0.204 |
| gene-P8452_54091 | 411 | 45795.84 | 5.50 | 47.07 | 87.83 | -0.215 |
| gene-P8452_58401 | 391 | 43516.31 | 5.45 | 45.42 | 90.77 | -0.177 |
| gene-P8452_58243 | 284 | 30703.01 | 4.66 | 33.45 | 58.10 | -0.322 |
| gene-P8452_58237 | 235 | 25189.95 | 4.57 | 35.09 | 67.36 | -0.093 |
| gene-P8452_58242 | 178 | 19133.09 | 4.55 | 21.51 | 65.84 | -0.152 |
| gene-P8452_58236 | 241 | 25954.70 | 4.81 | 31.04 | 64.85 | -0.166 |
| gene-P8452_63358 | 328 | 36123.93 | 9.07 | 42.80 | 80.49 | -0.256 |
| gene-P8452_59011 | 322 | 35664.54 | 6.23 | 24.44 | 73.63 | -0.159 |
| gene-P8452_68078 | 303 | 33447.00 | 8.72 | 35.38 | 82.61 | -0.176 |
| gene-P8452_63938 | 322 | 35664.54 | 6.23 | 24.44 | 73.63 | -0.159 |
| gene-P8452_70179 | 298 | 32589.35 | 6.71 | 23.03 | 96.54 | 0.063 |
| gene-P8452_70182 | 297 | 31644.73 | 5.32 | 32.97 | 79.93 | -0.004 |
| gene-P8452_72355 | 378 | 41722.57 | 6.11 | 28.83 | 84.37 | 0.011 |
| gene-P8452_75297 | 296 | 32327.00 | 6.13 | 24.14 | 95.57 | 0.034 |
| gene-P8452_75301 | 270 | 28454.16 | 5.26 | 34.06 | 86.48 | 0.111 |
| gene-P8452_77241 | 388 | 42619.43 | 6.11 | 33.05 | 82.71 | -0.002 |
Fig.11 Effects of drought stress on malondialdehyde content, relative conductivity, total antioxidant capacity, superoxide anion O2·-production rate and H2O2 content in TrChit3-overexpressing and wild-type Arabidopsis
| [1] | Karasuda S, Tanaka S, Kajihara H, et al. Plant chitinase as a possible biocontrol agent for use instead of chemical fungicides. Bioscience, Biotechnology, and Biochemistry, 2003, 67(1): 221-224. |
| [2] | Malik A. Purification and properties of plant chitinases: a review. Journal of Food Biochemistry, 2019, 43(3): e12762. |
| [3] | Dahiya N, Tewari R, Hoondal G S. Biotechnological aspects of chitinolytic enzymes: a review. Applied Microbiology and Biotechnology, 2006, 71(6): 773-782. |
| [4] | Hamid R, Khan M A, Ahmad M, et al. Chitinases: an update. Journal of Pharmacy and Bioallied Sciences, 2013, 5(1): 21-29. |
| [5] | Richa K, Tiwari I M, Devanna B, et al. Novel chitinase gene LOC_Os11g47510 from indica rice Tetep provides enhanced resistance against sheath blight pathogen Rhizoctonia solani in rice. Frontiers in Plant Science, 2017, 8: 596. |
| [6] | Passarinho P A, DE Vries S C. Arabidopsis chitinases: a genomic survey. Arabidopsis Book, 2002(1): e0023. |
| [7] | Tyler L, Bragg J N, Wu J, et al. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon. BMC Genomics, 2010, 11(1): 600. |
| [8] | Su Y, Xu L, Wang S, et al. Identification, phylogeny and transcript of chitinase family genes in sugarcane. Scientific Reports, 2015, 5(1): 10708. |
| [9] | Sundheim L, Poplawsky A R, Ellingboe A H. Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species. Physiological and Molecular Plant Pathology, 1988, 33(3): 483-491. |
| [10] | Bai X, Zhan G, Tian S, et al. Transcription factor BZR2 activates chitinase Cht20.2 transcription to confer resistance to wheat stripe rust. Plant Physiology, 2021, 187(4): 2749-2762. |
| [11] | Datta K, Tu J, Oliva N, et al. Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Science, 2001, 160(3): 405-414. |
| [12] | Wu C T, Bradford K J. Class I chitinase and β-1,3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves. Plant Physiology, 2003, 133(1): 263-273. |
| [13] | Kumar S A, Kumari P H, Jawahar G, et al. Beyond just being foot soldiers-osmotin like protein (OLP) and chitinase (Chi11) genes act as sentinels to confront salt, drought, and fungal stress tolerance in tomato. Environmental and Experimental Botany, 2016, 132(1): 53-65. |
| [14] | Wan K, Buitrago S, Cheng B, et al. Analysis of chitinase gene family in barley and function study of HvChi22 involved in drought tolerance. Molecular Biology Reports, 2024, 51(1): 731. |
