Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (2): 131-139.DOI: 10.11686/cyxb2022065
Tao ZHANG(), Ying-yu MU, Wang-pan QI, Ji-you ZHANG, Sheng-yong MAO()
Received:
2022-02-14
Revised:
2022-04-20
Online:
2023-02-20
Published:
2022-12-01
Contact:
Sheng-yong MAO
Tao ZHANG, Ying-yu MU, Wang-pan QI, Ji-you ZHANG, Sheng-yong MAO. Comparison of rumen epithelium morphology and function in dairy cows with differences in susceptibility for subacute ruminal acidosis[J]. Acta Prataculturae Sinica, 2023, 32(2): 131-139.
基因名称 Gene name | 引物片段 Primer sequence (5’-3’) | 基因登录号 Gene ID |
---|---|---|
甘油醛-3-磷酸脱氢酶 GAPDH | F: TGCCGCCTGGAGAAACC; R: CGCCTGCTTCACCACCTT | NM_001034034 |
钠-氢离子交换蛋白1 NHE1 | F: GAAAGACAAGCTCAACCGGTTT; R: GGAGCGCTCACCGGCTAT | NM_174833 |
钠-氢离子交换蛋白2 NHE2 | F: TTGTGCGATGACCATGAATAAGT; R: TGATGGTCGTGTAGGATTTCTGA | XM_604493 |
钠-氢离子交换蛋白3 NHE3 | F: AGCCTTCGTGCTCCTGACA; R: TGACCCCTATGGCCCTGTAC | AJ131764.1 |
氢离子ATP酶 vH + ATPase | F: TTTTATTGAACAAGAAGCCAATGA; R: GATTCATCAAATTGGACATCTGAA | NM_001076798 |
钠/钾离子ATP酶 Na+/K+ ATPase | F: CATCTTCCTCATCGGCATCA; R: ACGGTGGCCAGCAAACC | NM_001076798 |
钠/氢离子逆转运体 Na+/H+ antiporter | F: GAAAGACAAGCTCAACCGGTTT; R: GGAGCGCTCACCGGCTAT | U49432 |
G蛋白偶联受体41 GPR41 | F: TTCCTCTCCTGCCTCTACACCATC; R: GCCGCTGCCAGGTTGATGAAG | NM_005304 |
G蛋白偶联受体43 GPR43 | F: CCACAGACTGAACCAGACCA; R: CCAGGAACATCCCTAGTCCA | NP_001157256.1 |
单羧酸转运蛋白1 MCT1 | F: CGCGGGATTCTTTGGATTT; R: GTCCATCAGCGTTTCAAACAGTAC | NM_001037319 |
氨基酸转运蛋白 1 PAT1 | F: GGGCACTTCTTCGATGCTTCT; R: GTCGTGGACCGAGGCAAA | BC_123616 |
腺瘤下调蛋白 DRA | F: TGCACAAAGGGCCAAGAAA; R: GCTGGCAACCAAGATGCTATG | NM_001083676.1 |
单羧酸转运蛋白4 MCT4 | F: ATCTACGCGGGATTCTTTGGAT; R: AAGGTCCATCAGCGTTTCAAAC | NM_001109980 |
阴离子交换蛋白2 AE2 | F: AGCAGCAACAACCTGGAGT; R: GGTGAAACGGGAGACGAA | NM_001205664.1 |
酰基辅酶A合成酶 Acyl-CoA synthetase | F: CCGATCAGGTCCTGGTAGTGA; R: GCCTCCGCATGACTTTTCC | BC114698.1 |
丙酰基辅酶A羧化酶 Propionyl-CoA carboxylase | F: AGAATGGAAGATGCCCTGGAT; R: CCTCTCGAAGCAATGCGATAT | BC123876 |
丁酰基辅酶A合成酶 Butyrl-CoA synthetase | F: ACCCTTTGACATTCAGATCATTGAT; R: CCAATGTTTCCTTCCGTGTTG | BC109602 |
乳酸脱氢酶a LDHa | F: CCAACCCAGTGGATATTCTCACA; R: TCACACGGTGCTTGGGTAATC | BC142006 |
丙酮酸脱氢酶1 PDHA1 | F: CAGTTTGCTACTGCTGATCCTGAA; R: AGGTGGATCGTTGCAGTAAATGT | NM_001101046 |
三羟基三甲基辅酶A合成酶1 HMGCS-1 | F: AGGATACTCATCACTTGGCCAACT; R: CATGTTCCTTCGAAGAGGGAAT | AY581197 |
三羟基三甲基辅酶A合成酶2 HMGCS-2 | F: CCT GCTGCAATCACTGTCATG; R: TCTGTCCCGCCACCTCTTC | NM_001045883 |
3羟甲基3甲基戊二酰辅酶A裂合酶 HMGCL-2 | F: TGCAGATGGGAGTGAGTGTCA; R: GACGCCCCCTGTGCATAG | NM_001075132 |
