Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (10): 30-40.DOI: 10.11686/cyxb2024448
Previous Articles Next Articles
Yu-long YAN1(
), Xue-jun DU1(
), Yuan-yue WANG1, Jian-li LIU1, Yin-gui DING1, Yuan-song WEI2
Received:2024-11-15
Revised:2025-01-15
Online:2025-10-20
Published:2025-07-11
Contact:
Xue-jun DU
Yu-long YAN, Xue-jun DU, Yuan-yue WANG, Jian-li LIU, Yin-gui DING, Yuan-song WEI. Application of desulphurization gypsum with fly ash improves saline-alkali soils[J]. Acta Prataculturae Sinica, 2025, 34(10): 30-40.
| 名称Name | 铜Cu | 铅Pb | 锌Zn | 镍Ni | 铬Cr | 镉Cd | 汞Hg | 砷As |
|---|---|---|---|---|---|---|---|---|
| 土壤 Soil | 22.3 | 11.6 | 39.0 | 15.9 | 46.9 | <0.1 | <0.002 | 11.3 |
| 脱硫石膏 Desulfurization gypsum | 1.7 | <1.4 | 10.7 | 1.7 | 14.2 | <0.1 | 0.300 | 4.4 |
| 粉煤灰 Fly ash | 0.7 | <1.4 | 1.9 | 2.4 | 3.5 | <0.1 | 0.100 | 1.5 |
| 国家标准① National standards ① | 100.0 | 170.0 | 300.0 | 190.0 | 250.0 | 0.6 | 3.400 | 25.0 |
Table 1 The content of heavy metals in experimental materials (mg·kg-1)
| 名称Name | 铜Cu | 铅Pb | 锌Zn | 镍Ni | 铬Cr | 镉Cd | 汞Hg | 砷As |
|---|---|---|---|---|---|---|---|---|
| 土壤 Soil | 22.3 | 11.6 | 39.0 | 15.9 | 46.9 | <0.1 | <0.002 | 11.3 |
| 脱硫石膏 Desulfurization gypsum | 1.7 | <1.4 | 10.7 | 1.7 | 14.2 | <0.1 | 0.300 | 4.4 |
| 粉煤灰 Fly ash | 0.7 | <1.4 | 1.9 | 2.4 | 3.5 | <0.1 | 0.100 | 1.5 |
| 国家标准① National standards ① | 100.0 | 170.0 | 300.0 | 190.0 | 250.0 | 0.6 | 3.400 | 25.0 |
处理 Treatment | 脱硫石膏添加量Desulfurization gypsum application rate | 粉煤灰添加量 Fly ash application rate |
|---|---|---|
| CK | 0 | 0 |
| D1 | 1 | 0 |
| D2 | 2 | 0 |
| D3 | 4 | 0 |
| F1 | 0 | 1 |
| F2 | 0 | 2 |
| F3 | 0 | 4 |
| DF1 | 0.5 | 0.5 |
| DF2 | 1.0 | 1.0 |
| DF3 | 2.0 | 2.0 |
Table 2 Addition amount of desulfurization gypsum and fly ash under different treatments (%)
处理 Treatment | 脱硫石膏添加量Desulfurization gypsum application rate | 粉煤灰添加量 Fly ash application rate |
|---|---|---|
| CK | 0 | 0 |
| D1 | 1 | 0 |
| D2 | 2 | 0 |
| D3 | 4 | 0 |
| F1 | 0 | 1 |
| F2 | 0 | 2 |
| F3 | 0 | 4 |
| DF1 | 0.5 | 0.5 |
| DF2 | 1.0 | 1.0 |
| DF3 | 2.0 | 2.0 |
处理 Treatment | 氯离子 Cl- | 硫酸根离子 SO42- | 碳酸根离子 CO32- | 碳酸氢根离子 HCO3- | 钾离子 K+ | 钙离子 Ca2+ | 钠离子 Na+ | 镁离子 Mg2+ |
|---|---|---|---|---|---|---|---|---|
| CK | 13.4±0.2ab | 15.6±1.2d | 0.0 | 538.8±28.3a | 19.7±0.5cd | 72.2±2.3e | 27.9±1.2ab | 15.6±0.2b |
| D1 | 14.6±0.2a | 475.5±220.8d | 0.0 | 433.1±46.6b | 18.9±1.7cde | 174.7±39.0d | 32.4±0.9ab | 12.7±1.8bc |
| D2 | 14.5±0.4a | 4635.7±1014.0b | 0.0 | 201.3±9.3d | 30.0±2.5b | 494.6±25.9b | 32.0±3.5ab | 31.4±1.7a |
