Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (7): 53-67.DOI: 10.11686/cyxb2023334
Previous Articles Next Articles
Yi WU1(), Ya-lan FENG2, Tian-ning WANG1, Ji-hao JU1, Hui-shu XIAO1, Chao MA1, Jun ZHANG1()
Received:
2023-09-14
Revised:
2023-11-15
Online:
2024-07-20
Published:
2024-04-08
Contact:
Jun ZHANG
Yi WU, Ya-lan FENG, Tian-ning WANG, Ji-hao JU, Hui-shu XIAO, Chao MA, Jun ZHANG. Genome-wide identification and expression analysis of the Hsp70 gene family in wheat and its ancestral species[J]. Acta Prataculturae Sinica, 2024, 33(7): 53-67.
基因号Gene ID | 基因名Gene name | 正向引物Forward primer (5’-3’) | 反向引物Reverse primer (5’-3’) |
---|---|---|---|
TraesCS5A02G479300.1 | TaHsp70-54 | GCCACAGCTGGTGACACTCAC | TGGAATAGAAATCAACTCCCTCG |
TraesCS5B02G087700.1 | TaHsp70-57 | CATCAGTGGCAACCCGAGAG | GAAGTCAATGCCCTCAAACAGC |
TraesCS5D02G492900.1 | TaHsp70-68 | GGTGGCACTTTTGATGTCTCC | CCAAGATGAGTGTCACCAGCC |
TRITD5Av1G040700.2 | TtHsp70-36 | GGACTCTCTCCTCCACTGCG | TGGACAGCAGCCCCGTAG |
TRITD5Bv1G039950.1 | TtHsp70-44 | GCAAAGATGGACAAGAGCACC | TGGACAGCAGCCCCGTAC |
XP_048532408.1 | TuHsp70-18 | GCCACAGCTGGTGACACTCAC | TGGAATAGAAATCAACTCCCTCG |
AespeY2032CH5S01G103600.1 | AesHsp70-25 | CATCAGTGGCAACCCGAGAG | GAAGTCAATGCCCTCAAACAGC |
XP_020200619.1 | AetHsp70-20 | GGTGGCACTTTTGATGTCTCC | CCAAGATGAGTGTCACCAGCC |
TraesCS1B02G283900.1 | Actin | GTTCCAATCTATGAGGGATACACGC | GAACCTCCACTGAGAACAACATTACC |
Table 1 Some primers for RT-qPCR of Hsp70 genes
基因号Gene ID | 基因名Gene name | 正向引物Forward primer (5’-3’) | 反向引物Reverse primer (5’-3’) |
---|---|---|---|
TraesCS5A02G479300.1 | TaHsp70-54 | GCCACAGCTGGTGACACTCAC | TGGAATAGAAATCAACTCCCTCG |
TraesCS5B02G087700.1 | TaHsp70-57 | CATCAGTGGCAACCCGAGAG | GAAGTCAATGCCCTCAAACAGC |
TraesCS5D02G492900.1 | TaHsp70-68 | GGTGGCACTTTTGATGTCTCC | CCAAGATGAGTGTCACCAGCC |
TRITD5Av1G040700.2 | TtHsp70-36 | GGACTCTCTCCTCCACTGCG | TGGACAGCAGCCCCGTAG |
TRITD5Bv1G039950.1 | TtHsp70-44 | GCAAAGATGGACAAGAGCACC | TGGACAGCAGCCCCGTAC |
XP_048532408.1 | TuHsp70-18 | GCCACAGCTGGTGACACTCAC | TGGAATAGAAATCAACTCCCTCG |
AespeY2032CH5S01G103600.1 | AesHsp70-25 | CATCAGTGGCAACCCGAGAG | GAAGTCAATGCCCTCAAACAGC |
XP_020200619.1 | AetHsp70-20 | GGTGGCACTTTTGATGTCTCC | CCAAGATGAGTGTCACCAGCC |
TraesCS1B02G283900.1 | Actin | GTTCCAATCTATGAGGGATACACGC | GAACCTCCACTGAGAACAACATTACC |
1 | Park C J, Seo Y S. Heat shock proteins: A review of the molecular chaperones for plant immunity. The Plant Pathology Journal, 2015, 31(4): 323-333. |
2 | Haq U S, Khan A, Ali M, et al. Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences, 2019, 20(21): 5321. |
3 | Boston R S, Viitanen P V, Vierling E. Molecular chaperones and protein folding in plants. Plant Molecular Biology, 1996, 32(1/2): 191-222. |
4 | Wang W X, Vinocur B, Shoseyov O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 2004, 9(5): 244-252. |
5 | Kiang J G, Tsokos G C. Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacology and Therapeutics, 1998, 80(2): 183-201. |
6 | Dragovic Z, Broadley S A, Shomura Y, et al. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. The EMBO Journal, 2006, 25(11): 2519-2528. |