胆固醇调节元件结合蛋白1 SREBP1 | F: CCAGCTGACAGCTCCATTGA; R: TGCGCGCCACAAGGA | NM_001113302.1 |
胆固醇调节元件结合蛋白2 SREBP2 | F: CTGGCTCCAGGGAGATGAC; R: GCTCTGCAGGTGTGGAAGAC | XM_002687950.1 |
3-羟基丁酸脱氢酶1 BDH1 | F: GACTGCCACCACTCCCTACAC; R: TCCGCAGCCACCAGTAGTAGT | NM_001034600 |
周期蛋白依赖性激酶2 CDK 2 | F: CTCACTGATCTTGTCTGGTT; R: TAAGCAACGACTAAGAGGAG | NM_001014934 |
周期蛋白依赖性激酶4 CDK 4 | F: ACTCTGGTATCGTGCTCCAGAAG; R: CAGAAGAGAGGCTTTCGACGAA | NM_001037594 |
周期蛋白依赖性激酶6 CDK 6 | F: TTCGTGGAAGTTCAGATGTC; R: TGCCTTGTTCATCAATGTCT | NM_001192301 |
细胞周期蛋白E1 Cyclin E1 | F: TTGACAGGACTGTGAGAAGC; R: TTCAGTACAGGCAGTGGCGA | XM_612960 |
细胞周期蛋白D1 Cyclin D1 | F: GCACTTCCTCTCCAAGATGC; R: GTCAGGCGGTGATAGGAGAG | NM_001046273 |
B淋巴细胞瘤-2基因相关启动子 Bad | F: GCAGGCCTTATGCAAAACGA; R: CTTTGGGTCAGACCTCAGTCTTC | BC 103323.1 |
B淋巴细胞瘤-2基因关联蛋白 Bax | F: GCTGTGGACACAGACTCTC; R: CTGATCAACTGGGCACCTT | NM_173894.1 |
B淋巴细胞瘤-2基因 Bcl-2 | F: AGGTTGGTAACCGGACCCTA; R: TTCCTGCCTGTCCTCGAATG | NM_001075417-2 |
半胱氨酸蛋白酶3 Caspase-3 | F: CAGCGTCGTAGCTGAACGTAA; R: ATCGACAGGCCATGCCAGTAT | NM_001077840.1 |
半胱氨酸蛋白酶9 Caspase-9 | F: AGCAAATGGTCCAGGCTTTG; R: ATTCTCTCGACGGACACAGG | NM_001205504.1 |
Table 1 The primer sequences of rumen epithelium cell for qRT-PCR
基因名称 Gene name | 引物片段 Primer sequence (5’-3’) | 基因登录号 Gene ID |
---|---|---|
甘油醛-3-磷酸脱氢酶 GAPDH | F: TGCCGCCTGGAGAAACC; R: CGCCTGCTTCACCACCTT | NM_001034034 |
钠-氢离子交换蛋白1 NHE1 | F: GAAAGACAAGCTCAACCGGTTT; R: GGAGCGCTCACCGGCTAT | NM_174833 |
钠-氢离子交换蛋白2 NHE2 | F: TTGTGCGATGACCATGAATAAGT; R: TGATGGTCGTGTAGGATTTCTGA | XM_604493 |
钠-氢离子交换蛋白3 NHE3 | F: AGCCTTCGTGCTCCTGACA; R: TGACCCCTATGGCCCTGTAC | AJ131764.1 |
氢离子ATP酶 vH + ATPase | F: TTTTATTGAACAAGAAGCCAATGA; R: GATTCATCAAATTGGACATCTGAA | NM_001076798 |
钠/钾离子ATP酶 Na+/K+ ATPase | F: CATCTTCCTCATCGGCATCA; R: ACGGTGGCCAGCAAACC | NM_001076798 |
钠/氢离子逆转运体 Na+/H+ antiporter | F: GAAAGACAAGCTCAACCGGTTT; R: GGAGCGCTCACCGGCTAT | U49432 |
G蛋白偶联受体41 GPR41 | F: TTCCTCTCCTGCCTCTACACCATC; R: GCCGCTGCCAGGTTGATGAAG | NM_005304 |
G蛋白偶联受体43 GPR43 | F: CCACAGACTGAACCAGACCA; R: CCAGGAACATCCCTAGTCCA | NP_001157256.1 |
单羧酸转运蛋白1 MCT1 | F: CGCGGGATTCTTTGGATTT; R: GTCCATCAGCGTTTCAAACAGTAC | NM_001037319 |
氨基酸转运蛋白 1 PAT1 | F: GGGCACTTCTTCGATGCTTCT; R: GTCGTGGACCGAGGCAAA | BC_123616 |
腺瘤下调蛋白 DRA | F: TGCACAAAGGGCCAAGAAA; R: GCTGGCAACCAAGATGCTATG | NM_001083676.1 |
单羧酸转运蛋白4 MCT4 | F: ATCTACGCGGGATTCTTTGGAT; R: AAGGTCCATCAGCGTTTCAAAC | NM_001109980 |
阴离子交换蛋白2 AE2 | F: AGCAGCAACAACCTGGAGT; R: GGTGAAACGGGAGACGAA | NM_001205664.1 |