| [15] | Pan X X, Hu M Y, Wang Z W, et al. Genome-wide analysis of the rice chitinases gene family and their expression profiles under different stress treatments. Chinese Journal of Plant Physiology, 2022, 58(4): 746-756. |
| 潘晓雪, 胡明瑜, 王忠伟, 等. 水稻几丁质酶基因家族的全基因组鉴定及表达分析. 植物生理学报, 2022, 58(4): 746-756. | |
| [16] | Zhang H, Li N, Xing X Z, et al. Chitinase gene identification and expression analysis of wild soybean and cultivated soybean. Journal of Plant Genetic Resources, 2024, 25(9): 1573-1588. |
| 张华, 李娜, 邢馨竹, 等. 野生大豆与栽培大豆几丁质酶基因鉴定及其表达分析. 植物遗传资源学报, 2024, 25(9): 1573-1588. | |
| [17] | Yao C, Li X, Li Y, et al. Overexpression of a Malus baccata MYB transcription factor gene MbMYB4 increases cold and drought tolerance in Arabidopsis thaliana. International Journal of Molecular Sciences, 2022, 23(3): 1794. |
| [18] | Ma R, Liu W, Li S, et al. Genome-wide identification, characterization and expression analysis of the CIPK gene family in potato (Solanum tuberosum L.) and the role of StCIPK10 in response to drought and osmotic stress. International Journal of Molecular Sciences, 2021, 22(24): 13535. |
| [19] | Xu F, Liu S, Liu Y, et al. Effectiveness of lysozyme coatings and 1-MCP treatments on storage and preservation of kiwifruit. Food Chemistry, 2019, 288: 201-207. |
| [20] | Li T, Huang Y, Khadr A, et al. DcDREB1A, a DREB-binding transcription factor from Daucus carota, enhances drought tolerance in transgenic Arabidopsis thaliana and modulates lignin levels by regulating lignin-biosynthesis-related genes. Environmental and Experimental Botany, 2020, 169: 103896. |
| [21] | Liu D, He S, Zhai H, et al. Overexpression of IbP5CR enhances salt tolerance in transgenic sweetpotato. Plant Cell, Tissue and Organ Culture, 2014, 117: 1-16. |
| [22] | Li M, Zhang X, Zhang T, et al. Genome-wide analysis of the WRKY genes and their important roles during cold stress in white clover. PeerJ, 2023, 11: e15610. |
| [23] | Li M, Chen X, Huang W, et al. Comprehensive identification of the β-amylase (BAM) gene family in response to cold stress in white clover. Plants, 2024, 13(2): 154. |
| [24] | Zhang Y, Li Z, Peng Y, et al. Clones of FeSOD, MDHAR, DHAR genes from white clover and gene expression analysis of ROS-scavenging enzymes during abiotic stress and hormone treatments. Molecules, 2015, 20(11): 20939-20954. |
| [25] | Ma X F, Wright E, Ge Y, et al. Improving phosphorus acquisition of white clover (Trifolium repens L.) by transgenic expression of plant-derived phytase and acid phosphatase genes. Plant Science, 2009, 176(4): 479-488. |
| [26] | Mészáros P, Rybanský Ľ, Spieb N, et al. Plant chitinase responses to different metal-type stresses reveal specificity. Plant Cell Reports, 2014, 33: 1789-1799. |
| [27] | Shibuya N, Minami E. Oligosaccharide signalling for defence responses in plant. Physiological and Molecular Plant Pathology, 2001, 59(5): 223-233. |
| [28] | Wang J, Xu Z Q. Cloning and inducible expression of a class I chitinase gene FaChit1 from Festuca arundinacea. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(5): 869-875. |
| 王健, 徐子勤. 高羊茅FaChit1基因cDNA克隆及诱导表达. 西北植物学报, 2010, 30(5): 869-875. | |
| [29] | Zhu C, Zhang S T, Chang X J, et al. Cloning and its expression analysis of chitinase under drought stress in Camellia sinensis. Chinese Journal of Tropical Crops, 2017, 38(5): 894-902. |
| 朱晨, 张舒婷, 常笑君, 等. 茶树几丁质酶基因的克隆及其在干旱胁迫下的表达分析. 热带作物学报, 2017, 38(5): 894-902. | |
| [30] | Kochieva E Z, Filyushin M A, Beletsky A V, et al. Identification and expression analysis of chitinase genes in parasitic plant Monotropa hypopitys. Doklady Biochemistry and Biophysics, 2017, 473(1): 111-113. |
| [31] | Yu L X, Djebrouni M, Chamberland H, et al. Chitinase: differential induction of gene expression and enzyme activity by drought stress in the wild (Lycopersicon chilense Dun.) and cultivated (L. esculentum Mill.) tomatoes. Journal of Plant Physiology, 1998, 153(5): 745-753. |
