Acta Prataculturae Sinica ›› 2026, Vol. 35 ›› Issue (2): 208-220.DOI: 10.11686/cyxb2025112
Previous Articles Next Articles
Yi-lin DI(
), Si-tian LIU, Xin-ying LIU, Yong DU, Zhou LI(
)
Received:2025-03-21
Revised:2025-05-06
Online:2026-02-20
Published:2025-12-24
Contact:
Zhou LI
Yi-lin DI, Si-tian LIU, Xin-ying LIU, Yong DU, Zhou LI. Effects of γ-aminobutyric acid on cadmium stress tolerance and cadmium uptake and transport in creeping bentgrass[J]. Acta Prataculturae Sinica, 2026, 35(2): 208-220.
基因 Gene | 上游引物 Forward primer (5'-3') | 下游引物 Reverse primer (5'-3') | 退火温度 Annealing temperature (Tm, ℃) |
|---|---|---|---|
| Asβ-actin | CCTTTTCCAGCCATCTTTCA | GAGGTCCTTCCTGATATCCA | 54 |
| AsHMA1 | GGCTTGTCAGTCTATTGCTTT | GCTTCACTTTCACAGTTTGGT | 54 |
| AsHMA3 | CTGGGAGACGGGAACAGAG | CAGCAGTGGCAGGCTTTATC | 58 |
| AsZIP2 | ATCACTCCACGGCATCAAT | CTTTCGTTTCAGCGACTCC | 54 |
| AsABCC2 | AGAGCTGTTTATTCCGATTCA | CTATTTGCCCCTGAGGTATG | 54 |
| AsABCC4 | AAAGGAGAGCGGACGAGTAA | GAAGCGTAGACACCAAGGAAC | 56 |
| AsNRAMP1 | ACTCTTCAATCCGCACCTCT | TTCCTCACCCAGTTCTTCATC | 56 |
| AsNRAMP5 | AGCAGCAGAAGCAAGATGG | CAGAGGGAAGACGACGATG | 56 |
Table 1 Real-time PCR primers
基因 Gene | 上游引物 Forward primer (5'-3') | 下游引物 Reverse primer (5'-3') | 退火温度 Annealing temperature (Tm, ℃) |
|---|---|---|---|
| Asβ-actin | CCTTTTCCAGCCATCTTTCA | GAGGTCCTTCCTGATATCCA | 54 |
| AsHMA1 | GGCTTGTCAGTCTATTGCTTT | GCTTCACTTTCACAGTTTGGT | 54 |
| AsHMA3 | CTGGGAGACGGGAACAGAG | CAGCAGTGGCAGGCTTTATC | 58 |
| AsZIP2 | ATCACTCCACGGCATCAAT | CTTTCGTTTCAGCGACTCC | 54 |
| AsABCC2 | AGAGCTGTTTATTCCGATTCA | CTATTTGCCCCTGAGGTATG | 54 |
| AsABCC4 | AAAGGAGAGCGGACGAGTAA | GAAGCGTAGACACCAAGGAAC | 56 |
| AsNRAMP1 | ACTCTTCAATCCGCACCTCT | TTCCTCACCCAGTTCTTCATC | 56 |
| AsNRAMP5 | AGCAGCAGAAGCAAGATGG | CAGAGGGAAGACGACGATG | 56 |
Fig.3 Effects of exogenous γ-aminobutyric acid on membrane permeability, relative water content and GABA synthesis of A. stolonifera under CdCl2 stress
| [1] | Dradrach A, Karczewska A, Bogacz A, et al. Accumulation of potentially toxic metals in ryegrass (Lolium perenne L.) and other components of lawn vegetation in variously contaminated sites of urban areas. Sustainability, 2024, 16(18): 8040. |
| [2] | Gao L, Wang S F, Zou D C, et al. Physiological responses of low- and high-cadmium accumulating Robinia pseudoacacia-rhizobium symbioses to cadmium stress. Environmental Pollution, 2024, 345(6): 123456. |
| [3] | Anjum S A, Tanveer M, Hussain S, et al. Morpho-physiological growth and yield responses of two contrasting maize cultivars to cadmium exposure. Clean-Soil, Air, Water, 2016, 44(1): 29-36. |
| [4] | Guo J J, Qin S Y, Rengel Z, et al. Cadmium stress increases antioxidant enzyme activities and decreases endogenous hormone concentrations more in Cd-tolerant than Cd-sensitive wheat varieties. Ecotoxicology and Environmental Safety, 2019, 172(6): 380-387. |
| [5] | Lin J N, Lin L, Shi J A, et al. Growth and metabolic differences in the potential of phytoremediation between two hybrid bermudagrasses in roots, stems, and leaves under cadmium stress. Environmental and Experimental Botany, 2024, 222(6): 105767. |
| [6] | Liu P, Sun L, Zhang Y, et al. The metal tolerance protein OsMTP11 facilitates cadmium sequestration in the vacuoles of leaf vascular cells for restricting its translocation into rice grains. Molecular Plant, 2024, 17(11): 1733-1752. |
| [7] | Wu X, Chen J H, Yue X M, et al. The zinc-regulated protein (ZIP) family genes and glutathione s-transferase (GST) family genes play roles in Cd resistance and accumulation of pak choi (Brassica campestris ssp. chinensis). Ecotoxicology and Environmental Safety, 2019, 183(17): 109571. |