酰基辅酶A合成酶 Acyl-CoA synthetase | F: CCGATCAGGTCCTGGTAGTGA; R: GCCTCCGCATGACTTTTCC | BC114698.1 |
丙酰基辅酶A羧化酶 Propionyl-CoA carboxylase | F: AGAATGGAAGATGCCCTGGAT; R: CCTCTCGAAGCAATGCGATAT | BC123876 |
丁酰基辅酶A合成酶 Butyrl-CoA synthetase | F: ACCCTTTGACATTCAGATCATTGAT; R: CCAATGTTTCCTTCCGTGTTG | BC109602 |
乳酸脱氢酶a LDHa | F: CCAACCCAGTGGATATTCTCACA; R: TCACACGGTGCTTGGGTAATC | BC142006 |
丙酮酸脱氢酶1 PDHA1 | F: CAGTTTGCTACTGCTGATCCTGAA; R: AGGTGGATCGTTGCAGTAAATGT | NM_001101046 |
三羟基三甲基辅酶A合成酶1 HMGCS-1 | F: AGGATACTCATCACTTGGCCAACT; R: CATGTTCCTTCGAAGAGGGAAT | AY581197 |
三羟基三甲基辅酶A合成酶2 HMGCS-2 | F: CCT GCTGCAATCACTGTCATG; R: TCTGTCCCGCCACCTCTTC | NM_001045883 |
3羟甲基3甲基戊二酰辅酶A裂合酶 HMGCL-2 | F: TGCAGATGGGAGTGAGTGTCA; R: GACGCCCCCTGTGCATAG | NM_001075132 |
胆固醇调节元件结合蛋白1 SREBP1 | F: CCAGCTGACAGCTCCATTGA; R: TGCGCGCCACAAGGA | NM_001113302.1 |
胆固醇调节元件结合蛋白2 SREBP2 | F: CTGGCTCCAGGGAGATGAC; R: GCTCTGCAGGTGTGGAAGAC | XM_002687950.1 |
3-羟基丁酸脱氢酶1 BDH1 | F: GACTGCCACCACTCCCTACAC; R: TCCGCAGCCACCAGTAGTAGT | NM_001034600 |
周期蛋白依赖性激酶2 CDK 2 | F: CTCACTGATCTTGTCTGGTT; R: TAAGCAACGACTAAGAGGAG | NM_001014934 |
周期蛋白依赖性激酶4 CDK 4 | F: ACTCTGGTATCGTGCTCCAGAAG; R: CAGAAGAGAGGCTTTCGACGAA | NM_001037594 |
周期蛋白依赖性激酶6 CDK 6 | F: TTCGTGGAAGTTCAGATGTC; R: TGCCTTGTTCATCAATGTCT | NM_001192301 |
细胞周期蛋白E1 Cyclin E1 | F: TTGACAGGACTGTGAGAAGC; R: TTCAGTACAGGCAGTGGCGA | XM_612960 |
细胞周期蛋白D1 Cyclin D1 | F: GCACTTCCTCTCCAAGATGC; R: GTCAGGCGGTGATAGGAGAG | NM_001046273 |
B淋巴细胞瘤-2基因相关启动子 Bad | F: GCAGGCCTTATGCAAAACGA; R: CTTTGGGTCAGACCTCAGTCTTC | BC 103323.1 |
B淋巴细胞瘤-2基因关联蛋白 Bax | F: GCTGTGGACACAGACTCTC; R: CTGATCAACTGGGCACCTT | NM_173894.1 |
B淋巴细胞瘤-2基因 Bcl-2 | F: AGGTTGGTAACCGGACCCTA; R: TTCCTGCCTGTCCTCGAATG | NM_001075417-2 |
半胱氨酸蛋白酶3 Caspase-3 | F: CAGCGTCGTAGCTGAACGTAA; R: ATCGACAGGCCATGCCAGTAT | NM_001077840.1 |
半胱氨酸蛋白酶9 Caspase-9 | F: AGCAAATGGTCCAGGCTTTG; R: ATTCTCTCGACGGACACAGG | NM_001205504.1 |
项目 Item | 均值Mean | 标准误差 SEM | P 值 P value | |
---|---|---|---|---|
易感组SUS | 耐受组TOL | |||
角质层 Corneum | 20.19 | 19.24 | 1.64 | 0.568 |
颗粒层 Stratum | 15.23 | 14.42 | 0.88 | 0.360 |
棘突层和基底层 Spinous and basale | 137.04 | 93.13 | 11.06 | 0.001 |
总厚度 Total thickness | 172.46 | 126.79 | 12.60 | 0.001 |
Table 2 The changes in rumen epithelial thickness between the SUS (susceptible) and TOL (tolerant) groups (μm)
项目 Item | 均值Mean | 标准误差 SEM | P 值 P value | |
---|---|---|---|---|
易感组SUS | 耐受组TOL | |||
角质层 Corneum | 20.19 | 19.24 | 1.64 | 0.568 |
颗粒层 Stratum | 15.23 | 14.42 | 0.88 | 0.360 |
