Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (4): 208-220.DOI: 10.11686/cyxb2022160
Ao JIANG1(), Lu-huai JING1, Tserang-donko MIPAM2, Li-ming TIAN1()
Received:
2022-04-12
Revised:
2022-06-08
Online:
2023-04-20
Published:
2023-01-29
Contact:
Li-ming TIAN
Ao JIANG, Lu-huai JING, Tserang-donko MIPAM, Li-ming TIAN. Progress in research on the effects of grazing on grassland litter decomposition[J]. Acta Prataculturae Sinica, 2023, 32(4): 208-220.
序号No. | 关键词Key words | 频次Frequency | 序号No. | 关键词Key words | 频次Frequency |
---|---|---|---|---|---|
1 | 放牧Grazing | 392 | 21 | 物种丰富度Species richness | 75 |
2 | 草地Grassland | 357 | 22 | 物种多样性Species diversity | 75 |
3 | 动物界Animalia | 249 | 23 | 土壤碳Soil carbon | 71 |
4 | 牧场Pasture | 217 | 24 | 养分循环Nutrient cycling | 67 |
5 | 凋落物Litter | 182 | 25 | 磷Phosphorus | 63 |
6 | 禾本科Poaceae | 158 | 26 | 非人类的Nonhuman | 62 |
7 | 土壤Soil | 124 | 27 | 畜牧Livestock | 62 |
8 | 生物区系Biome | 123 | 28 | 大草原Steppe | 60 |
9 | 氮Nitrogen | 108 | 29 | 碳Carbon | 60 |
10 | 美国United States | 103 | 30 | 土壤有机质Soil organic matter | 60 |
11 | 中国China | 101 | 31 | 羊Sheep | 58 |
12 | 生物多样性Biodiversity | 101 | 32 | 农业Agriculture | 56 |
13 | 牛Cattle | 95 | 33 | 碳固定Carbon sequestration | 54 |
14 | 放牧管理Grazing management | 87 | 34 | 土壤氮Soil nitrogen | 53 |
15 | 绵羊Ovis aries | 87 | 35 | 家牛Bos taurus | 53 |
16 | 生态系统Ecosystem | 86 | 36 | 牧草Forage | 52 |
17 | 植物群落Plant community | 86 | 37 | 放牧压力Grazing pressure | 52 |
18 | 草食性Herbivory | 85 | 38 | 叶凋落物Leaf litter | 50 |
19 | 植被Vegetation | 84 | 39 | 火Fire | 49 |
20 | 分解Decomposition | 83 | 40 | 生理学Physiology | 44 |
Table 1 Top 40 keywords with the highest frequency in SCI articles of grazing and litter on grassland ecosystem during 1950-2021
序号No. | 关键词Key words | 频次Frequency | 序号No. | 关键词Key words | 频次Frequency |
---|---|---|---|---|---|
1 | 放牧Grazing | 392 | 21 | 物种丰富度Species richness | 75 |
2 | 草地Grassland | 357 | 22 | 物种多样性Species diversity | 75 |
3 | 动物界Animalia | 249 | 23 | 土壤碳Soil carbon | 71 |
4 | 牧场Pasture | 217 | 24 | 养分循环Nutrient cycling | 67 |
5 | 凋落物Litter | 182 | 25 | 磷Phosphorus | 63 |
6 | 禾本科Poaceae | 158 | 26 | 非人类的Nonhuman | 62 |
7 | 土壤Soil | 124 | 27 | 畜牧Livestock | 62 |
8 | 生物区系Biome | 123 | 28 | 大草原Steppe | 60 |
9 | 氮Nitrogen | 108 | 29 | 碳Carbon | 60 |
10 | 美国United States | 103 | 30 | 土壤有机质Soil organic matter | 60 |
11 | 中国China | 101 | 31 | 羊Sheep | 58 |
12 | 生物多样性Biodiversity | 101 | 32 | 农业Agriculture | 56 |
13 | 牛Cattle | 95 | 33 | 碳固定Carbon sequestration | 54 |
14 | 放牧管理Grazing management | 87 | 34 | 土壤氮Soil nitrogen | 53 |
15 | 绵羊Ovis aries | 87 | 35 | 家牛Bos taurus | 53 |
16 | 生态系统Ecosystem | 86 | 36 | 牧草Forage | 52 |
17 | 植物群落Plant community | 86 | 37 | 放牧压力Grazing pressure | 52 |
18 | 草食性Herbivory | 85 | 38 | 叶凋落物Leaf litter | 50 |
19 | 植被Vegetation | 84 | 39 | 火Fire | 49 |
20 | 分解Decomposition | 83 | 40 | 生理学Physiology | 44 |
关键词 Key words | 强度Strength | 开始Begin | 结束End | 1950-2021 |
---|---|---|---|---|
羊Sheep | 5.16 | 1975 | 2004 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
家牛B. taurus | 23.93 | 1980 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
放牧Grazing | 13.47 | 1985 | 2004 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
亚洲Asia | 6.05 | 1985 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
草地Grassland | 5.88 | 1985 | 1999 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
火Fire | 4.38 | 1985 | 1999 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
苔藓植物门Bryophyta | 4.33 | 1985 | 2014 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂ |
美国USA | 7.78 | 1990 | 1999 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
澳大利亚Australia | 7.34 | 1990 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
动物界Animalia | 16.02 | 1995 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
美国United States | 8.69 | 1995 | 2004 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
热带草原Savanna | 5.92 | 1995 | 2004 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