7 | Hartl F U, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature, 2011, 475(7356): 324-332. |
8 | Lin B L, Wang J S, Liu H C, et al. Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress and Chaperones, 2001, 6(3): 201-208. |
9 | Sarkar N K, Sharma P, Grover A. Functional analysis of HSP70 superfamily proteins of rice (Oryza sativa). Cell Stress and Chaperones, 2013, 18(4): 427-437. |
10 | Du Q L, Jiang J M, Chen M Q, et al. Cloning, expression analysis and prokaryotic expression of heat shock protein HSP70 gene in rice. Journal of Plant Protection, 2021, 48(3): 620-629. |
杜巧丽, 蒋君梅, 陈美晴, 等. 水稻热休克蛋白HSP70基因克隆、表达分析及原核表达. 植物保护学报, 2021, 48(3): 620-629. | |
11 | Zhang L, Zhao H K, Dong Q L, et al. Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.). Frontiers in Plant Science, 2015, 6: 773. |
12 | Rehman A, Atif R M, Qayyum A, et al. Genome-wide identification and characterization of HSP70 gene family in four species of cotton. Genomics, 2020, 112(6): 4442-4453. |
13 | Song J H, Ma H L, Weng Q Y, et al. Genome-wide identification and analysis of HSP70 gene family in maize. Journal of Nuclear Agricultural Sciences, 2017, 31(7): 1245-1254. |
宋晋辉, 马海莲, 瓮巧云, 等. 玉米HSP70基因家族的全基因组鉴定与分析. 核农学报, 2017, 31(7): 1245-1254. | |
14 | El Baidouri M, Murat F, Veyssiere M, et al. Reconciling the evolutionary origin of bread wheat (Triticum aestivum). The New Phytologist, 2017, 213(3): 1477-1486. |
15 | Maccaferri M, Harris N S, Twardziok S O, et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nature Genetics, 2019, 51(5): 885-895. |
16 | Cheng H, Liu J, Wen J, et al. Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biology, 2019, 20(1): 136. |
17 | Gardiner L J, Wingen L U, Bailey P, et al. Analysis of the recombination landscape of hexaploid bread wheat reveals genes controlling recombination and gene conversion frequency. Genome Biology, 2019, 20(1): 69. |
18 | Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. |
19 | Bailey T L, Johnson J, Grant C E, et al. The MEME suite. Nucleic Acids Research, 2015, 43(1): 39-49. |
20 | Chen C J, Chen H, Zhang Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. |
21 | Wang Y P, Tang H B, Debarry J D, et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 2012, 40(7): e49. |
22 | Kang C H, Jung W Y, Kang Y H, et al. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death and Differentiation, 2006, 13(1): 84-95. |
23 | Chen E L, Fan Z Y, Wang S F, et al. Bioinformatics of tobacco (Nicotiana tabacum) Hsp70 gene family and expression analysis of NtHsp70Chl in midrib. Chinese Tobacco Science, 2018, 39(2): 8-16. |
陈二龙, 范志勇, 王松峰, 等. 烟草Hsp70基因家族的鉴定及NtHsp70Chl基因的表达分析. 中国烟草科学, 2018, 39(2): 8-16. | |
24 | Liu J, Pang X, Cheng Y, et al. The Hsp70 gene family in solanum tuberosum: Genome-wide identification, phylogeny, and expression patterns. Scientific Reports, 2018, 8(1): 16628. |
25 | Song G, Fang Z G, Wang Y L, et al. Genome-wide identification and bioinformatics analysis of Hsp70 family genes in switchgrass. Pratacultural Science, 2022, 39(10): 2112-2126. |
宋刚, 方志刚, 王玉龙, 等. 柳枝稷Hsp70家族基因鉴定与生物信息学分析. 草业科学, 2022, 39(10): 2112-2126. | |