棘突层和基底层 Spinous and basale | 137.04 | 93.13 | 11.06 | 0.001 |
总厚度 Total thickness | 172.46 | 126.79 | 12.60 | 0.001 |
1 | Wang H R. Mechanism analysis and nutritional strategies for prevention of sub-acute ruminal acidosis in ruminants. Chinese Journal of Animal Nutrition, 2014, 26(10): 3140-3148. |
王洪荣. 反刍动物瘤胃酸中毒机制解析及其营养调控措施. 动物营养学报, 2014, 26(10): 3140-3148. | |
2 | Oetzel G R. Diagnosis and management of subacute ruminal acidosis in dairy herds. Veterinary Clinics of North America: Food Animal Practice, 2017, 33(3): 463-480. |
3 | Plaizier J C, Li S, Danscher A M, et al. Changes in microbiota in rumen digesta and feces due to a grain-based subacute ruminal acidosis (SARA) challenge. Microbial Ecology, 2017, 74(2): 485-495. |
4 | Plaizier J C, Li S, Tun H M, et al. Nutritional models of experimentally-induced subacute ruminal acidosis (SARA) differ in their impact on rumen and hindgut bacterial communities in dairy cows. Frontiers in Microbiology, 2016, 7: 2128. |
5 | Pourazad P, Khiaosa-Ard R, Qumar M, et al. Transient feeding of a concentrate-rich diet increases the severity of subacute ruminal acidosis in dairy cattle. Journal of Animal Science, 2016, 94(2): 726-738. |
6 | Humer E, Ghareeb K, Harder H, et al. Peripartal changes in reticuloruminal pH and temperature in dairy cows differing in the susceptibility to subacute rumen acidosis. Journal of Dairy Science, 2015, 98(12): 8788-8799. |
7 | Jing L, Dewanckele L, Vlaeminck B, et al. Susceptibility of dairy cows to subacute ruminal acidosis is reflected in milk fatty acid proportions, with C18:1 trans-10 as primary and C15:0 and C18:1 trans-11 as secondary indicators. Journal of Dairy Science, 2018, 101(11): 9827-9840. |
8 | Khiaosa-ard R, Pourazad P, Aditya S, et al. Factors related to variation in the susceptibility to subacute ruminal acidosis in early lactating Simmental cows fed the same grain-rich diet. Animal Feed Science and Technology, 2018, 238: 111-122. |
9 | Yan L, Zhang B, Shen Z. Dietary modulation of the expression of genes involved in short-chain fatty acid absorption in the rumen epithelium is related to short-chain fatty acid concentration and pH in the rumen of goats. Journal of Dairy Science, 2014, 97(9): 5668-5675. |
10 | Gao X, Oba M. Characteristics of dairy cows with a greater or lower risk of subacute ruminal acidosis: Volatile fatty acid absorption, rumen digestion, and expression of genes in rumen epithelial cells. Journal of Dairy Science, 2016, 99(11): 8733-8745. |
