Acta Prataculturae Sinica ›› 2020, Vol. 29 ›› Issue (12): 150-160.DOI: 10.11686/cyxb2020186
Previous Articles Next Articles
Zhan-jun WANG1(), Kun MA2,3(), Hui-zhen CUI3, Guang-wen LI3, Hong-qian YU1, Qi JIANG1
Received:
2020-04-21
Revised:
2020-06-01
Online:
2020-12-28
Published:
2020-12-28
Contact:
Kun MA
Zhan-jun WANG, Kun MA, Hui-zhen CUI, Guang-wen LI, Hong-qian YU, Qi JIANG. Correlations between arbuscular mycorrhizal fungi and distribution of main grassland types in Ningxia[J]. Acta Prataculturae Sinica, 2020, 29(12): 150-160.
草原类型Grassland types | 样地Plot | 优势种群 Dominant populations | 主要伴生种 Main companion species | 经纬度 Longitude and latitude (o) | 海拔 Altitude(m) | 降水量 Precipitation(mm) |
---|---|---|---|---|---|---|
荒漠草原 Desert steppe | T0 | 白草+甘草 P.centrasiaticum+G. uralwnsis | 赖草、针茅、达乌里胡枝子、牛枝子 Leymus secalinus, S. breviflora, Lespedeza davurica,L. potaninii | 107.04761° E 38.08083° N | 1463 | 231 |
T1 | 短花针茅+牛枝子+猪毛蒿 S. breviflora+L. potaninii+A. scoparia | 糙隐子草、赖草、苦豆子、猫头刺、骆驼蓬、地梢瓜 C. squarrosa, L. secalinus, Sophora alopecuroides,Oxytropis aciphylla, Peganum harmala, Cynanchum thesioides | 106.47742° E 37.44003° N | 1371 | 154 | |
T2 | 黑沙蒿A. ordosica | 白草、狗尾草、赖草、针茅、草木樨状黄芪、牛枝子 P. centrasiaticum, Setaria viridis, L. secalinus, S. breviflora, Astragalus melilotoides, L. potaninii | 106.62185° E 37.75618° N | 1340 | 137 | |
T3 | 短花针茅S. breviflora | 糙隐子草、锋芒草、细弱黄耆(细茎黄芪) C. squarrosa, Tragus racemosus, Astragalus miniatus | 105.72931° E 37.40300° N | 1377 | 114 | |
干草原 Dry steppe | T4 | 长芒草+赖草+甘肃蒿 S. bungeana+L. secalinus+Artemisia gansuensis | 扁穗冰草、糙隐子草、硬质早熟禾、糙叶黄耆(皱黄芪) Agropyron cristatum, C. squarrosa, Poa sphondylodes, Astragalus scaberrimus | 106.48354° E 36.73344° N | 2029 | 336 |
Table 1 Basic characteristics of the grassland plot
草原类型Grassland types | 样地Plot | 优势种群 Dominant populations | 主要伴生种 Main companion species | 经纬度 Longitude and latitude (o) | 海拔 Altitude(m) | 降水量 Precipitation(mm) |
---|---|---|---|---|---|---|
荒漠草原 Desert steppe | T0 | 白草+甘草 P.centrasiaticum+G. uralwnsis | 赖草、针茅、达乌里胡枝子、牛枝子 Leymus secalinus, S. breviflora, Lespedeza davurica,L. potaninii | 107.04761° E 38.08083° N | 1463 | 231 |
T1 | 短花针茅+牛枝子+猪毛蒿 S. breviflora+L. potaninii+A. scoparia | 糙隐子草、赖草、苦豆子、猫头刺、骆驼蓬、地梢瓜 C. squarrosa, L. secalinus, Sophora alopecuroides,Oxytropis aciphylla, Peganum harmala, Cynanchum thesioides | 106.47742° E 37.44003° N | 1371 | 154 | |
T2 | 黑沙蒿A. ordosica | 白草、狗尾草、赖草、针茅、草木樨状黄芪、牛枝子 P. centrasiaticum, Setaria viridis, L. secalinus, S. breviflora, Astragalus melilotoides, L. potaninii | 106.62185° E 37.75618° N | 1340 | 137 | |
T3 | 短花针茅S. breviflora | 糙隐子草、锋芒草、细弱黄耆(细茎黄芪) C. squarrosa, Tragus racemosus, Astragalus miniatus | 105.72931° E 37.40300° N | 1377 | 114 | |
干草原 Dry steppe | T4 | 长芒草+赖草+甘肃蒿 S. bungeana+L. secalinus+Artemisia gansuensis | 扁穗冰草、糙隐子草、硬质早熟禾、糙叶黄耆(皱黄芪) Agropyron cristatum, C. squarrosa, Poa sphondylodes, Astragalus scaberrimus | 106.48354° E 36.73344° N | 2029 | 336 |