| D3 | 13.9±0.8ab | 7434.5±395.8a | 0.0 | 228.8±31.0d | 37.6±3.4a | 598.4±16.8a | 28.2±1.8ab | 35.6±1.4a |
| F1 | 14.3±0.3ab | 27.5±1.1d | 0.0 | 371.1±25.4bc | 20.8±0.6cd | 91.7±2.0e | 33.0±0.7a | 14.0±0.3bc |
| F2 | 14.5±0.9a | 24.4±1.6d | 0.0 | 378.2±18.6bc | 18.7±0.4cde | 86.7±2.2e | 29.8±2.1ab | 14.4±0.2bc |
| F3 | 13.3±0.2ab | 34.7±0.5d | 0.0 | 348.7±7.1c | 15.1±0.7def | 77.7±3.2e | 27.6±1.7ab | 14.5±0.2bc |
| DF1 | 12.9±0.1b | 24.9±1.4d | 0.0 | 434.1±13.2b | 13.6±0.4ef | 78.7±0.8e | 26.8±0.7b | 11.3±0.3bc |
| DF2 | 13.9±0.2ab | 34.3±6.8d | 0.0 | 322.3±14.3c | 11.4±0.7f | 82.8±2.1e | 28.0±0.8ab | 8.9±0.6c |
| DF3 | 14.4±0.4ab | 2575.7±1252.9c | 0.0 | 213.5±23.3d | 21.4±3.2c | 384.1±73.0c | 31.3±1.2ab | 29.8±5.3a |
Table 3 Ion concentrations in different treatments (mg·kg-1)
处理 Treatment | 氯离子 Cl- | 硫酸根离子 SO42- | 碳酸根离子 CO32- | 碳酸氢根离子 HCO3- | 钾离子 K+ | 钙离子 Ca2+ | 钠离子 Na+ | 镁离子 Mg2+ |
|---|---|---|---|---|---|---|---|---|
| CK | 13.4±0.2ab | 15.6±1.2d | 0.0 | 538.8±28.3a | 19.7±0.5cd | 72.2±2.3e | 27.9±1.2ab | 15.6±0.2b |
| D1 | 14.6±0.2a | 475.5±220.8d | 0.0 | 433.1±46.6b | 18.9±1.7cde | 174.7±39.0d | 32.4±0.9ab | 12.7±1.8bc |
| D2 | 14.5±0.4a | 4635.7±1014.0b | 0.0 | 201.3±9.3d | 30.0±2.5b | 494.6±25.9b | 32.0±3.5ab | 31.4±1.7a |
| D3 | 13.9±0.8ab | 7434.5±395.8a | 0.0 | 228.8±31.0d | 37.6±3.4a | 598.4±16.8a | 28.2±1.8ab | 35.6±1.4a |
| F1 | 14.3±0.3ab | 27.5±1.1d | 0.0 | 371.1±25.4bc | 20.8±0.6cd | 91.7±2.0e | 33.0±0.7a | 14.0±0.3bc |
| F2 | 14.5±0.9a | 24.4±1.6d | 0.0 | 378.2±18.6bc | 18.7±0.4cde | 86.7±2.2e | 29.8±2.1ab | 14.4±0.2bc |
| F3 | 13.3±0.2ab | 34.7±0.5d | 0.0 | 348.7±7.1c | 15.1±0.7def | 77.7±3.2e | 27.6±1.7ab | 14.5±0.2bc |
| DF1 | 12.9±0.1b | 24.9±1.4d | 0.0 | 434.1±13.2b | 13.6±0.4ef | 78.7±0.8e | 26.8±0.7b | 11.3±0.3bc |
| DF2 | 13.9±0.2ab | 34.3±6.8d | 0.0 | 322.3±14.3c | 11.4±0.7f | 82.8±2.1e | 28.0±0.8ab | 8.9±0.6c |
| DF3 | 14.4±0.4ab | 2575.7±1252.9c | 0.0 | 213.5±23.3d | 21.4±3.2c | 384.1±73.0c | 31.3±1.2ab | 29.8±5.3a |
项目 Item | pH | 电导率 Electrical conductivity | 全铁 Total iron | 有机质 Organic matter | 速效氮 Available nitrogen | 总磷 Total phosphorus | 钾离子 K+ | 钙离子 Ca2+ | 镁离子 Mg2+ | 钠离子 Na+ | 氯离子 Cl- | 硫酸根离子 SO42- | 碳酸氢根 离子 HCO3- | 生物量 Biomass |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 电导率 Electrical conductivity | -0.922* | |||||||||||||
| 全铁 Total iron | 0.063 | -0.019 | ||||||||||||
| 有机质 Organic matter | -0.202 | 0.204 | 0.330 | |||||||||||
| 速效氮 Available nitrogen | -0.140 | 0.152 | 0.068 | -0.232 | ||||||||||
| 总磷 Total phosphorus | -0.500* | 0.359 | -0.638* | -0.235 | 0.079 | |||||||||