26 | Zhang G W, Liu L L, Wang X R, et al. Genome-wide identification and bioinformatics analysis of HSP70 genes in foxtail millet. Acta Agriculturae Zhejiangensis, 2015, 27(7): 1127-1133. |
张古文, 刘莉莉, 王显瑞, 等. 谷子HSP70基因家族的全基因组鉴定及生物信息学分析. 浙江农业学报, 2015, 27(7): 1127-1133. | |
27 | Wang X S, Jin Z, Ding Y N, et al. Characterization of HSP70 family in watermelon (Citrullus lanatus): Identification, structure, evolution, and potential function in response to ABA, cold and drought stress. Frontiers in Genetics, 2023, 14: 1201535. |
28 | de Souza S J, Long M, Gilbert W. Introns and gene evolution. Genes Cells, 1996, 1(6): 493-505. |
29 | Babenko V N, Rogozin I B, Mekhedov S L, et al. Prevalence of intron gain over intron loss in the evolution of paralogous gene families. Nucleic Acids Research, 2004, 32(12): 3724-3733. |
30 | Roy S W, Penny D. On the incidence of intron loss and gain in paralogous gene families. Molecular Biology and Evolution, 2007, 24(8): 1579-1581. |
31 | Sémon M, Wolfe K H. Consequences of genome duplication. Current Opinion in Genetics and Development, 2007, 17(6): 505-512. |
32 | Lawton-Rauh A. Evolutionary dynamics of duplicated genes in plants. Molecular Phylogenetics and Evolution, 2003, 29(3): 396-409. |
33 | Magadum S, Banerjee U, Murugan P, et al. Gene duplication as a major force in evolution. Journal of Genetics, 2013, 92(1): 155-161. |
34 | Zhang Y, Zheng L J, Yun L, et al. Catalase (CAT) gene family in wheat (Triticum aestivum L.): Evolution, expression pattern and function analysis. International Journal of Molecular Sciences, 2022, 23(1): 542. |
35 | Su P H, Li H M. Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiology, 2008, 146(3): 1231-1241. |
36 | Sable A, Rai K M, Choudhary A, et al. Inhibition of heat shock proteins HSP90 and HSP70 induce oxidative stress, suppressing cotton fiber development. Scientific Reports, 2018, 8(1): 3620. |
37 | He Z S, Xie R, Wang Y Z, et al. Cloning and characterization of a heat shock protein 70 gene, MsHSP70-1, in Medicago sativa. Acta Biochimica et Biophysica Sinica, 2008, 40(3): 209-216. |
38 | Kurepa J, Wang S H, Li Y, et al. Proteasome regulation, plant growth and stress tolerance. Plant Signaling and Behavior, 2009, 4(10): 924-927. |
[1] | Shou-xia XU. Meta-analysis of the effects of arbuscular mycorrhizae on the yield and quality of wheat [J]. Acta Prataculturae Sinica, 2024, 33(7): 192-204. |
[2] | Jun-hao ZHANG, Xue-ru CHAI, Song-ke MA, Dong-xia ZHANG, Jing ZHANG, Chang-chang QIAO, Shuang LI, Ming HUANG, He-zheng WANG. Effects of straw return combined with phosphorus fertilizer on carbon assimilate accumulation in dryland wheat and the associated physiological mechanisms [J]. Acta Prataculturae Sinica, 2024, 33(6): 89-104. |
[3] | Hai-ming KONG, Jia-xing SONG, Jing YANG, Qian LI, Pei-zhi YANG, Yu-man CAO. Identification and transcript profiling of the CAMTA gene family under abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(5): 143-154. |
[4] | Zhen-fen ZHANG, Rong HUANG, Xiang-yang LI, Bo YAO, Gui-qin ZHAO. Seed-borne bacterial diversity of oat and functional analysis based on Illumina MiSeq high-throughput sequencing [J]. Acta Prataculturae Sinica, 2023, 32(7): 96-108. |