处理 Treatment | 香农-维纳指数 Shannon-Wiener index | Pielou均匀度指数Pielou index | 辛普森指数Simpson index | 物种数 Species | 总盖度 Total coverage (TC,%) | 总高度 Total height (TH, cm) | 总生物量 Total biomass (TB, g·m-2) | 优势种群重要值Important value |
---|---|---|---|---|---|---|---|---|
T0 | 1.18b | 0.51a | 0.51a | 9.00b | 66.50ab | 16.19ab | 111.74b | 0.43 |
T1 | 1.16b | 0.54a | 0.54a | 8.67b | 79.00a | 9.05b | 82.83b | 0.37 |
T2 | 1.07b | 0.72a | 0.55a | 4.50b | 56.67bc | 23.48a | 112.89b | 0.46 |
T3 | 0.97b | 0.62a | 0.50a | 5.50b | 47.67c | 7.87b | 59.67b | 0.14 |
T4 | 2.16a | 0.74a | 0.82a | 18.50a | 92.00a | 13.07b | 195.44a | 0.69 |
Table 2 Vegetation community characteristics in different grassland types (mean±SD,n=6)
处理 Treatment | 香农-维纳指数 Shannon-Wiener index | Pielou均匀度指数Pielou index | 辛普森指数Simpson index | 物种数 Species | 总盖度 Total coverage (TC,%) | 总高度 Total height (TH, cm) | 总生物量 Total biomass (TB, g·m-2) | 优势种群重要值Important value |
---|---|---|---|---|---|---|---|---|
T0 | 1.18b | 0.51a | 0.51a | 9.00b | 66.50ab | 16.19ab | 111.74b | 0.43 |
T1 | 1.16b | 0.54a | 0.54a | 8.67b | 79.00a | 9.05b | 82.83b | 0.37 |
T2 | 1.07b | 0.72a | 0.55a | 4.50b | 56.67bc | 23.48a | 112.89b | 0.46 |
T3 | 0.97b | 0.62a | 0.50a | 5.50b | 47.67c | 7.87b | 59.67b | 0.14 |
T4 | 2.16a | 0.74a | 0.82a | 18.50a | 92.00a | 13.07b | 195.44a | 0.69 |
处理 Treatment | 香农-维纳指数 Shannon-Wiener index | 辛普森指数 Simpson index | Chao1丰富度指数 Chao1 index | Pielou 均匀度指数 Pielou index |
---|---|---|---|---|
T0 | 4.93±0.25b | 0.94±0.01ab | 404.29±94.42c | 0.60±0.02a |
T1 | 2.70±0.64c | 0.69±0.16c | 363.74±49.65c | 0.34±0.08c |
T2 | 5.19±0.45ab | 0.94±0.03ab | 568.65±171.44bc | 0.60±0.05a |
T3 | 4.48±1.05b | 0.86±0.11ab | 972.46±510.74ab | 0.48±0.07b |
T4 | 6.22±0.66a | 0.96±0.04a | 1383.88±72.92a | 0.62±0.07a |
Table 3 AM fungal diversity and richness under different grassland types (mean±SD,n=6)
处理 Treatment | 香农-维纳指数 Shannon-Wiener index | 辛普森指数 Simpson index | Chao1丰富度指数 Chao1 index | Pielou 均匀度指数 Pielou index |
---|---|---|---|---|
T0 | 4.93±0.25b | 0.94±0.01ab | 404.29±94.42c | 0.60±0.02a |
T1 | 2.70±0.64c | 0.69±0.16c | 363.74±49.65c | 0.34±0.08c |
T2 | 5.19±0.45ab | 0.94±0.03ab | 568.65±171.44bc | 0.60±0.05a |
T3 | 4.48±1.05b | 0.86±0.11ab | 972.46±510.74ab | 0.48±0.07b |
T4 | 6.22±0.66a | 0.96±0.04a | 1383.88±72.92a | 0.62±0.07a |
参数 Variable | 总盖度 Total coverage | 总平均高度Total average height | 总生物量 Total biomass | 重要值 Important value | 香农—维纳指数Shannon-Wiener | Pielou均匀度指数Pielou evenness index | 辛普森指数Simpson index | 物种数Species |
---|---|---|---|---|---|---|---|---|
香农-维纳指数Shannon-Wiener index | 0.14 | 0.35 | 0.56** | 0.46* | 0.43* | 0.24 | 0.33 | 0.40* |
辛普森指数Simpson index | -0.07 | 0.38* | 0.40* | 0.30 | 0.26 | 0.18 | 0.18 | 0.16 |
Chao1丰富度指数Chao1 index | 0.26 | -0.13 | 0.45* | 0.28 | 0.48* | 0.18 | 0.39* | 0.54** |
Pielou均匀度指数Pielou index | 0.02 | 0.46* | 0.49* | 0.42* | 0.33 | 0.22 | 0.24 | 0.25 |
Table 4 Pearson’s correlation analysis of AM fungal Alpha diversity and vegetation community characteristics