| 钾离子 K+ | -0.793* | 0.852* | 0.294 | 0.325 | 0.236 | -0.024 | ||||||||
| 钙离子 Ca2+ | -0.942* | 0.994* | -0.025 | 0.231 | 0.154 | 0.369* | 0.862* | |||||||
| 镁离子 Mg2+ | -0.863* | 0.961* | 0.046 | 0.297 | 0.075 | 0.179 | 0.865* | 0.957* | ||||||
| 钠离子 Na+ | -0.257 | 0.210 | 0.205 | 0.064 | 0.146 | 0.062 | 0.292 | 0.210 | 0.211 | |||||
| 氯离子 Cl- | -0.289 | 0.275 | 0.146 | -0.024 | 0.010 | 0.120 | 0.279 | 0.262 | 0.241 | 0.775* | ||||
| 硫酸根离子 SO42- | -0.858* | 0.964* | 0.029 | 0.262 | 0.186 | 0.287 | 0.878* | 0.960* | 0.919* | 0.190 | 0.259 | |||
| 碳酸氢根离子 HCO3- | 0.647* | -0.746* | 0.155 | -0.132 | -0.102 | -0.389* | -0.503* | -0.739* | -0.703* | -0.187 | -0.249 | -0.693* | ||
| 生物量 Biomass | -0.575* | 0.444* | -0.418* | -0.207 | 0.181 | 0.680* | 0.273 | 0.446* | 0.275 | 0.137 | 0.148 | 0.390* | -0.171 | |
| 株高 Plant height | -0.341 | 0.176 | -0.424* | -0.354 | 0.154 | 0.604* | 0.081 | 0.173 | -0.002 | 0.206 | 0.211 | 0.131 | 0.036 | 0.879* |
Table 4 The correlation between soil and plant indicators
项目 Item | pH | 电导率 Electrical conductivity | 全铁 Total iron | 有机质 Organic matter | 速效氮 Available nitrogen | 总磷 Total phosphorus | 钾离子 K+ | 钙离子 Ca2+ | 镁离子 Mg2+ | 钠离子 Na+ | 氯离子 Cl- | 硫酸根离子 SO42- | 碳酸氢根 离子 HCO3- | 生物量 Biomass |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 电导率 Electrical conductivity | -0.922* | |||||||||||||
| 全铁 Total iron | 0.063 | -0.019 | ||||||||||||
| 有机质 Organic matter | -0.202 | 0.204 | 0.330 | |||||||||||
| 速效氮 Available nitrogen | -0.140 | 0.152 | 0.068 | -0.232 | ||||||||||
| 总磷 Total phosphorus | -0.500* | 0.359 | -0.638* | -0.235 | 0.079 | |||||||||
| 钾离子 K+ | -0.793* | 0.852* | 0.294 | 0.325 | 0.236 | -0.024 | ||||||||
| 钙离子 Ca2+ | -0.942* | 0.994* | -0.025 | 0.231 | 0.154 | 0.369* | 0.862* | |||||||
| 镁离子 Mg2+ | -0.863* | 0.961* | 0.046 | 0.297 | 0.075 | 0.179 | 0.865* | 0.957* | ||||||
| 钠离子 Na+ | -0.257 | 0.210 | 0.205 | 0.064 | 0.146 | 0.062 | 0.292 | 0.210 | 0.211 | |||||
| 氯离子 Cl- | -0.289 | 0.275 | 0.146 | -0.024 | 0.010 | 0.120 | 0.279 | 0.262 | 0.241 | 0.775* | ||||
| 硫酸根离子 SO42- | -0.858* | 0.964* | 0.029 | 0.262 | 0.186 | 0.287 | 0.878* | 0.960* | 0.919* | 0.190 | 0.259 | |||
| 碳酸氢根离子 HCO3- | 0.647* | -0.746* | 0.155 | -0.132 | -0.102 | -0.389* | -0.503* | -0.739* | -0.703* | -0.187 | -0.249 | -0.693* | ||
| 生物量 Biomass | -0.575* | 0.444* | -0.418* | -0.207 | 0.181 | 0.680* | 0.273 | 0.446* | 0.275 | 0.137 | 0.148 | 0.390* | -0.171 | |
| 株高 Plant height | -0.341 | 0.176 | -0.424* | -0.354 | 0.154 | 0.604* | 0.081 | 0.173 | -0.002 | 0.206 | 0.211 | 0.131 | 0.036 | 0.879* |