[5] | Song-ke MA, Ke HUO, Dong-xia ZHANG, Jing ZHANG, Jun-hao ZHANG, Xue-ru CHAI, He-zheng WANG. Effects of maize straw return combined with nitrogen on soil enzyme activity and nitrogen fertilizer use efficiency in western dryland wheat fields of Henan Province [J]. Acta Prataculturae Sinica, 2023, 32(6): 120-133. |
[6] | Hong-wei LI, Qi ZHENG, Bin LI, Mao-lin ZHAO, Zhen-sheng LI. Progress in research on tall wheatgrass as a salt-alkali tolerant forage grass [J]. Acta Prataculturae Sinica, 2022, 31(5): 190-199. |
[7] | Qian CHEN, Xiao-yun XU, Jun-cheng WANG, Li-rong YAO, Er-jing SI, Ke YANG, Xiao-ling WEI, Xiao-le MA, Bao-chun LI, Xun-wu SHANG, Ya-xiong MENG, Hua-jun WANG. Identification of a WRKY gene family based on full-length transcriptome sequences and analysis of response patterns under salt stress in Halogeton glomeratus [J]. Acta Prataculturae Sinica, 2022, 31(12): 146-157. |
[8] | Li-fang CHANG, Xin LI, Hui-juan GUO, Lin-yi QIAO, Shu-wei ZHANG, Fang CHEN, Zhi-jian CHANG, Xiao-jun ZHANG. Genetic diversity analysis and comprehensive evaluation of octoploid Tritipyrum-derived wheat breeding lines based on agronomic traits [J]. Acta Prataculturae Sinica, 2022, 31(11): 61-74. |
[9] | Tao ZHOU, Le MU, Kai-qi SU, Jun-yu ZHANG, Hui-min YANG. Effects of intercropping ratio and regulated deficit irrigation on flag leaf traits of spring wheat at the grain filling stage in spring wheat-alfalfa intercropping [J]. Acta Prataculturae Sinica, 2022, 31(10): 145-153. |
[10] | Dan-dan ZHANG, Yuan-qing ZHANG, Jing CHENG, Guang JIN, Bo LI, Dong-cai WANG, Fang XU, Rui-feng SUN. Effects of different roughage combinations on in vitro rumen fermentation characteristics of Jinnan cattle [J]. Acta Prataculturae Sinica, 2021, 30(7): 93-100. |
[11] | Shuang WU, Yu-xiang ZHOU, Rou JIA, Ya-dong JIN, Wan-zong YANG. Effects of cellulase treatment of buckwheat straw on fiber structure and meat quality of Tan sheep [J]. Acta Prataculturae Sinica, 2021, 30(1): 170-180. |
[12] | Hao-tian WU, Jiao NIE, Wen-juan YANG, Zhi-yong ZHANG, Kang-hong WU, Xiao-yu LI, Xiao-mei FANG, Ren-wu RUAN, Ze-lin YI. Effects of machine sowing depth and amounts of seeds and fertilizer on lodging and yield of Tartary buckwheat [J]. Acta Prataculturae Sinica, 2020, 29(12): 61-72. |
[13] | FANG Yan-jie, ZHANG Xu-cheng, YU Xian-feng, HOU Hui-zhi, WANG Hong-li, MA Yi-fan, ZHANG Guo-ping, LEI Kang-ning. Effects of soil plastic mulching and fertilizer application on the water utilization and yield of Tartary buckwheat crops in a semiarid rain-fed area [J]. Acta Prataculturae Sinica, 2020, 29(11): 46-56. |
[14] | XU Liu-xing, TANG Guo-jian, HU Ya-qin, ZHANG Jian-guo. Research status and development prospects for forage wheat production and utilization [J]. Acta Prataculturae Sinica, 2020, 29(10): 192-199. |
[15] | WANG Fei, YIN Fei, LONG Hao-qiang, LI Xue, WU Yan-yan, JIAO Nian-yuan, MA Chao, FU Guo-zhan. Photochemical activity in flag leaves of winter wheat when following maize, peanut, or a maize-peanut intercrop in a crop rotation [J]. Acta Prataculturae Sinica, 2019, 28(7): 123-131. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||