参数 Variable | 总盖度 Total coverage | 总平均高度Total average height | 总生物量 Total biomass | 重要值 Important value | 香农—维纳指数Shannon-Wiener | Pielou均匀度指数Pielou evenness index | 辛普森指数Simpson index | 物种数Species |
---|---|---|---|---|---|---|---|---|
香农-维纳指数Shannon-Wiener index | 0.14 | 0.35 | 0.56** | 0.46* | 0.43* | 0.24 | 0.33 | 0.40* |
辛普森指数Simpson index | -0.07 | 0.38* | 0.40* | 0.30 | 0.26 | 0.18 | 0.18 | 0.16 |
Chao1丰富度指数Chao1 index | 0.26 | -0.13 | 0.45* | 0.28 | 0.48* | 0.18 | 0.39* | 0.54** |
Pielou均匀度指数Pielou index | 0.02 | 0.46* | 0.49* | 0.42* | 0.33 | 0.22 | 0.24 | 0.25 |
变量 Variable | 全氮 Total nitrogen | 总磷 Total phosphorus | 速效磷 Available phosphorus | 碱解氮 Available nitrogen | 有机质 Organic matter | 速效钾 Available potassium | pH | 降水量 Perception | 海拔 Elevation |
---|---|---|---|---|---|---|---|---|---|
生物量Biomass | 0.98** | 0.91** | -0.14 | 0.97** | 0.98** | 0.66** | -0.48* | -0.68** | 0.97** |
香农-维纳指数Shannon-Wiener index | 0.54** | 0.50** | 0.33 | 0.53** | 0.49** | 0.40* | 0.56** | -0.41* | 0.59** |
辛普森指数Simpson index | 0.28 | 0.25 | 0.27 | 0.27 | 0.23 | 0.21 | 0.37** | -0.28 | 0.34 |
Chao1丰富度指数Chao1 index | 0.78** | 0.81** | -0.10 | 0.75** | 0.73** | 0.76** | 0.36* | -0.48** | 0.69** |
Pielou均匀度指数Pielou index | 0.32 | 0.26 | 0.42* | 0.32 | 0.28 | 0.17 | 0.48* | -0.30 | 0.43* |
幼套球囊霉属相对丰度 Relative abundance of Claroideoglomus | 0.45* | 0.42* | 0.16 | 0.45* | 0.44* | 0.41* | 0.35* | -0.27 | 0.46* |
球囊霉属相对丰度Relative abundance of Glomus | -0.24 | -0.21 | -0.04 | -0.24 | -0.22 | -0.15 | -0.52* | 0.40 | -0.38* |
类球囊霉属相对丰度Relative abundance of Paraglomus | 0.50** | 0.50** | -0.20 | 0.46** | 0.44* | 0.48** | 0.44* | -0.47** | 0.50** |
Table 5 Pearson’s correlation analysis of AM fungal community diversity, relative abundance based on the genus level and soil physic-chemical properties and precipitation, evaluation
变量 Variable | 全氮 Total nitrogen | 总磷 Total phosphorus | 速效磷 Available phosphorus | 碱解氮 Available nitrogen | 有机质 Organic matter | 速效钾 Available potassium | pH | 降水量 Perception | 海拔 Elevation |
---|---|---|---|---|---|---|---|---|---|
生物量Biomass | 0.98** | 0.91** | -0.14 | 0.97** | 0.98** | 0.66** | -0.48* | -0.68** | 0.97** |
香农-维纳指数Shannon-Wiener index | 0.54** | 0.50** | 0.33 | 0.53** | 0.49** | 0.40* | 0.56** | -0.41* | 0.59** |
辛普森指数Simpson index | 0.28 | 0.25 | 0.27 | 0.27 | 0.23 | 0.21 | 0.37** | -0.28 | 0.34 |
Chao1丰富度指数Chao1 index | 0.78** | 0.81** | -0.10 | 0.75** | 0.73** | 0.76** | 0.36* | -0.48** | 0.69** |
Pielou均匀度指数Pielou index | 0.32 | 0.26 | 0.42* | 0.32 | 0.28 | 0.17 | 0.48* | -0.30 | 0.43* |
幼套球囊霉属相对丰度 Relative abundance of Claroideoglomus | 0.45* | 0.42* | 0.16 | 0.45* | 0.44* | 0.41* | 0.35* | -0.27 | 0.46* |
球囊霉属相对丰度Relative abundance of Glomus | -0.24 | -0.21 | -0.04 | -0.24 | -0.22 | -0.15 | -0.52* | 0.40 | -0.38* |
类球囊霉属相对丰度Relative abundance of Paraglomus | 0.50** | 0.50** | -0.20 | 0.46** | 0.44* | 0.48** | 0.44* | -0.47** | 0.50** |