| [1] | Daliakopoulos I N, Tsanis I K, Koutroulis A, et al. The threat of soil salinity: a European scale review. Science of the Total Environment, 2016, 573: 727-739. |
| [2] | Jiang H H. Saline-alkali soil remediation by the combined application of halotolerant phosphate solubilizing microorganism and rock phosphate. Harbin: Harbin Institute of Technology, 2019. |
| 姜焕焕. 耐盐碱解磷菌与磷石膏联用改良盐碱土的效果与机制. 哈尔滨: 哈尔滨工业大学, 2019. | |
| [3] | Fan Z L, Jia Y J, Fan Y, et al. Growth of Elymus nutans in saline saline-alkali soil amended with calcium silicate slag:Performance and mechanism. Acta Prataculturae Sinica, 2021, 30(2): 93-101. |
| 范朕连, 贾阳杰, 范远, 等. 盐碱土施用硅钙渣对披碱草生长的影响及机制. 草业学报, 2021, 30(2): 93-101. | |
| [4] | Wang S J, Chen Q, Li Y, et al. Research on saline-alkali soil amelioration with FGD gypsum. Resources, Conservation and Recycling, 2017, 121: 82-92. |
| [5] | Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681. |
| [6] | Yang Z X, Zheng X, Chen L B, et al. Morphological adaptation strategies of Rumex hanus planted in saline-alkali land of arid areas. Acta Prataculturae Sinica, 2022, 31(7): 15-27. |
| 杨志新, 郑旭, 陈来宝, 等. 干旱区盐碱地食叶草根系形态分布适应策略研究. 草业学报, 2022, 31(7): 15-27. | |
| [7] | Liang P, Zhang Y Q, Zhang M, et al. Effects of PAM application depth on the growth and yield of quinoa under different salt-alkali stress. Agricultural Research in the Arid Areas, 2023, 41(5): 130-137, 197. |
| 梁萍, 张永清, 张萌, 等. 不同盐碱胁迫条件下PAM施用深度对藜麦生长及产量的影响. 干旱地区农业研究, 2023, 41(5): 130-137, 197. | |
| [8] | Tian Q Y, Kang F R, Zhang K Y, et al. Research progress on ecological utilization of coal-based solid waste. Journal of Yulin University, 2021, 31(6): 57-62. |
| 田巧艳, 亢福仁, 张凯煜, 等. 煤基固废生态化利用研究进展. 榆林学院学报, 2021, 31(6): 57-62. | |
| [9] | Liu H B. Evaluation and path research on the development and utilization of coal-based waste resources. Taiyuan: Shanxi University, 2023. |
| 刘汉斌. 煤基废弃资源开发利用评价及战略路径研究. 太原: 山西大学, 2023. | |
| [10] | Wang Y, Wang Z, Liang F, et al. Application of flue gas desulfurization gypsum improves multiple functions of saline-sodic soils across China. Chemosphere, 2021, 277(8): 130345. |
| [11] | Ji H H, Huang M L, He J, et al. Effects of fly ash on promoting soil properties and fertility: A review. Soils, 2017, 49(4): 665-669. |
| 季慧慧, 黄明丽, 何键, 等. 粉煤灰对土壤性质改善及肥力提升的作用研究进展. 土壤, 2017, 49(4): 665-669. | |
| [12] | Sun J J, Ma B, Li F J, et al. Effects of applying flue gas desulfurized gypsum on improvement and carbon sequestration in saline-sodic soils. China Powder Science and Technology, 2024, 30(3): 1-11. |
| 孙金金, 马斌, 李福杰, 等. 施加脱硫石膏对盐碱土改良和固碳的影响. 中国粉体技术, 2024, 30(3): 1-11. | |