| [32] | Cao J, Tan X. Comprehensive analysis of the chitinase family genes in tomato (Solanum lycopersicum). Plants, 2019, 8(3): 52. |
| [33] | Hu Y P, Guo Y J, Ji Q H, et al. Structure, classification and evolutionary analysis of chitinase gene family in citrus. South China Fruit Tree, 2022, 51(6): 16-21. |
| 胡亚平, 郭雁君, 吉前华, 等. 柑桔几丁质酶基因家族的结构、分类与进化分析. 中国南方果树, 2022, 51(6): 16-21. | |
| [34] | Yao H. Analysis of grape chitinase and glucanase gene families. Qinghuangdao: Hebei Normal University of Science and Technology, 2024. |
| 姚姮. 葡萄几丁质酶和葡聚糖酶基因家族的分析. 秦皇岛: 河北科技师范学院, 2024. | |
| [35] | Xu W, Liu J F, Zhang G, et al. Genome-wide identification and expression analysis under Fusarium graminearum stress of chitinase gene family in Triticum aestivum L. Journal of Henan Agricultural Sciences, 2019, 48(11): 7-17. |
| 徐武, 刘建丰, 张戈, 等. 小麦几丁质酶基因家族的全基因组鉴定及禾谷镰刀菌胁迫下的表达分析. 河南农业科学, 2019, 48(11): 7-17. | |
| [36] | Bartholomew E S, Black K, Feng Z, et al. Comprehensive analysis of the chitinase gene family in cucumber (Cucumis sativus L.): from gene identification and evolution to expression in response to Fusarium oxysporum. International Journal of Molecular Sciences, 2019, 20(21): 5309. |
| [37] | Haxim Y, Kahar G, Zhang X, et al. Genome-wide characterization of the chitinase gene family in wild apple (Malus sieversii) and domesticated apple (Malus domestica) reveals its role in resistance to Valsa mali. Frontiers in Plant Science, 2022, 13: 1007936. |
| [38] | Jeffares D C, Penkett C J, Bähler J. Rapidly regulated genes are intron poor. Trends in Genetics, 2008, 24(8): 375-378. |
| [39] | Grover A. Plant chitinases: genetic diversity and physiological roles. Critical Reviews in Plant Sciences, 2012, 31(1): 57-73. |
| [40] | Gao Y, Zan X L, Wu X F, et al. Identification of fungus-responsive cis-acting element in the promoter of Brassica juncea chitinase gene, BjCHI1. Plant Science, 2014, 215: 190-198. |
| [41] | Taira T, Toma N, Ichi M, et al. Tissue distribution, synthesis stage, and ethylene induction of pineapple (Ananas comosus) chitinases. Bioscience, Biotechnology, and Biochemistry, 2005, 69(4): 852-854. |
| [42] | Lyu P, Zhang C, Xie P, et al. Genome-wide identification and expression analyses of the chitinase gene family in response to white mold and drought stress in soybean (Glycine max). Life, 2022, 12(9): 1340. |
| [43] | Ali M, Gai W X, Khattak A M, et al. Knockdown of the chitin-binding protein family gene CaChiIV1 increased sensitivity to Phytophthora capsici and drought stress in pepper plants. Molecular Genetics and Genomics, 2019, 294: 1311-1326. |
| [44] | Amira M, Qados A. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences, 2011, 10(1): 7-15. |
| [45] | Manuka R, Saddhe A A, Kunar K. Expression of OsWNK9 in Arabidopsis conferred tolerance to salt and drought stress. Plant Science, 2018, 270: 58-71. |
| [46] | Flexas J, Medrano H. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany, 2002, 89(2): 183-189. |
| [47] | Zlatev Z. Drought-induced changes in chlorophyll fluorescence of young wheat plants. Biotechnology & Biotechnological Equipment, 2009, 23(1): 438-441. |
| [48] | Farmer E E, Mueller M J. ROS-mediated lipid peroxidation and RES-activated signaling. Annual Review of Plant Biology, 2013, 64(1): 429-450. |
| [49] | Davey M, Stals E, Panis B, et al. High-throughput determination of malondialdehyde in plant tissues. Analytical Biochemistry, 2005, 347(2): 201-207. |
| [50] | Miller G, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 2010, 33(4): 453-467. |