1 | Faghihinia M, Zou Y, Chen Z, et al. The response of grassland mycorrhizal fungal abundance to a range of long-term grazing intensities. Rhizosphere, 2020, 13: 100178. |
2 | Guo S J. Discussion on the grassland types in Ningxia. Journal of Ningxia Agricultural College, 1985, 1: 81-87. |
郭思加. 关于宁夏草地类型若干问题的商榷. 宁夏农学院学报, 1985, 1: 81-87. | |
3 | Zhao Y, Yu Z. Grassland monitoring of Ningxia. Yingchuan: Sunshine Press, 2016. |
赵勇, 于钊. 宁夏草原监测. 银川: 阳光出版社, 2016. | |
4 | Wagg C, Jansa J, Schmid B, et al. Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecology Letters, 2011, 14(10): 1001-1009. |
5 | Johnson N C, Rowland D L, Corkidi L, et al. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology, 2003, 84(7): 1895-1908. |
6 | Krüger C, Kohout P, Janoušková M, et al. Plant communities rather than soil properties structure arbuscular mycorrhizal fungal communities along primary succession on a mine spoil. Frontiers in Microbiology, 2017, 8: 1-16. |
7 | Zhou W P, Xiang D, Hu Y J, et al. Influences of long-term enclosure on the restoration of plant and AM fungal communities on grassland under different grazing intensities. Acta Ecologica Sinica, 2013, 33(11): 3383-3393. |
周文萍, 向丹, 胡亚军, 等. 长期围封对不同放牧强度下草地植物和AM真菌群落恢复的影响. 生态学报, 2013, 33(11): 3383-3393. | |
8 | Stovera H J, Anne N M, Katja B B. Soil disturbance changes arbuscular mycorrhizal fungi richness and composition in a fescue grassland in Alberta Canada. Applied Soil Ecology, 2018, 131: 29-37. |
9 | Zubek S, Majewska M, Błaszkowski J, et al. Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils. Biology and Fertility of Soils, 2016, 52: 879-893. |
10 | Zhang T, Sun Y, Shi Z Y, et al. Arbuscular mycorrhizal fungi can accelerate the restoration of degraded spring grassland in central Asia. Rangeland Ecology and Management, 2012, 65(4): 426-432. |
11 | Řezáčová V, Slavíková R, Konvalinková T, et al. Geography and habitat predominate over climate influences on arbuscular mycorrhizal fungal communities of mid-European meadows. Mycorrhiza, 2019, 29(6): 567-579. |
12 | Torrecillas E, Alguacil M D M, Roldán A, et al. Modularity reveals a tendency of arbuscular mycorrhizal fungi to interact difffferently with generalist and specialist plant species in gypsum soils. Applied and Environmental Microbiology, 2014, 80(17): 5457-5466. |
13 | Van G M, Jacquemyn H, Plue J, et al. Abiotic rather than biotic fifiltering shapes the arbuscular mycorrhizal fungal communities of European seminatural grasslands. New Phytologist, 2018, 220(4): 1262-1272. |
14 | Klichowska E, Nobis M, Piszczek P, et al. Soil properties rather than topography, climatic conditions, and vegetation type shape AMF-feathergrass relationship in semi-natural European grasslands. Applied Soil Ecology, 2019, 144: 22-30. |
15 | Torrecillas E, Torres P, Alguacil M M, et al. Influence of habitat and climate variables on arbuscular mycorrhizal fungus community distribution, as revealed by a case study of facultative plant epiphytism under semiarid conditions. Environmental Microbiology, 2013, 79(23): 7203-7237. |