| [8] | Zheng X, Chen L, Li X F. Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress. Botanical Studies, 2018, 59(22): 1-10. |
| [9] | Ishikawa S, Ishimaru Y, Igura M, et al. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19166-19171. |
| [10] | Takahashi R, Ishimaru Y, Senoura T, et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. Journal of Experimental Botany, 2011, 62(14): 4843-4850. |
| [11] | Miyadate H, Adachi S, Hiraizumi A, et al. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytologist, 2011, 189(1): 190-199. |
| [12] | Brunetti P, Zanella L, De Paolis A, et al. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. Journal of Experimental Botany, 2015, 66(13): 3815-3829. |
| [13] | Faizan M, Alam P, Hussain A, et al. Phytochelatins: A key regulator against heavy metal toxicity in plants. Plant Stress, 2024, 11(1): 100355. |
| [14] | Song W Y, Park J, Mendoza-Cózatl D G, et al. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(49): 21187-21192. |
| [15] | Ramesh S A, Tyerman S D, Gilliham M, et al. γ-aminobutyric acid (GABA) signalling in plants. Cellular and Molecular Life Sciences, 2017, 74(22): 1577-1603. |
| [16] | Deewatthanawong R, Rowell P, Watkins C B, et al. γ-aminobutyric acid (GABA) metabolism in CO2 treated tomatoes. Postharvest Biology and Technology, 2010, 57(2): 97-105. |
| [17] | Dolphen R, Thiravetyan P. Exogenous γ-aminobutyric acid and Bacillus pumilus reduce arsenic uptake and toxicity in rice. Environmental Science and Pollution Research, 2024, 31(7): 10609-10620. |
| [18] | Kalhor M S, Aliniaeifard S, Seif M, et al. Enhanced salt tolerance and photosynthetic performance: Implication of γ-amino butyric acid application in salt-exposed lettuce (Lactuca sativa L.) plants. Plant Physiology and Biochemistry, 2018, 130(9): 157-172. |
| [19] | Zhu G X, Xiao H Y, Guo Q J, et al. Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants. Ecotoxicology and Environmental Safety, 2018, 158(12): 300-308. |
| [20] | Waris Z, Noreen Z, Shah A A, et al. Efficacy of γ-aminobutyric acid (GABA) on physio-biochemical attributes of lettuce (Lactuca sativa L.) under cadmium toxicity. Journal of Plant Growth Regulation, 2023, 42(8): 5041-5057. |
| [21] | He G Q, Zhang H B, Liu S Q, et al. Exogenous γ-glutamic acid (GABA) induces proline and glutathione synthesis in alleviating Cd-induced photosynthetic inhibition and oxidative damage in tobacco leaves. Journal of Plant Interactions, 2021, 16(1): 296-306. |
| [22] | Seifikalhor M, Aliniaeifard S, Bernard F, et al. γ-aminobutyric acid confers cadmium tolerance in maize plants by concerted regulation of polyamine metabolism and antioxidant defense systems. Scientific Reports, 2020, 10(1): 3356. |
| [23] | Ashraf U, Anjum S A, Rasul F, et al. GABA-mediated tolerance in fragrant rice to individual and interactive Pb and Cd stress. Research Square, 2024, 7(1): 30-45. |
| [24] | Zhao Y T, Song X T, Zhong D B, et al. γ-aminobutyric acid (GABA) regulates lipid production and cadmium uptake by Monoraphidium sp. QLY-1 under cadmium stress. Bioresource Technology, 2020, 297(3): 122500. |
| [25] | Li Y X, Li Y H, Cui Y L, et al. GABA-mediated inhibition of cadmium uptake and accumulation in apples. Environmental Pollution, 2022, 300(9): 118867. |
| [26] | Li W Z, Li X F, Zhou K X, et al. Exogenous γ-aminobutyric acid (GABA) improves the cadmium phytoremediation capacity of Solanum nigrum var. humile under cadmium stress. Environmental Progress & Sustainable Energy, 2024, 43(4): e14364. |