| [13] | Liu J, Zhang F H, Li X D, et al. Effect of flue gas desulphurization gypsum on the saline soil improvement and security under drip irrigation. Journal of Arid Land Resources and Environment, 2017, 31(11): 87-93. |
| 刘娟, 张凤华, 李小东, 等. 滴灌条件下脱硫石膏对盐碱土改良效果及安全性的影响. 干旱区资源与环境, 2017, 31(11): 87-93. | |
| [14] | Kost D, Ladwig K J, Chen L M, et al. Meta-analysis of gypsum effects on crop yields and chemistry of soils, plant tissues, and vadose water at various research sites in the USA. Journal of Environmental Quality, 2018, 47(5): 1284-1292. |
| [15] | Wang J, Yang P. Potential flue gas desulfurization gypsum utilization in agriculture: a comprehensive review. Renewable & Sustainable Energy Reviews, 2018, 82(2): 1969-1978. |
| [16] | Jiang X, Guo L Z, Niu J J, et al. Improvement effect of different amendments on soil fertility status of saline alkali soil in Hexi Irrigation Area. Acta Agriculturae Universities Jiangxiensis, 2024, 46(4): 1086-1098. |
| 姜雪, 郭丽琢, 牛济军, 等. 不同改良剂对河西灌区盐碱地土壤肥力状况的改良效应. 江西农业大学学报, 2024, 46(4): 1086-1098. | |
| [17] | Chen W T, Guo L Z, Shan B, et al. Effects of amendments on oat growth and soil physical properties in saline-alkali land. Journal of Gansu Agricultural University, 2024, 59(5): 136-144. |
| 陈文涛, 郭丽琢, 剡斌, 等. 改良剂对盐碱地燕麦生长及土壤物理性状的调控效应. 甘肃农业大学学报, 2024, 59(5): 136-144. | |
| [18] | Zhu X Y, Ma C, Fang Y, et al. Effects of drought stress and fly ash on fractal dimension and fertility of aeolian sandy soil. Journal of Soil and Water Conservation, 2023, 37(5): 103-110. |
| 朱晓月, 马灿, 方燕, 等. 水分胁迫和粉煤灰添加对风沙土颗粒分形维数及肥力的影响. 水土保持学报, 2023, 37(5): 103-110. | |
| [19] | Gao F D, He J, Li M, et al. Improving alfalfa growth through amending alkalized soil with mixture of desulfurization gypsum and fly ash. Journal of Irrigation and Drainage, 2024, 43(4): 59-65. |
| 高富东, 何俊, 李敏, 等. 脱硫石膏与粉煤灰配施对碱化土壤改良及苜蓿生长的影响. 灌溉排水学报, 2024, 43(4): 59-65. | |
| [20] | Li S, Yang Z Y, Zhao H Y, et al. Spatio-temporal changes of aeolian desertification in the Jiziwan of the Yellow River from 1975 to 2020. Journal of Desert Research, 2024, 44(5): 13-22. |
| 李森, 杨宗英, 赵鸿雁, 等. 1975-2020年黄河“几字弯”沙漠化时空变化. 中国沙漠, 2024, 44(5): 13-22. | |
| [21] | Tian Y J, Yang B H, Wang S M, et al. Typical characteristics of geological hazards and ecological environment of coal base in the bends area of the Yellow River. Coal Geology & Exploration, 2022, 50(6): 104-117. |
| 田艳军, 杨博涵, 王双明, 等. 黄河几字弯区煤炭基地地质灾害与生态环境典型特征. 煤田地质与勘探, 2022, 50(6): 104-117. | |
| [22] | Li X T. Soil environment quality, risk control standard for soil contamination of agriculture land: GB 15618-2018. Beijing: Standards Press of China, 2018. |
