Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (4): 46-57.DOI: 10.11686/cyxb2020195
Previous Articles Next Articles
Ji-xiong GU1(), Tian-dou GUO2, Hong-mei WANG1,2(), Xue-ying LI2, Dan-ni LIANG2, Qing-lian YANG2, Jin-yue GAO2
Received:
2020-04-28
Revised:
2020-08-04
Online:
2021-04-20
Published:
2021-03-16
Contact:
Hong-mei WANG
Ji-xiong GU, Tian-dou GUO, Hong-mei WANG, Xue-ying LI, Dan-ni LIANG, Qing-lian YANG, Jin-yue GAO. Responses of soil microbes across an anthropogenic transition from desert steppe grassland to shrubland in eastern Ningxia[J]. Acta Prataculturae Sinica, 2021, 30(4): 46-57.
样地 Sample site | 经纬度 Latitude and longitude | pH | 容重 Soil bulk (g·cm-3) | 灌木盖度 Shrub coverage (%) | 草本盖度 Herbage coverage (%) | 物种数 Species number | 优势植物 Dominant plant species |
---|---|---|---|---|---|---|---|
荒漠草地 Desert grassland | 107°16′24″ E 37°46′31″ N | 8.35 | 1.39 | 0 | 70 | 25 | 蒙古冰草,短花针茅,猪毛蒿,牛枝子A. mongolicum, S. breviflora, A. scoparia, L. potaninii |
草地边缘 Grassland edge | 107°16′08″ E 37°46′32″ N | 8.19 | 1.32 | 6 | 67 | 19 | 牛枝子,远志,乳浆大戟,草木樨状黄芪L. potaninii, Polygala tenuifolia, Euphorbia esula, Astragalus melilotoides |
灌丛边缘 Shrubland edge | 107°17′43″ E 37°43′59″ N | 8.34 | 1.43 | 23 | 48 | 16 | 柠条,短花针茅,远志,叉枝鸭葱C. korshinskii, S. breviflora, P. tenuifolia, Scorzoneradivaricata |
灌丛地 Shrubland | 107°17′52″ E 37°44′55″ N | 8.39 | 1.57 | 50 | 13 | 16 | 柠条,猪毛蒿,狗尾草,地锦C. korshinskii, A. scoparia, Setaria viridis, Euphorbia humifusa |
Table 1 Descriptions of study sites
样地 Sample site | 经纬度 Latitude and longitude | pH | 容重 Soil bulk (g·cm-3) | 灌木盖度 Shrub coverage (%) | 草本盖度 Herbage coverage (%) | 物种数 Species number | 优势植物 Dominant plant species |
---|---|---|---|---|---|---|---|
荒漠草地 Desert grassland | 107°16′24″ E 37°46′31″ N | 8.35 | 1.39 | 0 | 70 | 25 | 蒙古冰草,短花针茅,猪毛蒿,牛枝子A. mongolicum, S. breviflora, A. scoparia, L. potaninii |
草地边缘 Grassland edge | 107°16′08″ E 37°46′32″ N | 8.19 | 1.32 | 6 | 67 | 19 | 牛枝子,远志,乳浆大戟,草木樨状黄芪L. potaninii, Polygala tenuifolia, Euphorbia esula, Astragalus melilotoides |
灌丛边缘 Shrubland edge | 107°17′43″ E 37°43′59″ N | 8.34 | 1.43 | 23 | 48 | 16 | 柠条,短花针茅,远志,叉枝鸭葱C. korshinskii, S. breviflora, P. tenuifolia, Scorzoneradivaricata |
灌丛地 Shrubland | 107°17′52″ E 37°44′55″ N | 8.39 | 1.57 | 50 | 13 | 16 | 柠条,猪毛蒿,狗尾草,地锦C. korshinskii, A. scoparia, Setaria viridis, Euphorbia humifusa |
项目 Item | 土壤有机碳 SOC | 全碳 TC | 全氮 TN | 全磷 TP | 酸碱度 pH | 细菌 Bacteria | 真菌 Fungus |
---|---|---|---|---|---|---|---|
土壤水分SM | 0.651** | 0.911** | 0.845** | 0.595** | -0.225 | 0.014 | -0.276 |
土壤有机碳SOC | 0.607** | 0.538** | 0.542** | 0.107 | -0.156 | -0.145 | |
全碳TC | 0.794** | 0.656** | -0.228 | -0.043 | -0.272 | ||
全氮TN | 0.505* | 0.022 | 0.252 | -0.008 | |||
全磷TP | 0.008 | -0.018 | -0.098 | ||||
酸碱度pH | 0.308 | 0.338 | |||||
细菌Bacteria | 0.278 | ||||||