| [27] | Ji C D, Zhang D G, Zhu J, et al. Effects of high temperature stress on some physiological characteristics and regeneration ability of Agrostis stolonifera green turfgrass. Chinese Agricultural Science Bulletin, 2007, 23(1): 221-224. |
| 姬承东, 张德罡, 朱钧, 等. 高温对匍匐翦股颖果岭草坪草生理特性及再生性的影响. 中国农学通报, 2007, 23(1): 221-224. | |
| [28] | Wang H H. Effect of calcium salt on salt tolerance of creeping bentgrass under NaCl stress. Lanzhou: Lanzhou University, 2021. |
| 王慧慧. 钙盐对 NaCl 胁迫下匍匐翦股颖耐盐性影响. 兰州: 兰州大学, 2021. | |
| [29] | Li Z, Zhou M, Qi H Y, et al. Foliar application of diethyl aminoethyl hexanoate (DA-6) alleviated summer bentgrass decline and heat damage to creeping bentgrass. Crop Science, 2024, 64(2): 1039-1050. |
| [30] | Arnon D. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiology, 1949, 24(1): 1-15. |
| [31] | Barr H D, Weatherley P E. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Australian Journal of Biological Sciences, 1962, 15(3): 413-428. |
| [32] | Blum A, Ebercon A. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 1981, 21(1): 43-47. |
| [33] | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. |
| [34] | Wu Z C, Zhao X H, Sun X C, et al. Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress. Chemosphere, 2015, 138(21): 526-536. |
| [35] | Deng G, Li M, Li H, et al. Exposure to cadmium causes declines in growth and photosynthesis in the endangered aquatic fern (Ceratopteris pteridoides). Aquatic Botany, 2014, 112(1): 23-32. |
| [36] | Santos L R, Batista B L, Lobato A K S. Brassinosteroids mitigate cadmium toxicity in cowpea plants. Photosynthetica, 2018, 56(2): 591-605. |
| [37] | Zhang H H, Xu Z S, Guo K W, et al. Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis. Ecotoxicology and Environmental Safety, 2020, 202(16): 110856. |
| [38] | Benavides M P, Gallego S M, Tomaro M L. Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 2005, 17(1): 21-34. |
| [39] | Wodala B, Eitel G, Gyula T N, et al. Monitoring moderate Cu and Cd toxicity by chlorophyll fluorescence and P700 absorbance in pea leaves. Photosynthetica, 2012, 50(2): 380-386. |
| [40] | Dhir B, Sharmila P, Saradhi P P. Photosynthetic performance of Salvinia natans exposed to chromium and zinc rich wastewater. Brazilian Journal of Plant Physiology, 2008, 20(1): 61-70. |
| [41] | Feng Y Z, Zhao Y, Wang B P, et al. Effects of drought rehydration on photosynthesis and chlorophyll fluorescence of Paulownia catalpifolia seedlings. Journal of Central South University of Forestry & Technology, 2020, 40(4): 1-8. |
| 冯延芝, 赵阳, 王保平, 等. 干旱复水对楸叶泡桐幼苗光合和叶绿素荧光的影响. 中南林业科技大学学报, 2020, 40(4): 1-8. | |
| [42] | Xiang W, Cheng X R, Xu H D, et al. Effects of light and N∶P ratio on photosynthetic characteristics of three typical tree species. Forest Research, 2023, 36(1): 179-190. |
| 向旺, 成向荣, 徐海东, 等. 光照和氮磷供应比对 3 种典型乔木幼苗光合生理特性的影响. 林业科学研究, 2023, 36(1): 179-190. | |
| [43] | Jin C, Zha T S, Jia X, et al. Dynamics of chlorophyll fluorescence parameters under drought condition for three desert shrub species. Journal of Beijing Forestry University, 2020, 42(8): 72-80. |
| 靳川, 查天山, 贾昕, 等. 干旱环境 3 种荒漠灌木叶绿素荧光参数动态. 北京林业大学学报, 2020, 42(8): 72-80. | |
| [44] | Yang H Z, Yuan Y, Liu X Y, et al. Phytohormonal homeostasis, chloroplast stability, and heat shock transcription pathways related to the adaptability of creeping bentgrass species to heat stress. Protoplasma, 2025, 262(1): 649-665. |
| [45] | Li D, Li L, Xiao G N, et al. Effects of elevated CO2 on energy metabolism and γ-aminobutyric acid shunt pathway in postharvest strawberry fruit. Food Chemistry, 2018, 265(28): 281-289. |