欧亚大陆Eurasia | 14.93 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
北美North America | 14.11 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
澳大拉西亚Australasia | 10.20 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
世界World | 8.93 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
欧洲Europe | 8.91 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
三叶草Trifolium | 6.49 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
远东Far East | 5.34 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
降解Degradation | 5.13 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
东半球Eastern hemisphere | 5.10 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
山羊Capra hircus | 4.85 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
撒哈拉以南非洲Sub Saharan Africa | 4.85 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
非洲Africa | 4.54 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
哺乳动物Mammalia | 4.35 | 2000 | 2014 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂ |
禾本科Poaceae | 6.89 | 2005 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
南美South America | 5.42 | 2005 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
植物营养体Phytoma | 5.20 | 2010 | 2014 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂ |
化学Chemistry | 4.75 | 2010 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂ |
优势Dominance | 4.71 | 2010 | 2014 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂ |
植被Vegetation | 4.69 | 2010 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂ |
动物Animal | 4.52 | 2010 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂ |
微生物群落Microbial community | 6.52 | 2015 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃ |
牛科动物Bovine | 5.00 | 2015 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂ |
土壤有机碳Soil organic carbon | 4.73 | 2015 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃ |
青藏高原Qinghai-Tibet Plateau | 4.72 | 2015 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃ |
土壤植被互作Soil vegetation interaction | 4.72 | 2015 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃ |
保护Conservation | 4.68 | 2015 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂ |
草本植物Herb | 4.65 | 2015 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂ |
高山环境Alpine environment | 4.43 | 2015 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃ |
Table 2 Keywords burst detection of SCI articles of grazing and litter in grassland ecosystems during 1950-2021
关键词 Key words | 强度Strength | 开始Begin | 结束End | 1950-2021 |
---|---|---|---|---|
羊Sheep | 5.16 | 1975 | 2004 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
家牛B. taurus | 23.93 | 1980 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
放牧Grazing | 13.47 | 1985 | 2004 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
亚洲Asia | 6.05 | 1985 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
草地Grassland | 5.88 | 1985 | 1999 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
火Fire | 4.38 | 1985 | 1999 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
苔藓植物门Bryophyta | 4.33 | 1985 | 2014 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂ |
美国USA | 7.78 | 1990 | 1999 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
澳大利亚Australia | 7.34 | 1990 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
动物界Animalia | 16.02 | 1995 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
美国United States | 8.69 | 1995 | 2004 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
热带草原Savanna | 5.92 | 1995 | 2004 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
欧亚大陆Eurasia | 14.93 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
北美North America | 14.11 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
澳大拉西亚Australasia | 10.20 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
世界World | 8.93 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
欧洲Europe | 8.91 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
三叶草Trifolium | 6.49 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