| 李晓弢. 土壤环境质量, 农用地土壤污染风险管控标准(试行) : GB 15618-2018. 北京: 中国标准出版社, 2018. | |
| [23] | Bao S D. Soil agro-chemical analysis. Beijing: China Agriculture Press, 2018. |
| 鲍士旦. 土壤农化分析. 北京: 中国农业出版, 2018. | |
| [24] | Liang P X, Tang R, Guo R, et al. Effect of mixed salt-alkaline stress on growth and physiological characteristics in Cyperus esculentus L. Journal of Arid Land Resources and Environment, 2022, 36(10): 185-192. |
| 梁培鑫, 唐榕, 郭睿, 等. 混合盐碱胁迫对油莎豆生长及生理性状的影响. 干旱区资源与环境, 2022, 36(10): 185-192. | |
| [25] | Zhang Y C, Hong M, Zhao B, et al. Effects of different measures on the improvement of severe saline soil in Hetao irrigation area. Journal of Soil and Water Conservation, 2019, 33(5): 309-315. |
| 张宇晨, 红梅, 赵巴音那木拉, 等. 不同措施对河套灌区重度盐渍土改良效果. 水土保持学报, 2019, 33(5): 309-315. | |
| [26] | Chen X D, Wu J G, Fan W, et al. Effects of different organic materials on the morphology and composition of soil humus biding in primary saline and alkaline land. Journal of Soil and Water Conservation, 2019, 33(1): 200-205. |
| 陈晓东, 吴景贵, 范围, 等. 不同有机物料对原生盐碱地土壤腐殖质结合形态及组成的影响. 水土保持学报, 2019, 33(1): 200-205. | |
| [27] | Dai X G, Chao B, Bao Q G L, et al. Effects of combined application of laboratory waste liquids and gypsum on chemical properties of alkali soils and alfalfa growth. Journal of Agricultural Sciences, 2023, 44(3): 16-23. |
| 戴旭光, 朝博, 包庆格乐, 等. 实验室废液与脱硫石膏配施对碱土化学性质及苜蓿生长的影响. 农业科学研究, 2023, 44(3): 16-23. | |
| [28] | Zhao Y G, Wang S J, Li Y, et al. Effects of straw layer and flue gas desulfurization gypsum treatments on soil salinity and sodicity in relation to sunflower yield. Geoderma, 2019, 352: 13-21. |
| [29] | Dong S W, Ma S H, Chu M, et al. Microstructure changes of saline-alkali soil influenced by fly ash-based soil conditioner. The Chinese Journal of Process Engineering, 2022, 22(3): 357-365. |
| 董少文, 马淑花, 初茉, 等. 粉煤灰基土壤调理剂作用下盐碱土壤微观结构变化规律. 过程工程学报, 2022, 22(3): 357-365. | |
| [30] | Chen X Y. Study on improvement mechanism of saline-alkali soil by using fly ash-based soil conditioner. Hohhot: Inner Mongolia Agricultural University, 2023. |
| 陈翔宇. 粉煤灰基土壤调理剂盐碱地改良机理研究. 呼和浩特: 内蒙古农业大学, 2023. | |
| [31] | Zhou F L, Jiang L, Wang S F, et al. Amelioration of Fe2+ toxicity by K+ in rice. Journal of Nanjing Agricultural University, 2005, 28(4): 6-10. |
| 周锋利, 江玲, 王松凤, 等. 钾离子对水稻亚铁毒害的缓解作用. 南京农业大学学报, 2005, 28(4): 6-10. | |
| [32] | Liao R, Yu H, Yang P, et al. Quantitative evaluation of pore characteristics of sodic soils reclaimed by flue gas desulphurization gypsum using X-ray computed tomography. Land Degradation & Development, 2020, 31(5): 545-556. |