16 | He D, Xiang X, He J, et al. Composition of the soil fungal community is more sensitive to phosphorus than nitrogen addition in the alpine meadow on the Qinghai-Tibetan Plateau. Biology and Fertility of Soils, 2016, 52(8): 1059-1072. |
17 | Guan H L, Fan J W, Li Y Z. The impact of different introduced artificial grassland species combinations on community biomass and specie sdiversity in temperate steppe of the Qinghai-Tibetan Plateau.Acta Pratacultume Sinica, 2019, 28(9): 192-201. |
官惠玲, 樊江文, 李愈哲.不同人工草地对青藏高原温性草原群落生物量组成及物种多样性的影响. 草业学报, 2019, 28(9): 192-201. | |
18 | Xu H P, Yu C, Shu C C, et al. The effeet of plateau pika disturbance on plant community diversity and stability in an alpine meadow. Acta Prataculturne Sinica, 2019, 28(5): 90-99. |
徐海鹏, 于成, 舒朝成, 等. 高原鼠兔干扰对高寒草原植物群落多样性和稳定性的影响. 草业学报, 2019, 28(5): 90-99. | |
19 | Bao S D. Soil agrochemical analysis (The 3rd Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. | |
20 | Wei C H, Liu Y J, Ye X X, et al. Effects of intercropping potato with maize on soil and crop. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 54-64. |
魏常慧, 刘亚军, 冶秀香, 等.马铃薯/玉米间作栽培对土壤和作物的影响. 浙江大学学报(农业与生命科学版), 2017, 43(1): 54-64. | |
21 | Sato K, Suyam Y, Saito M, et al. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassland Science, 2005, 51: 179-181. |
22 | Ma K, Song L L, Wang M G, et al. Effects of maize straw returning on native arbuscular mycorrhizal fungal community structure. Chinese Journal of Applied Ecology, 2019, 30(8): 2746-2756. |
马琨, 宋丽丽, 王明国, 等.玉米秸秆还田对土壤丛枝菌根真菌群落的影响.应用生态学报, 2019, 30(8): 2746-2756. | |
23 | Mellado-Vazquez P G, Lange M, Bachmann D, et al. Plant diversity generates enhanced soil microbial access to recently photosynthesized carbon in the rhizosphere. Soil Biology and Biochemistry, 2016, 94: 122-132. |
24 | Zobel M, Opik M. Plant and arbuscular mycorrhizal fungal (AMF) communities-which drives which? Journal of Vegetation Science, 2014, 25(5): 1133-1140. |
25 | Milcu A, Christiane R, Gessler A, et al. Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes. Ecology Letters, 2014, 17(4): 435-444. |
26 | Lange M, Eisenhauer N M, Eisenhauer N, et al. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 2015, 6: 6707. |
27 | Ravenek J M, Bessler H, Engels C, et al. Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos, 2014, 123(12): 1528-1536. |
28 | Latz E, Eisenhauer N, Scheu S, et al. Plant identity drives the expression of biocontrol factors in a rhizosphere bacterium across a plant diversity gradient. Functional Ecology, 2015, 29(9): 1225-1234. |
29 | Van der Krift T A J, Kuikman P J, Moller F, et al. Plant species and nutritional-mediated control over rhizodeposition and root decomposition. Plant and Soil, 2001, 228: 191-200. |
30 | Soka G E, Ritchie M E. Arbuscular mycorrhizal spore composition and diversity associated with different land uses in a tropical savanna landscape, Tanzania. Applied Soil Ecology, 2018, 125: 222-232. |