远东Far East | 5.34 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
降解Degradation | 5.13 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
东半球Eastern hemisphere | 5.10 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
山羊Capra hircus | 4.85 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
撒哈拉以南非洲Sub Saharan Africa | 4.85 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
非洲Africa | 4.54 | 2000 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
哺乳动物Mammalia | 4.35 | 2000 | 2014 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂ |
禾本科Poaceae | 6.89 | 2005 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
南美South America | 5.42 | 2005 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
植物营养体Phytoma | 5.20 | 2010 | 2014 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂ |
化学Chemistry | 4.75 | 2010 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂ |
优势Dominance | 4.71 | 2010 | 2014 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂ |
植被Vegetation | 4.69 | 2010 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂ |
动物Animal | 4.52 | 2010 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂ |
微生物群落Microbial community | 6.52 | 2015 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃ |
牛科动物Bovine | 5.00 | 2015 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂ |
土壤有机碳Soil organic carbon | 4.73 | 2015 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃ |
青藏高原Qinghai-Tibet Plateau | 4.72 | 2015 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃ |
土壤植被互作Soil vegetation interaction | 4.72 | 2015 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃ |
保护Conservation | 4.68 | 2015 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂ |
草本植物Herb | 4.65 | 2015 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂ |
高山环境Alpine environment | 4.43 | 2015 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃ |
1 | Yang L L, Gong J R, Liu M, et al. Advances in the effect of nitrogen deposition on grassland litter decomposition. Chinese Journal of Plant Ecology, 2017, 41(8): 894-913. |
杨丽丽, 龚吉蕊, 刘敏, 等. 氮沉降对草地凋落物分解的影响研究进展. 植物生态学报, 2017, 41(8): 894-913. | |
2 | Abdalla M, Hastings A, Chadwick D R, et al. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agriculture, Ecosystems & Environment, 2018, 253: 62-81. |
3 | Zhang Y J, Zhu J T, Shen R N, et al. Research progress on the effects of grazing on grassland ecosystem. Chinese Journal of Plant Ecology, 2020, 44(5): 553-564. |
张扬建, 朱军涛, 沈若楠, 等. 放牧对草地生态系统影响的研究进展. 植物生态学报, 2020, 44(5): 553-564. | |
4 | Ye R H, Shan Y M, Zhang P J, et al. Effects of nitrogen and water addition on litter decomposition in desert grassland under different grazing intensities. Acta Ecologica Sinica, 2020, 40(8): 2775-2783. |
晔薷罕, 单玉梅, 张璞进, 等. 荒漠草原不同放牧强度背景下添加氮水对凋落物分解的影响. 生态学报, 2020, 40(8): 2775-2783. | |
5 | McNaughton S J, Oesterheld M, Frank D A, et al. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature, 1989, 341(6238): 142-144. |
6 | Austin A T, Ballare C L. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences, 2010, 107(10): 4618-4622. |
7 | Bardgett R D, Wardle D A, Yeates G W. Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry, 1998, 30(14): 1867-1878. |
8 | Anderson J M. Spatiotemporal effects of invertebrates on soil processes. Biology and Fertility of Soils, 1988, 6(3): 216-227. |
9 | Song X, Wang L, Zhao X, et al. Sheep grazing and local community diversity interact to control litter decomposition of dominant species in grassland ecosystem. Soil Biology and Biochemistry, 2017, 115(1): 364-370. |
10 | Liu N, Kan H M, Yang G W, et al. Changes in plant, soil, and microbes in a typical steppe from simulated grazing: explaining potential change in soil C. Ecological Monographs, 2015, 85(2): 269-286. |
11 | Borer E T, Seabloom E W, Gruner D S, et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508(7497): 517-520. |