11 | Zhang T, Mu Y Y, Qi W P, et al. Analysis of plasma and milk fatty acid and metabolite composition in lactating dairy cows with differing tolerance to subacute ruminal acidosis. Acta Prataculturae Sinica, 2021, 30(7): 101-110. |
张涛, 牟英玉, 亓王盼,等. 亚急性瘤胃酸中毒耐受性不同的奶牛血浆和乳中脂肪酸及代谢物组成分析. 草业学报, 2021, 30(7): 101-110. | |
12 | Steele M A, Croom J, Kahler M, et al. Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2011, 300(6): 1515-1523. |
13 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods, 2001, 25(4): 402-408. |
14 | Zhang T, Mu Y Y, Zhang R Y, et al. Responsive changes of rumen microbiome and metabolome in dairy cows with different susceptibility to subacute ruminal acidosis. Animal Nutrition, 2021, 8(1): 331-340. |
15 | Zhao C X, Liu G W, Li X B, et al. Inflammatory mechanism of rumenitis in dairy cows with subacute ruminal acidosis. BMC Veterinary Research, 2018, 14(1): 135-143. |
16 | Humer E, Aditya S, Zebeli Q. Innate immunity and metabolomic responses in dairy cows challenged intramammarily with lipopolysaccharide after subacute ruminal acidosis. Animal, 2018, 12(12): 2551-2560. |
17 | Penner G B, Aschenbach J R, Gabel G, et al. Epithelial capacity for apical uptake of short chain fatty acids is a key determinant for intraruminal pH and the susceptibility to subacute ruminal acidosis in sheep. Journal of Nutrition, 2009, 139(9): 1714-1720. |
18 | Gao X, Oba M. Relationship of severity of subacute ruminal acidosis to rumen fermentation, chewing activities, sorting behavior, and milk production in lactating dairy cows fed a high-grain diet. Journal of Dairy Science, 2014, 97(5): 3006-3016. |
19 | Nasrollahi S M, Zali A, Ghorbani G R, et al. Variability in susceptibility to acidosis among high producing mid-lactation dairy cows is associated with rumen pH, fermentation, feed intake, sorting activity, and milk fat percentage. Animal Feed Science and Technology, 2017, 228: 72-82. |
20 | Graham C, Simmons N L. Functional organization of the bovine rumen epithelium. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2005, 288(1): 173-181. |
21 | Gao J, Qi Z L. Absorption and metabolism of short chain fatty acids in ruminal epithelium. Chinese Journal of Animal Nutrition, 2018, 30(4): 1271-1278. |
高景, 齐智利. 瘤胃上皮短链脂肪酸的吸收和代谢. 动物营养学报, 2018, 30(4): 1271-1278. | |
22 | Petri R M, Wetzels S U, Qumar M, et al. Adaptive responses in short-chain fatty acid absorption, gene expression, and bacterial community of the bovine rumen epithelium recovered from a continuous or transient high-grain feeding. Journal of Dairy Science, 2019, 102(6): 5361-5378. |