| [1] | Wei-peng ZOU, Yi LIU, Jia-xing ZHAI, Si-yi ZHOU, Zhi-yi GONG, Hui-fang CEN, Hui-sen ZHU, Tao XU. Cloning of MsNAC053 from alfalfa and analysis of its transcript profile in response to abiotic stresses [J]. Acta Prataculturae Sinica, 2025, 34(9): 121-133. |
| [2] | Xin-yue ZHOU, Li-ping WANG, Qing-xue JIANG, Xiao-ran MA, Deng-xia YI, Xue-min WANG. Isolation of the low-temperature induced proteinMsLTI65 from alfalfa and its response to different stresses [J]. Acta Prataculturae Sinica, 2025, 34(5): 89-104. |
| [3] | Tian-rong LUO, Jian-zhi MA, Ming-yang DU, Jie-cuo DUO, Hui-yan XIONG, Rui-jun DUAN. Identification and expression analysis of LACS gene family members in Medicago sativa [J]. Acta Prataculturae Sinica, 2025, 34(4): 124-136. |
| [4] | Hong-li CUI, Ming-zhe SUN, Bo-wei JIA, Xiao-li SUN. Genome-wide analysis and expression of the OSCA family genes from Medicago truncatula in response to low temperature stresses [J]. Acta Prataculturae Sinica, 2024, 33(9): 111-125. |
| [5] | Xiao-tong WANG, Xiao-hong LI, Xu-xia MA, Wen-qi CAI, Xue-li FENG, Shu-xia LI. Identification and analysis of members of the FBA gene family in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(9): 81-93. |
| [6] | Yuan MA, Huan LIU, Gui-qin ZHAO, Jing-long WANG, Ran ZHANG, Rui-rui YAO. Identification of the oat sHSP gene family and its transcript profiles in response to high temperature and aging [J]. Acta Prataculturae Sinica, 2024, 33(8): 145-158. |
| [7] | Yi WU, Ya-lan FENG, Tian-ning WANG, Ji-hao JU, Hui-shu XIAO, Chao MA, Jun ZHANG. Genome-wide identification and expression analysis of the Hsp70 gene family in wheat and its ancestral species [J]. Acta Prataculturae Sinica, 2024, 33(7): 53-67. |
| [8] | Zhen-huan ZHANG, Li-rong YAO, Jun-cheng WANG, Er-jing SI, Hong ZHANG, Ke YANG, Xiao-le MA, Ya-xiong MENG, Hua-jun WANG, Bao-chun LI. Identification of AKR gene family members in Halogeton glomeratus and salt tolerance analysis of the root salt stress response gene HgAKR42639 [J]. Acta Prataculturae Sinica, 2024, 33(7): 68-83. |
| [9] | Ze-bin LI, Yong-zheng QIU, Yan-jie LIU, Jin-qiu YU, Bai-ji WANG, Qian-ning LIU, Yue WANG, Guo-wen CUI. Identification of the BZR gene family in alfalfa and analysis of its transcriptional responses to abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(11): 106-122. |
| [10] | Xian-fei SHI, Yu GAO, Xu-sheng HUANG, Ya-li ZHOU, Gui-ping CAI, Xin-ru LI, Run-zhi LI, Jin-ai XUE. Functional characterization of Cyperus esculentus CeWRKY transcription factors in response to abiotic stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 186-201. |
| [11] | Hua-hao FENG, Han WANG, Jian-zhen ZHOU, Han ZHANG, Tao TANG, Yan PENG. Screening of Al-tolerant white clover germplasm and analysis of Al-tolerance evaluation indexes [J]. Acta Prataculturae Sinica, 2023, 32(6): 100-111. |
| [12] | Wen LI, Li-rong ZHAO, Jian-ping ZHANG, Zi-gang LIU, Yan-ni QI, Wen-juan LI, Ya-ping XIE. Genome-wide identification and analysis of the DMP gene family in flax (Linum usitatissimum) [J]. Acta Prataculturae Sinica, 2023, 32(3): 91-106. |
| [13] | Jiao-yang TIAN, Qiu-xia WANG, Shu-wen ZHENG, Wen-xian LIU. Genome-wide identification and expression profile analysis of the CPP gene family in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(7): 111-121. |
| [14] | Jian-zhen GE, Wen-hui FU, Lu ZHANG, Bao-jun LIN, Shuai ZHAO, Ma-ga-weng BAI, Jian-cun KOU. Degradation of carbendazim in orchard white clover silage and its effect on the microbial fermentative community [J]. Acta Prataculturae Sinica, 2022, 31(7): 64-75. |
| [15] | Guo-xiang ZHANG, Wei-leng GUO, Ming-yu BI, Li-shuang ZHANG, Dan WANG, Chang-hong GUO. Identification of CAX gene family and expression profile analysis of response to abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2022, 31(12): 106-117. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||