| [46] | Qin B, Sun M L, Liu H Z, et al. Alfalfa MsGAD2 induces γ-aminobutyric acid accumulation and enhances Cd resistance in transgenic tobacco. Environmental and Experimental Botany, 2025, 229(1): 106058. |
| [47] | Lin L, Lin J N, Zhou M, et al. Lipid remodelling and the conversion of lipids into sugars associated with tolerance to cadmium toxicity during white clover seed germination. Physiologia Plantarum, 2024, 176(4): e14433. |
| [48] | Lv Y Y, Zhao Y T S, He Y, et al. Synergistic effects of γ-aminobutyric acid and melatonin on seed germination and cadmium tolerance in tomato. Plant Signaling & Behavior, 2023, 18(1): 2216001. |
| [49] | Zhao F J, Tang Z, Song J J, et al. Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Molecular Plant, 2022, 15(1): 27-44. |
| [50] | Cuypers A, Plusquin M, Remans T, et al. Cadmium stress: An oxidative challenge. Biometals, 2010, 23(2): 927-940. |
| [51] | Hao X H, Liu K X, Zhang M Y. Effect of exogenous γ-aminobutyric acid on physiological property, antioxidant activity, and cadmium uptake of quinoa seedlings under cadmium stress. Bioscience Reports, 2024, 44(6): BSR20240215. |
| [52] | Gallego S M, Pena L B, Barcia R A, et al. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environmental and Experimental Botany, 2012, 83(9): 33-46. |
| [53] | Cao Y Q, Nie Q K, Gao Y, et al. The studies on cadmium and its chelate related transporters in plants. Crops, 2018, 3(3): 15-24. |
| [54] | Milner M J, Seamon J, Craft E, et al. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany, 2013, 64(1): 369-381. |
| [55] | Kanwal F, Riaz A, Ali S, et al. NRAMPs and manganese: Magic keys to reduce cadmium toxicity and accumulation in plants. Science of the Total Environment, 2024, 921(16): 171005. |
| [56] | Zhang J, Zhang M, Song H Y, et al. A novel plasma membrane-based NRAMP transporter contributes to Cd and Zn hyperaccumulation in Sedum alfredii Hance. Environmental and Experimental Botany, 2020, 176(8): 104121. |
| [57] | Zhang W W, Yue S Q, Song J F, et al. MhNRAMP1 from Malus hupehensis exacerbates cell death by accelerating cd uptake in tobacco and apple calli. Frontiers in Plant Science, 2020, 11(7): 957. |
| [58] | Di Y L, Cao Y Q, Peng D D, et al. AsGAD1 cloned from creeping bentgrass modulates cadmium tolerance of Arabidopsis thaliana by remodelling membrane lipids and cadmium uptake, transport and chelation. Physiologia Plantarum, 2025, 177(1): e70063. |
| [59] | Khan N, You F M, Datla R, et al. Genome-wide identification of ATP binding cassette (ABC) transporter and heavy metal associated (HMA) gene families in flax (Linum usitatissimum L.). BMC Genomics, 2020, 21(7): 1-14. |
| [60] | Argüello J M, Eren E, González-Guerrero M. The structure and function of heavy metal transport P 1B-ATPases. Biometals, 2007, 20(1): 233-248. |
| [61] | Mikkelsen M D, Pedas P, Schiller M, et al. Barley HvHMA1 is a heavy metal pump involved in mobilizing organellar Zn and Cu and plays a role in metal loading into grains. PLoS One, 2012, 7(11): e49027. |
| [62] | Ueno D, Milner M J, Yamaji N, et al. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. The Plant Journal, 2011, 66(5): 852-862. |
| [63] | Park J, Song W Y, Ko D, et al. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. The Plant Journal, 2012, 69(2): 278-288. |
| [1] | Shu-zhen SONG, Cai-ye ZHU, Li-shan LIU, Xu-ying GONG, Rui-rui LUO. The effect of tail-docking on adipocyte structure and lipid metabolism-related gene expression in Lanzhou fat-tailed sheep [J]. Acta Prataculturae Sinica, 2024, 33(7): 94-104. |