12 | Coûteaux M M, Bottner P, Bergb B. Litter decomposition, climate and litter quality. Trends in Ecology & Evolution, 1995, 10(2): 63-66. |
13 | Djukic I, Kepfer-Rojas S, Schmidt I K, et al. Early stage litter decomposition across biomes. Science of the Total Environment, 2018, 628/629: 1369-1394. |
14 | Giese M, Gao Y Z, Zhao Y, et al. Effects of grazing and rainfall variability on root and shoot decomposition in a semi-arid grassland. Applied Soil Ecology, 2009, 41(1): 8-18. |
15 | Du Z Y, Cai Y J, Wang X D, et al. Research progress on grazing livestock dung decomposition and its influence on the dynamics of grassland soil nutrients. Acta Ecologica Sinica, 2019, 39(13): 4627-4637. |
杜子银, 蔡延江, 王小丹, 等. 放牧牲畜粪便降解及其对草地土壤养分动态的影响研究进展. 生态学报, 2019, 39(13): 4627-4637. | |
16 | Luo C, Xu G, Chao Z, et al. Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau. Global Change Biology, 2010, 16(5): 1606-1617. |
17 | Allison S D, Lu Y, Weihe C, et al. Microbial abundance and composition influence litter decomposition response to environmental change. Ecology, 2013, 94(3): 714-725. |
18 | Hobbie S E. Temperature and plant species control over litter decomposition in Alaskan Tundra. Ecological Monographs, 1996, 66(4): 503-522. |
19 | Bradford M A, Warren Ⅱ R J, Baldrian P, et al. Climate fails to predict wood decomposition at regional scales. Nature Climate Change, 2014, 4(7): 625-630. |
20 | Pérez J, Ferreira V, Graça M A S, et al. Litter quality is a stronger driver than temperature of early microbial decomposition in oligotrophic streams: a microcosm study. Microbial Ecology, 2021, 82(4): 897-908. |
21 | Aerts R. The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology, 2006, 94(4): 713-724. |
22 | Olofsson J. Effects of simulated reindeer grazing, trampling, and waste products on nitrogen mineralization and primary production. Arctic, Antarctic, and Alpine Research, 2009, 41(3): 330-338. |
23 | Ritchie M E, Tilman D, Knops J M H. Herbivore effects on plant and nitrogen dynamics in Oak Savanna. Ecology, 1998, 79(1): 165-177. |
24 | Bagchi S, Ritchie M E. Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition: soil carbon and livestock production. Ecology Letters, 2010, 13(8): 959-968. |
25 | Placella S A, Firestone M K. Transcriptional response of nitrifying communities to wetting of dry soil. Applied and Environmental Microbiology, 2013, 79(10): 3294-3302. |
26 | DeAngelis K M, Silver W L, Thompson A W, et al. Microbial communities acclimate to recurring changes in soil redox potential status. Environmental Microbiology, 2010, 12(12): 3137-3149. |
27 | Powers J S, Montgomery R A, Adair E C, et al. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology, 2009, 97(4): 801-811. |
28 | Tan X P, Shen W J. Advances in the effects of precipitation regime alteration and elevated atmospheric nitrogen deposition on above- and below-ground litter decomposition in forest ecosystems. Acta Ecologica Sinica, 2021, 41(2): 444-455. |
谭向平, 申卫军. 降水变化和氮沉降影响森林叶根凋落物分解研究进展. 生态学报, 2021, 41(2): 444-455. | |
29 | Prieto I, Almagro M, Bastida F, et al. Altered leaf litter quality exacerbates the negative impact of climate change on decomposition. Journal of Ecology, 2019, 107(5): 2364-2382. |
30 | Liang D F, Niu K C, Zhang S T. Interacting effects of yak dung deposition and litter quality on litter mass loss and nitrogen dynamics in Tibetan alpine grassland. Grass and Forage Science, 2018, 73(1): 123-131. |
31 | Zhou G, Zhou X, He Y, et al. Grazing intensity significantly affect belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Global Change Biology, 2017, 23(3): 1167-1179. |
32 | Pietola L, Horn R, Yli-Halla M. Effects of trampling by cattle on the hydraulic and mechanical properties of soil. Soil and Tillage Research, 2005, 82(1): 99-108. |
33 | Stavi I, Ungar E D, Lavee H, et al. Grazing-induced spatial variability of soil bulk density and content of moisture, organic carbon and calcium carbonate in a semi-arid rangeland. Catena, 2008, 75(3): 288-296. |