项目 Item | 放线菌 Actinomycetes | SMBC | SMBN | 过氧化氢酶 Catalase | 脲酶 Urease | 蔗糖酶 Sucrase | 碱性磷酸酶 Alkaline phosphatase |
土壤水分SM | 0.511* | 0.810** | 0.725** | 0.581** | 0.565** | -0.022 | 0.686** |
土壤有机碳SOC | 0.183 | 0.514* | 0.336 | 0.304 | 0.453* | -0.028 | 0.325 |
全碳TC | 0.551** | 0.773** | 0.722** | 0.549** | 0.630** | -0.015 | 0.610** |
全氮TN | 0.702** | 0.956** | 0.835** | 0.723** | 0.795** | 0.274 | 0.842** |
全磷TP | 0.399 | 0.483* | 0.363 | 0.375 | 0.572** | 0.006 | 0.317 |
酸碱度pH | 0.267 | 0.113 | -0.112 | 0.070 | 0.073 | 0.158 | -0.062 |
细菌Bacteria | 0.469* | 0.330 | 0.155 | -0.007 | 0.153 | 0.098 | 0.247 |
真菌Fungus | 0.172 | 0.081 | 0.120 | 0.348 | 0.159 | 0.765** | 0.306 |
放线菌Actinomycetes | 0.878** | 0.653** | 0.765** | 0.671** | 0.323 | 0.684** | |
SMBC | 0.814** | 0.846** | 0.799** | 0.284 | 0.892** | ||
SMBN | 0.754** | 0.666** | 0.431* | 0.733** | |||
过氧化氢酶Catalase | 0.719** | 0.439* | 0.800** | ||||
脲酶Urease | 0.275 | 0.696** |
Table 2 Correlation analysis among the various indicators
项目 Item | 土壤有机碳 SOC | 全碳 TC | 全氮 TN | 全磷 TP | 酸碱度 pH | 细菌 Bacteria | 真菌 Fungus |
---|---|---|---|---|---|---|---|
土壤水分SM | 0.651** | 0.911** | 0.845** | 0.595** | -0.225 | 0.014 | -0.276 |
土壤有机碳SOC | 0.607** | 0.538** | 0.542** | 0.107 | -0.156 | -0.145 | |
全碳TC | 0.794** | 0.656** | -0.228 | -0.043 | -0.272 | ||
全氮TN | 0.505* | 0.022 | 0.252 | -0.008 | |||
全磷TP | 0.008 | -0.018 | -0.098 | ||||
酸碱度pH | 0.308 | 0.338 | |||||
细菌Bacteria | 0.278 | ||||||
项目 Item | 放线菌 Actinomycetes | SMBC | SMBN | 过氧化氢酶 Catalase | 脲酶 Urease | 蔗糖酶 Sucrase | 碱性磷酸酶 Alkaline phosphatase |
土壤水分SM | 0.511* | 0.810** | 0.725** | 0.581** | 0.565** | -0.022 | 0.686** |
土壤有机碳SOC | 0.183 | 0.514* | 0.336 | 0.304 | 0.453* | -0.028 | 0.325 |
全碳TC | 0.551** | 0.773** | 0.722** | 0.549** | 0.630** | -0.015 | 0.610** |
全氮TN | 0.702** | 0.956** | 0.835** | 0.723** | 0.795** | 0.274 | 0.842** |
全磷TP | 0.399 | 0.483* | 0.363 | 0.375 | 0.572** | 0.006 | 0.317 |
酸碱度pH | 0.267 | 0.113 | -0.112 | 0.070 | 0.073 | 0.158 | -0.062 |
细菌Bacteria | 0.469* | 0.330 | 0.155 | -0.007 | 0.153 | 0.098 | 0.247 |
真菌Fungus | 0.172 | 0.081 | 0.120 | 0.348 | 0.159 | 0.765** | 0.306 |
放线菌Actinomycetes | 0.878** | 0.653** | 0.765** | 0.671** | 0.323 | 0.684** | |
SMBC | 0.814** | 0.846** | 0.799** | 0.284 | 0.892** | ||
SMBN | 0.754** | 0.666** | 0.431* | 0.733** | |||
过氧化氢酶Catalase | 0.719** | 0.439* | 0.800** | ||||
脲酶Urease | 0.275 | 0.696** |
1 | D"Odorico P, Okin G S, Bestelmeyer B T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology, 2012, 5(5): 520-530. |
2 | Sala O E, Maestre F T, Gibson D. Grass-woodland transitions: Determinants and consequences for ecosystem functioning and provisioning of services. Journal of Ecology, 2014, 102(6): 1357-1362. |
3 | Naito A T, Cairns D M. Patterns and processes of global shrub expansion. Progress in Physical Geography, 2011, 35(4): 423-442. |