31 | Qin H, Lu K, Strong P J, et al. Long-term fertilizer application effects on the soil, root arbuscular mycorrhizal fungi and community composition in rotation agriculture. Applied Soil Ecology, 2015, 89(5): 35-43. |
32 | Yoshimura Y, Ido A, Iwase K, et al. Communities of arbuscular mycorrhizal fungi in the roots of Pyrus pyrifolia var. culta (Japanese pear) in orchards with variable amounts of soil-available phosphorus. Microbes and Environments, 2013, 28(1): 105-111. |
33 | Lugo M A, Anton A M, Cabello M N. Arbuscular mycorrhizas in the Larrea divaricata scrubland of the arid “Chaco”, Central Argentina. Journal of Agricultural Technology, 2005, 1(1): 163-178. |
34 | Lugo M A, Ferrero M, Menoyo E, et al. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in south american puna grassland. Microbial Ecology, 2008, 55: 705-713. |
35 | Jacobson K M. Moisture and substrate stability determine VA-mycorrhizal fungal community distribution and structure in an arid grassland. Journal of Arid Environments, 1997, 35(1): 59-75. |
36 | Daniell T J, Husband R, Fitter A H, et al. Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbial Ecology, 2001, 36(2/3): 203-209. |
37 | Van Geel M, Busschaert P, Honnay O, et al. Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing. Journal of Microbiological Methods, 2014, 106: 93-100. |
38 | Davison J, Moora M, Opik M, et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science, 2015, 349: 970-973. |
39 | Li X L, Gai J P, Cai X B, et al. Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza, 2014, 24(2): 95-107. |
40 | Zangaro W, Rostirola L V, Souza P B, et al. Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in Southern Brazil. Mycorrhiza, 2013, 23(1): 221-233. |
41 | Kölbl A, Steffens M, Wiesmeier M, et al. Grazing changes topography-controlled topsoil properties and their interaction on different spatial scales in a semi-arid grassland of Inner Mongolia, P. R. China. Plant and Soil, 2011, 340 (1/2): 35-58. |
[1] | Jia-li LIU, Jian-rong FAN, Xi-yu ZHANG, Chao YANG, Fu-bao XU, Xiao-xue ZHANG, Bo LIANG. Remote sensing estimation of vegetation cover in alpine grassland in the growing and non-growing seasons [J]. Acta Prataculturae Sinica, 2021, 30(9): 15-26. |
[2] | Feng ZHANG, Jia-wei SUN, Yu SUN, Jia-hua ZHENG, Ji-rong QIAO, Meng-li ZHAO. Effects of different stocking rates on interspecific relationships among dominant species and their spatial distribution characteristics in the Stipa breviflora desert steppe [J]. Acta Prataculturae Sinica, 2021, 30(8): 1-11. |
[3] | Xin-guang YANG, Xi-lai LI, Pan-pan MA, Jing ZHANG, Wei ZHOU. Effects of fertilizer application rate on vegetation and soil restoration of coal mine spoils in an alpine mining area [J]. Acta Prataculturae Sinica, 2021, 30(8): 98-108. |