34 | Lim S M, Cha S S, Shim J K. Effects of simulated acid rain on microbial activities and litter decomposition. Journal of Ecology and Environment, 2011, 34(4): 401-410. |
35 | Zhang J, Zuo X, Zhou X, et al. Long-term grazing effects on vegetation characteristics and soil properties in a semiarid grassland, northern China. Environmental Monitoring and Assessment, 2017, 189(5): 216. |
36 | Steffens M, Kölbl A, Totsche K U, et al. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P.R. China). Geoderma, 2008, 143(1/2): 63-72. |
37 | Vaieretti M V, Cingolani A M, Pérez Harguindeguy N, et al. Effects of differential grazing on decomposition rate and nitrogen availability in a productive mountain grassland. Plant and Soil, 2013, 371(1): 675-691. |
38 | Austin A T, Vivanco L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature, 2006, 442(7102): 555-558. |
39 | Kooch Y, Moghimian N, Wirth S, et al. Effects of grazing management on leaf litter decomposition and soil microbial activities in northern Iranian rangeland. Geoderma, 2020, 361: 114100. |
40 | Sankaran M, Augustine D J. Large herbivores suppress decomposer abundance in a semiarid grazing ecosystem. Ecology, 2004, 85(4): 1052-1061. |
41 | Yuan X, Niu D, Wang Y, et al. Litter decomposition in fenced and grazed grasslands: a test of the home-field advantage hypothesis. Geoderma, 2019, 354: 113876. |
42 | Bardgett R D, Jones A C, Jones D L, et al. Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems. Soil Biology and Biochemistry, 2001, 33(12/13): 1653-1664. |
43 | Garibaldi L A, Semmartin M, Chaneton E J. Grazing-induced changes in plant composition affect litter quality and nutrient cycling in flooding Pampa grasslands. Oecologia, 2007, 151(4): 650-662. |
44 | Bardgett R D, Frankland J C, Whittaker J B. The effects of agricultural management on the soil biota of some upland grasslands. Agriculture, Ecosystems & Environment, 1993, 45(1/2): 25-45. |
45 | Mora-Gómez J, Elosegi A, Duarte S, et al. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream. FEMS Microbiology Ecology, 2016, 92(8): 121. |
46 | Su Y, Le J, Ma X, et al. Soil burial has a greater effect on litter decomposition rate than nitrogen enrichment in alpine grasslands. Journal of Plant Ecology, 2021, 14(6): 1047-1059. |
47 | Sørensen L I, Mikola J, Kytöviita M M, et al. Trampling and spatial heterogeneity explain decomposer abundances in a sub-arctic grassland subjected to simulated reindeer grazing. Ecosystems, 2009, 12(5): 830-842. |
48 | McSherry M E, Ritchie M E. Effects of grazing on grassland soil carbon: a global review. Global Change Biology, 2013, 19(5): 1347-1357. |
49 | Knops J M H, Bradley K L, Wedin D A. Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecology Letters, 2002, 5(3): 454-466. |
50 | Bardgett R D, Hobbs P J, Frostegård Å. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils, 1996, 22(3): 261-264. |
51 | Cai A, Liang G, Yang W, et al. Patterns and driving factors of litter decomposition across Chinese terrestrial ecosystems. Journal of Cleaner Production, 2021, 278: 123964. |
52 | Sun Y, He X Z, Hou F, et al. Grazing increases litter decomposition rate but decreases nitrogen release rate in an alpine meadow. Biogeosciences, 2018, 15(13): 4233-4243. |
53 | Gong J R, Wang Y, Liu M, et al. Effects of land use on soil respiration in the temperate steppe of Inner Mongolia, China. Soil and Tillage Research, 2014, 144: 20-31. |
54 | Hamilton III E W, Frank D A. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology, 2001, 82(9): 2397-2402. |
55 | Ayres E, Steltzer H, Simmons B L, et al. Home-field advantage accelerates leaf litter decomposition in forests. Soil Biology and Biochemistry, 2009, 41(3): 606-610. |
56 | Austin A T, Vivanco L, González-Arzac A, et al. There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytologist, 2014, 204(2): 307-314. |