4 | Knapp A K, Briggs J M, Collins S L, et al. Shrub encroachment in North American grasslands: Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 2008, 14(3): 615-623. |
5 | Robinson T P, Klinken R D V, Metternicht G. Spatial and temporal rates and patterns of mesquite (Prosopis species) invasion in Western Australia. Journal of Arid Environments, 2008, 72(3): 175-188. |
6 | Eldridge D J, Bowker M A, Maestre F T, et al. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecology Letters, 2011, 14(7): 709-722. |
7 | Zhou L H, Shen H H, Chen L Y, et al. Species richness and composition of shrub-encroached grasslands in relation to environmental factors in Northern China. Journal of Plant Ecology, 2017, 12(1): 56-66. |
8 | Xie G X, Luo W C, Zhao W Z. The influence of sand source and shrub on the form of shrub sand in desert steppe. Chinese Journal of Deserts, 2015, 35(3): 573-581. |
谢国勋, 罗维成, 赵文智. 荒漠草原带沙源及灌丛对灌丛沙堆形态的影响. 中国沙漠, 2015, 35(3): 573-581. | |
9 | Zhao Y N, Du Y Y, Ma Y P, et al. Soil organic carbon dynamics and prediction of their spatial changes in response to anthropogenically introduced shrub encroachment in desert steppe of Eastern Ningxia, China. Chinese Journal of Applied Ecology, 2019, 30(6): 1927-1935. |
赵亚楠, 杜艳艳, 马彦平,等. 宁夏东部荒漠草原灌丛引入过程中土壤有机碳变化及其空间格局预测. 应用生态学报, 2019, 30(6): 1927-1935. | |
10 | Wei N, Zhao L P, Tan S T, et al. Research progress of grassland shrub. Ecological Science, 2019, 38(6): 208-216. |
魏楠, 赵凌平, 谭世图, 等. 草地灌丛化研究进展. 生态科学, 2019, 38(6): 208-216. | |
11 | Gherardi L A, Sala O E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proceedings of the National Academy of Sciences, 2015, 112(41): 201506433. |
12 | Fuhrman J A. Microbial community structure and its functional implications. Nature, 2009, 459(7244): 193-199. |
13 | Chen X, Li W M, Liu Q. Research and analysis of soil microorganism at home and abroad in the past 30 years based on bibliometrics. Acta Pedologica Sinica, 2020, 839(6): 1-14. |
陈香, 李卫民, 刘勤. 基于文献计量的近30年国内外土壤微生物研究分析. 土壤学报, 2020, 839(6): 1-14. | |
14 | Fan Z Z, Wang X, Wang C, et al. Effect of nitrogen and phosphorus addition on soil enzyme activities: A meta-analysis. Journal of Applied Ecology, 2018, 29(4): 1266-1272. |
15 | Nicolitch O, Colin Y, Turpault M P, et al. Soil type determines the distribution of nutrient mobilizing bacterial communities in the rhizosphere of beech trees. Soil Biology and Biochemistry, 2016, 103: 429-445. |
16 | Zheng T T, Chao L, Xie H T, et al. Rhizosphere effects on soil microbial community structure and enzyme activity in a successional subtropical forest. FEMS Microbiology Ecology, 2019, 95(5): 1-9. |
17 | Li H, Zhang J, Hu H, et al. Shift in soil microbial communities with shrub encroachment in Inner Mongolia grasslands, China. European Journal of Soil Biology, 2017, 79: 40-47. |