| [33] | Wang Z, Sun Z J, Sameh E S, et al. Effects of Enteromorpha prolifera biochar and wood vinegar co-application on takyric solonetz improvement and yield of oil sunflower. Environmental Science, 2021, 42(12): 6078-6090. |
| 王正, 孙兆军, Sameh E S, 等. 浒苔生物炭与木醋液复配改良碱化土壤效果及提高油葵产量. 环境科学, 2021, 42(12): 6078-6090. | |
| [34] | Zhao Y G, Zhang W C, Wang S J, et al. Effects of soil moisture on the reclamation of sodic soil by flue gas desulfurization gypsum. Geoderma, 2020, 375: 114485. |
| [35] | Huang Y Z, Zhu Y G, Huang F T, et al. Effects of cadmium and iron and their interactions on plants growth: a review. Ecology and Environment, 2004, 13(3): 406-409. |
| 黄益宗, 朱永官, 黄凤堂, 等. 镉和铁及其交互作用对植物生长的影响. 生态环境, 2004, 13(3): 406-409. |
| [1] | Fan-xi KONG, Bang-jie TANG, A-li-mi-ri ALIMUJIANG, Ge-ge ADE, Mao-guo YUAN, Jun CHEN. Species spatial distribution patterns in grassland under restoration in ‘hill and gully’ regions of the Loess Plateau [J]. Acta Prataculturae Sinica, 2025, 34(9): 1-11. |
| [2] | Jia-yi YONG, Shuang MA, Feng-hua MA, Xiao-na ZHAO, Yi-yin ZHANG, Hai-ying HU. Effects of drought stress and rehydration on biomass allocation and osmotic regulation characteristics of Indigofera bungeana [J]. Acta Prataculturae Sinica, 2025, 34(7): 158-170. |
| [3] | Shuang YAN, Fei XIA, Wei WEI, Jing-long WANG, Hao-yang WU, Lin-ling RAN, Yun-yin XUE, Hao SHI, Shai-kun ZHENG, Jun-qiang WANG, Jun-dong HE. Differences along an erosion gradient in alpine meadow plant community diversity and factors influencing diversity [J]. Acta Prataculturae Sinica, 2025, 34(6): 1-13. |
| [4] | Shun-hua LUO, Xin-yu LIU, Bao-ping MENG, Xuan-li CHEN, Ren-jie HU, Hong-yan YU, Xian-ying WANG, Bo ZHANG, Yu QIN. A study of functional group diversity and productivity of alpine grassland in Qilian Mountain National Park [J]. Acta Prataculturae Sinica, 2025, 34(6): 14-26. |
| [5] | Wen-jin LIU, Fu-zhen JIANG, Kai-bin QI, Ming-dan SONG, Zheng-peng LI. Effects of different fertilization and sowing amounts on vegetation restoration and soil quality in alpine mining areas and comprehensive evaluation [J]. Acta Prataculturae Sinica, 2025, 34(5): 27-39. |
| [6] | Shu-qi LIU, Dong CUI, Wen-xin LIU, Hai-jun YANG, Yan-cheng YANG, Zhi-cheng JIANG, Jiang-chao YAN, Jiang-hui LIU. Effects of short-term nitrogen addition, watering, and mowing on plant community characteristics and soil physicochemical properties in Sophora alopecuroides degraded grassland [J]. Acta Prataculturae Sinica, 2025, 34(3): 41-55. |