[4] | Xu-dong WU, Qi JIANG, Xiao-bin REN, Hong-qian YU, Zhan-jun WANG, Jian-long HE, Bo JI, Jian-min DU. Effects of precipitation on carbon, nitrogen and microbial characteristics of biological soil crusts in a desert steppe of Northern China [J]. Acta Prataculturae Sinica, 2021, 30(7): 34-43. |
[5] | Cui-cui TIAN, Shu-hai BU, Duo-liang ZHOU, Jian-quan LIU, Yong-xiang ZHOU, Xue-li ZHENG. A study of rodent community structure in the Annanba wild camel national nature reserve [J]. Acta Prataculturae Sinica, 2021, 30(7): 62-71. |
[6] | Xiao-ding LIN, Le CHANG, Dan FENG. Remote-sensing estimation of vegetation gross primary productivity and its spatiotemporal changes in Qinghai Province from 2000 to 2019 [J]. Acta Prataculturae Sinica, 2021, 30(6): 16-27. |
[7] | Ying MA, Zhi-hao XU, Qiao-hong ZENG, Jian-long MENG, Ya-hu HU, Jie-qiong SU. Impact of nitrogen addition on stoichiometric characteristics of herbaceous species in desert steppe [J]. Acta Prataculturae Sinica, 2021, 30(6): 64-72. |
[8] | Xue-hua PUYANG, Yue-ling WANG, Zhi-jie ZHAO, Juan HUANG, Yu YANG. Coupling relationships between vegetation and soil in different vegetation restoration models in the Loess region of Northern Shaanxi Province [J]. Acta Prataculturae Sinica, 2021, 30(5): 13-24. |
[9] | Yi-ran ZHANG, Ting-xi LIU, Xin TONG, Li-min DUAN, Yu-chen WU. Hyperspectral remote sensing inversion of meadow aboveground biomass based on an XGBoost algorithm [J]. Acta Prataculturae Sinica, 2021, 30(4): 1-12. |
[10] | Zhong-ju MENG, Yan-jie CHEN, Si-qin BAO. Characteristics of community patches under three grazing modes in Sunite Desert-steppe [J]. Acta Prataculturae Sinica, 2021, 30(4): 13-23. |
[11] | Ji-xiong GU, Tian-dou GUO, Hong-mei WANG, Xue-ying LI, Dan-ni LIANG, Qing-lian YANG, Jin-yue GAO. Responses of soil microbes across an anthropogenic transition from desert steppe grassland to shrubland in eastern Ningxia [J]. Acta Prataculturae Sinica, 2021, 30(4): 46-57. |
[12] | Chen CHEN, Chang-qing JING, Wen-yuan XING, Xiao-jin DENG, Hao-yu FU, Wen-zhang GUO. Desert grassland dynamics in the last 20 years and its response to climate change in Xinjiang [J]. Acta Prataculturae Sinica, 2021, 30(3): 1-14. |
[13] | Guang-yi LV, Xue-bao XU, Cui-ping GAO, Zhi-hui YU, Xin-ya WANG, Cheng-jie WANG. Effects of grazing on total nitrogen and stable nitrogen isotopes of plants and soil in different types of grasslands in Inner Mongolia [J]. Acta Prataculturae Sinica, 2021, 30(3): 208-214. |
[14] | Xin MA, Zhu-zhu LUO, Yao-quan ZHANG, Jia-he LIU, Yi-ning NIU, Li-qun CAI. Distribution characteristics and ecological function predictions of soil bacterial communities in rainfed alfalfa fields on the Loess Plateau [J]. Acta Prataculturae Sinica, 2021, 30(3): 54-67. |
[15] | Jia-meng DU, Gang BAO, Si-qin TONG, Xiao-jun HUANG, Wendurina, Meili, Yu-hai BAO. Variations in vegetation cover and its relationship with climate change and human activities in Mongolia during the period 1982-2015 [J]. Acta Prataculturae Sinica, 2021, 30(2): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||