18 | Wei Y L, Cao W X, Li J H, et al. PLFA analysis of soil microbial community structure in different grazing and enclosed alpine shrub grassland. Journal of Ecology, 2018, 38(13): 4897-4908. |
韦应莉, 曹文侠, 李建宏, 等. 不同放牧与围封高寒灌丛草地土壤微生物群落结构PLFA分析. 生态学报, 2018, 38(13): 4897-4908. | |
19 | Bao S D. Analysis of chemical soil (the third edtion). Beijing: China Agricultural Publishing Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
20 | Xu G H. Handbook of soil microbial analysis methods. Beijing: Agricultural Publishing Press, 1986. |
许光辉. 土壤微生物分析方法手册. 北京: 农业出版社, 1986. | |
21 | Guan S Y. Soil enzyme and its research method. Beijing: Agricultural Publishing Press, 1986. |
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. | |
22 | Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 1987, 19(6): 703-707. |
23 | Gonzalez-Polo M, Austin A T. Spatial heterogeneity provides organic matter refuges for soil microbial activity in the Patagonian steppe, Argentina. Soil Biology and Biochemistry, 2009, 41(6): 1348-1351. |
24 | Marusenko Y, Huber D P, Hall S J. Fungi mediate nitrous oxide production but not ammonia oxidation in aridland soils of the southwestern US. Soil Biology and Biochemistry, 2013, 63: 24-36. |
25 | Ladwig L M, Sinsabaugh R L, Collins S L, et al. Soil enzyme responses to varying rainfall regimes in Chihuahuan Desert soils. Ecosphere, 2015, 6(3): 1-10. |
26 | Wainwright J, Parsons A J, Abrahams A D. Plot-scale studies of vegetation, overland flow and erosion interactions: Case studies from Arizona and New Mexico. Hydrological Processes, 2000, 14(16/17): 2921-2943. |
27 | Xu Z J, Luo M, Wang W X, et al. Diversity analysis of nitrogen fixing bacteria and nitrogenase gene nifH in 3 typical desert shrubs. Chinese Journal of Deserts, 2014, 34(2): 472-480. |
徐正金, 罗明, 王卫霞,等. 3种典型荒漠灌木内生固氮菌及固氮酶基因nifH多样性分析. 中国沙漠, 2014, 34(2): 472-480. | |
28 | Li M, Yao Q Z, Wei J, et al. Progress in the study of hyphomycetes. Journal of Edible Fungi, 2018, 25(3): 86-95. |
李敏, 姚庆智, 魏杰, 等. 丝膜菌属真菌研究进展. 食用菌学报, 2018, 25(3): 86-95. | |
29 | Wang F, Tolgor B A U. Progress in the study of soil fungal diversity. Bacteriological Study, 2014, 12(3): 178-186. |
王芳, 图力古尔. 土壤真菌多样性研究进展. 菌物研究, 2014, 12(3): 178-186. | |
30 | Bates S T, Garcia-Pichel F. A culture-independent study of free-living fungi in biological soil crusts of the Colorado Plateau: Their diversity and relative contribution to microbial biomass. Environmental Microbiology, 2009, 11(1): 56-67. |
31 | Heijden M G A V D, Bardgett R D, Straalen N M V. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11(3): 296-310. |
32 | Mueller R C, JayneBelnap, Kuske Cheryl R. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland. Frontiers in Microbiology, 2015, 6: 891. |
33 | Yan N, Marschner P, Cao W, et al. Influence of salinity and water content on soil microorganisms. International Soil & Water Conservation Research, 2015, 3(4): 316-323. |