| [2] | Qiang LI, Fan KANG, Qing XUE, Bin CHEN, Ying SUN. Functional analysis of the R2R3-MYB transcription factor CiMYB4 of Chrysanthemum indicum var. aromaticum in response to cadmium stress [J]. Acta Prataculturae Sinica, 2024, 33(5): 128-142. |
| [3] | Hai-ming KONG, Jia-xing SONG, Jing YANG, Qian LI, Pei-zhi YANG, Yu-man CAO. Identification and transcript profiling of the CAMTA gene family under abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(5): 143-154. |
| [4] | Chao-nan MENG, Yu-jie ZHAO, Jia-xin CHEN, Yi-lu ZHANG, Yan-jia WANG, Li-rong FENG, Yu-gang SUN, Chang-hong GUO. Screening and identification of two strains of nitrogen-fixing bacteria from the silage maize rhizosphere and their roles in plant growth promotion [J]. Acta Prataculturae Sinica, 2024, 33(3): 174-185. |
| [5] | Jia-hui CHEN, Wen-xian LIU. Construction and application of a graphic visualization tool for important forage omics data [J]. Acta Prataculturae Sinica, 2024, 33(2): 57-67. |
| [6] | Jin GUAN, Yi-di GUO, Ling-yun LIU, Shu-xia YIN, Ke TENG. An efficient protocol for Zoysia japonica mesophyll protoplast isolation and transformation, and its application in subcellular localization and protein interaction analysis [J]. Acta Prataculturae Sinica, 2023, 32(7): 61-71. |
| [7] | Mu-ye LIU, Li-zhu GUO, Yue-sen YUE, Ju-ying WU, Xi-feng FAN, Guo-zeng XIAO, Ke TENG. Physiological and antioxidant enzyme gene expression differences between female and male Buchloe dactyloides plants under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(10): 93-103. |
| [8] | Hao-yu XU, Ying ZHAO, Qian RUAN, Xiao-lin ZHU, Bao-qiang WANG, Xiao-hong WEI. Resistance of quinoa seedlings under different salt-alkali stress levels [J]. Acta Prataculturae Sinica, 2023, 32(1): 122-130. |
| [9] | Ling-shuang ZENG, Pei-ying LI, Zong-jiu SUN, Xiao-fan SUN. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance [J]. Acta Prataculturae Sinica, 2022, 31(7): 122-132. |
| [10] | Qing ZHANG, Jing XING, Jia-ming YAO, Ting-chao YIN, Xin-ru HUANG, Yue HE, Jing ZHANG, Bin XU. The role of a cytokinin signaling pathway type-B ARR transcription factor, LpARR10, in cadmium tolerance of perennial ryegrass [J]. Acta Prataculturae Sinica, 2022, 31(5): 135-143. |
| [11] | Li-juan GAO, Zheng-she ZHANG, Yu WEN, Xi-fang ZONG, Qi YAN, Li-yan LU, Xian-feng YI, Ji-yu ZHANG. Genome-wide identification and expression analysis of the bHLH transcription factor family in Cenchrus purpureus [J]. Acta Prataculturae Sinica, 2022, 31(3): 47-59. |
| [12] | Li-qing ZHAO, Zhi-gang HAO, Xiao-yan CUI, Xiang-yong PENG. Effects of gibberellin and its inhibitors on growth and gene expression in Poa pratensis [J]. Acta Prataculturae Sinica, 2022, 31(3): 85-91. |
| [13] | Guo-xiang ZHANG, Wei-leng GUO, Ming-yu BI, Li-shuang ZHANG, Dan WANG, Chang-hong GUO. Identification of CAX gene family and expression profile analysis of response to abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2022, 31(12): 106-117. |
| [14] | Ning ZHAO, Hui-ling MA, Ran ZHANG, Jin-qing ZHANG, Yi SHI. Regulatory effects of butanediol on the expression level of endogenous hormones and related genes in creeping bentgrass under heat stress [J]. Acta Prataculturae Sinica, 2022, 31(12): 118-132. |
| [15] | Na WEI, Yan-peng LI, Yi-tong MA, Wen-xian LIU. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa (Medicago sativa) under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(1): 118-130. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||