23 | Mirzaei-Alamouti H, Moradi S, Shahalizadeh Z, et al. Both monensin and plant extract alter ruminal fermentation in sheep but only monensin affects the expression of genes involved in acid-base transport of the ruminal epithelium. Animal Feed Science and Technology, 2016, 219: 132-143. |
24 | Graham C, Gatherar I, Haslam I, et al. Expression and localization of monocarboxylate transporters and sodium/proton exchangers in bovine rumen epithelium. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2007, 292(2): 997-1007. |
25 | Schurmann B. Functional adaptation of the ruminal epithelium. Saskatioon: University of Saskatchewan, 2013. |
26 | Sehested J, Diernaes L, Moller P D, et al. Ruminal transport and metabolism of short-chain fatty acids (SCFA) in vitro: Effect of SCFA chain length and pH. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 1999, 123(4): 359-368. |
27 | Ash R, Baird G D. Activation of volatile fatty acids in bovine liver and rumen epithelium. Evidence for control by autoregulation. Biochemical Journal, 1973, 136(2): 311-319. |
28 | Martinez-Outschoorn U E, Lin Z, Whitaker-Menezes D, et al. Ketone bodies and two-compartment tumor metabolism: Stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle, 2012, 11(21): 3956-3963. |
[1] | Shi-ping SU, Xiao-e LIU, Jie XI. Physiological response of Viola tricolor to NaCl stress [J]. Acta Prataculturae Sinica, 2022, 31(8): 90-98. |
[2] | Xing-yun YANG, Dan-dan QIAO, Ya-jie ZHANG, Shao-qing WANG, Jun-cai REN, Ming-yang LI, Ming-hao QU, Pan-pan SHANG, Cheng YANG, Lin-kai HUANG, Bing ZENG. A differential gene expression analysis of miRNA in Dactylis glomerata in response to flooding stress [J]. Acta Prataculturae Sinica, 2022, 31(6): 150-162. |
[3] | Hong-wei LI, Qi ZHENG, Bin LI, Mao-lin ZHAO, Zhen-sheng LI. Progress in research on tall wheatgrass as a salt-alkali tolerant forage grass [J]. Acta Prataculturae Sinica, 2022, 31(5): 190-199. |
[4] | Chun-jiao YANG, Yu-zhen HAN, Zhong-kui LI, Da-cai ZHANG, Hong-bin WANG, Hong-lin LI. Responses of root vessel anatomical structures to drought exposure for two Kobresia species in an alpine meadow habitat in Southeast Tibet [J]. Acta Prataculturae Sinica, 2022, 31(2): 76-87. |
[5] | Tao LIN, Li-jiao ZHANG, Rong-rong HAN, Yong-xiong YU, Cao-de JIANG. Effects of the Gm4CL2 gene on aluminum tolerance of Arabidopsis and alfalfa [J]. Acta Prataculturae Sinica, 2022, 31(10): 122-134. |