34 | Wang J S. Effect of litter on microbial community of Songnen grassland under the background of nitrogen deposition. Changchun: Northeast Normal University, 2018. |
王金双. 氮沉降背景下枯落物对松嫩草地微生物群落的作用. 长春: 东北师范大学, 2018. | |
35 | Xiang X, Gibbons S M, Li H, et al. Shrub encroachment is associated with changes in soil bacterial community composition in a temperate grassland ecosystem. Plant & Soil, 2018, 425(1): 1-13. |
36 | Smith S D, Huxman T E, Zitzer S F. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature, 2000, 408: 79-82. |
37 | Turpin-Jelfs T, Michaelides K, Biederman J A, et al. Soil nitrogen response to shrub encroachment in a degrading semi-arid grassland. Biogeosciences, 2019, 16(2): 369-381. |
38 | Collins C G, Carey C J, Aronson E L, et al. Direct and indirect effects of native range expansion on soil microbial community structure and function. Journal of Ecology, 2016, 104(5): 1271-1283. |
39 | Liao J D, Boutton T W. Soil microbial biomass response to woody plant invasion of grassland. Soil Biology & Biochemistry, 2008, 40(5): 1207-1216. |
40 | Pointing S B, Belnap J. Microbial colonization and controls in dryland systems. Nature Reviews Microbiology, 2012, 10(8): 551-562. |
41 | Collins S L, Belnap J, Grimm N B, et al. A multiscale, hierachical model of pulse dynamics in arid land ecosystems. Annual Review of Ecology Evolution & Systematics, 2013, 45(1): 397-419. |
42 | Li Y L, Chen J, Cui J Y, et al. Nutrient resorption in Caragana microphylla along a chronosequence of plantations: Implications for desertified land restoration in North China. Ecological Engineering, 2013, 53: 299-305. |
43 | Li X Y, Zhang S Y, Peng H Y, et al. Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of North China. Agricultural & Forest Meteorology, 2013(171/172): 20-30. |
44 | Parizek B, Rostagno C M, Sottini R. Soil erosion as affected by shrub encroachment in Northeastern Patagonia. Journal of Range Management, 2002, 55(1): 43-48. |
45 | Moorhead D L, Sinsabaugh R L. Simulated patterns of litter decay predict patterns of extracellular enzyme activities. Applied Soil Ecology, 2000, 14(1): 71-79. |
46 | Mikutta R, Kleber M, Torn M S, et al. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance. Biogeochemistry, 2006, 77(1): 25-56. |
47 | Moorhead D L, Lashermes G, Sinsabaugh R L. A theoretical model of C- and N-acquiring exoenzyme activities, which balances microbial demands during decomposition. Soil Biology and Biochemistry, 2012, 53: 133-141. |
48 | Vargas R, Collins S L, Thomey M L, et al. Precipitation variability and fire influence the temporal dynamics of soil CO2 efflux in an arid grassland. Global Change Biology, 2012, 18(4): 1401-1411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||