| [7] | Li-li MA, Fu-zhen JIANG, Yu-shou MA, Kai-bin QI, Shun-bin JIA, Zheng-peng LI. Effect of particle size ratio, fertilizer application amount, and seeding rate combinations coal gangue matrix properties in restoration of a mining area [J]. Acta Prataculturae Sinica, 2025, 34(3): 71-84. |
| [8] | Xiao-qian LU, Jin-lu CHEN, Wei-jun YANG, Qing-yun GUO, Dan-li WANG, Hong-mei ZHAO. Effects of nitrogen fertilizer reduction combined with humic acid on soil fungal communities in drip irrigated maize fields in northern Xinjiang [J]. Acta Prataculturae Sinica, 2025, 34(10): 120-131. |
| [9] | Wen-pan DU, Gui-qin ZHAO, Ji-kuan CHAI, Li YANG, Jian-gui ZHANG, Yi-chao SHI, Guan-lu ZHANG. Effects of root separation on aboveground biomass, soil nutrient contents, and root characters of intercropped oat and pea [J]. Acta Prataculturae Sinica, 2024, 33(8): 25-36. |
| [10] | Sheng-ran HE, Xiao-jing LIU, Ya-jiao ZHAO, Xue WANG, Jing WANG. Effects of alfalfa/sweet sorghum intercropping on rhizosphere soil characteristics and microbial community characteristics [J]. Acta Prataculturae Sinica, 2024, 33(5): 92-105. |
| [11] | Yi-ran CHANG, Jia-mei SHI, Dong-mei XU, Ru-long KANG, Yuan MA. Trade-off relationships between biomass and nutrient allocation in different natural populations of Agropyron mongolicum on the desert steppe [J]. Acta Prataculturae Sinica, 2024, 33(11): 186-197. |
| [12] | Hao SHI, Cai-hong YANG, Fei XIA, Jun-qiang WANG, Wei WEI, Jing-long WANG, Yun-yin XUE, Shai-kun ZHENG, Hao-yang WU, Lin-ling RAN, Shuang YAN, Xiao-min JIANG. Initial effects of short-term warming on the productivity of alpine degraded grassland in northern Tibet during the restoration process [J]. Acta Prataculturae Sinica, 2024, 33(11): 30-45. |
| [13] | Guo-liang YU, Zi-jing MA, Zi-li LYU, Bin LIU. Altitude and plant community jointly regulate soil stoichiometry characteristics of natural grassland in the Baluntai area on the southern slope of the middle Tianshan Mountains, China [J]. Acta Prataculturae Sinica, 2023, 32(9): 68-78. |
| [14] | Lin-zhi LI, De-gang ZHANG, Yuan MA, Zhu-zhu LUO, Dong LIN, Long HAI, Lan-ge BAI. Ecological stoichiometry characteristics of soil aggregates in alpine meadows with differing degrees of degradation [J]. Acta Prataculturae Sinica, 2023, 32(8): 48-60. |
| [15] | Xin LU, Juan QI, Shang-li SHI, Mei-mei CHE, Xia LI, Shuang-shuang DU, Ning-gang SAI, Yan-wei JIA. Effects of broad-leaved grass inhibitors combined with nitrogen on soil characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2023, 32(7): 38-48. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||