[6] | Hai-feng HE, Na WU, Ji-li LIU, Xing XU. Effects of phosphorus application on the growth and salt resistance of switchgrass under saline alkali conditions [J]. Acta Prataculturae Sinica, 2022, 31(10): 64-74. |
[7] | Xin-tong ZHAO, Xiao-dong CHEN, Zi-ji LI, Ju-ming ZHANG, Tian-zeng LIU. An evaluation of the effects of the plant endophyte Enterobacter on the salt tolerance of bermudagrass [J]. Acta Prataculturae Sinica, 2021, 30(9): 127-136. |
[8] | Chuan-qi WANG, Wen-hui LIU, Yong-chao ZHANG, Qing-ping ZHOU. Studies on drought tolerance of wild Elymus sibiricus at the seedling stage [J]. Acta Prataculturae Sinica, 2021, 30(8): 127-136. |
[9] | Tao ZHANG, Ying-yu MU, Wang-pan QI, Chang-zheng GUO, Ji-you ZHANG, Sheng-yong MAO. Analysis of plasma and milk fatty acid and metabolite composition in lactating dairy cows with differing tolerance to subacute ruminal acidosis [J]. Acta Prataculturae Sinica, 2021, 30(7): 101-110. |
[10] | Wang-pan QI, Ying-yu MU, Tao ZHANG, Ji-you ZHANG, Sheng-yong MAO. Plasma biochemical indexes and metabolomics profile changes of dairy cows with subacute ruminal acidosis [J]. Acta Prataculturae Sinica, 2021, 30(6): 141-150. |
[11] | Ye WANG, Hui-ping CHEN, Run-zhi LI, Zhen PENG, Xi-feng FAN, Ju-ying WU, Liu-sheng DUAN. A micropropagation system for Miscanthus×giganteus based on axillary buds and evaluation of its salt tolerance [J]. Acta Prataculturae Sinica, 2021, 30(6): 214-220. |
[12] | Ya-qi CHEN, Kai-qi SU, Tai-xiang CHEN, Chun-jie LI. Effects of complex saline-alkali stress on seed germination and seedling physiological characteristics of Achnatherum inebrians [J]. Acta Prataculturae Sinica, 2021, 30(3): 137-157. |
[13] | He-shan ZHANG, Qiu GAO, Ting-ting ZHANG, Jiao-yun LU, Hong TIAN, Jun-bo XIONG, Yang LIU. Comprehensive evaluation of copper tolerance of 30 germplasm resources of red clover (Trifolium pratense) [J]. Acta Prataculturae Sinica, 2021, 30(12): 117-128. |
[14] | Ru-yue WANG, Wu-wu WEN, En-hua ZHAO, Peng ZHOU, Yuan AN. Cloning and salt-tolerance analysis of MsWRKY11 in alfalfa [J]. Acta Prataculturae Sinica, 2021, 30(11): 157-169. |
[15] | Qian LI, Xiao-xia LI, Li-qin CHENG, Shuang-yan CHEN, Dong-mei QI, Wei-guang YANG, Li-jun GAO, Ba-yin XIN, Gong-she LIU. Expression characteristics and functional analysis of the LcCBF6 gene from Leymus chinensis [J]. Acta Prataculturae Sinica, 2021, 30(10): 105-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||