57 | Wang Y, Li F Y, Song X, et al. Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land-use types: soil moisture, not home-field advantage, plays a dominant role. Agriculture, Ecosystems & Environment, 2020, 303: 107119. |
58 | Lin D, Pang M, Fanin N, et al. Fungi participate in driving home-field advantage of litter decomposition in a subtropical forest. Plant and Soil, 2019, 434(1): 467-480. |
59 | Hättenschwiler S, Tiunov A V, Scheu S. Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2005, 36(1): 191-218. |
60 | Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 1997, 79(3): 439-449. |
61 | Olofsson J, Oksanen L. Role of litter decomposition for the increased primary production in areas heavily grazed by reindeer: a litterbag experiment. Oikos, 2002, 96(3): 507-515. |
62 | Wardle D A, Bonner K I, Barker G M. Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores: herbivory and litter decomposition. Functional Ecology, 2002, 16(5): 585-595. |
63 | Strickland M S, Osburn E, Lauber C, et al. Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics. Functional Ecology, 2009, 23(3): 627-636. |
64 | Naeem I, Wu X, Asif T, et al. Livestock diversification implicitly affects litter decomposition depending on altered soil properties and plant litter quality in a meadow steppe. Plant and Soil, 2022, 473(1): 49-62. |
65 | Bai Y, Wu J, Clark C M, et al. Grazing alters ecosystem functioning and C∶N∶P stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 2012, 49(6): 1204-1215. |
66 | Sirotnak J M, Huntly N J. Direct and indirect effects of herbivores on nitrogen dynamics: voles in riparian areas. Ecology, 2000, 81(1): 78-87. |
67 | Fornara D A, Banin L, Crawley M J. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Global Change Biology, 2013, 19(12): 3848-3857. |
68 | Semmartin M, Garibaldi L A, Chaneton E J. Grazing history effects on above- and below-ground litter decomposition and nutrient cycling in two co-occurring grasses. Plant and Soil, 2008, 303(1): 177-189. |
69 | Cingolani A M, Posse G, Collantes M B. Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands. Journal of Applied Ecology, 2005, 42(1): 50-59. |
70 | Qiu L, Wei X, Zhang X, et al. Ecosystem carbon and nitrogen accumulation after grazing exclusion in semiarid grassland. PLoS One, 2013, 8(1): e55433. |
71 | Bardgett R D, Wardle D A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology, 2003, 84(9): 2258-2268. |
72 | Gong X Y, Fanselow N, Dittert K, et al. Response of primary production and biomass allocation to nitrogen and water supplementation along a grazing intensity gradient in semiarid grassland. European Journal of Agronomy, 2015, 63: 27-35. |
73 | Chuan X, Carlyle C N, Bork E W, et al. Long-term grazing accelerated litter decomposition in northern temperate grasslands. Ecosystems, 2018, 21(7): 1321-1334. |
74 | Porre R J, van der Werf W, De Deyn G B, et al. Is litter decomposition enhanced in species mixtures? A meta-analysis. Soil Biology and Biochemistry, 2020, 145: 107791. |
75 | Handa I T, Aerts R, Berendse F, et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature, 2014, 509(7499): 218-221. |
76 | Gartner T B, Cardon Z G. Decomposition dynamics in mixed-species leaf litter. Oikos, 2004, 104(2): 230-246. |
77 | Hattenschwiler S, Gasser P. Soil animals alter plant litter diversity effects on decomposition. Proceedings of the National Academy of Sciences, 2005, 102(5): 1519-1524. |
78 | García-Palacios P, McKie B G, Handa I T, et al. The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes. Functional Ecology, 2016, 30(5): 819-829. |
79 | Bradford M A, Berg B, Maynard D S, et al. Understanding the dominant controls on litter decomposition. Journal of Ecology, 2016, 104(1): 229-238. |
80 | Johnson L C, Matchett J R. Fire and grazing regulate belowground processes in tallgrass prairie. Ecology, 2001, 82(12): 3377-3389. |
81 | Cebrian J. Patterns in the fate of production in plant communities. The American Naturalist, 1999, 154(4): 449-468. |
82 | Yang X, Qu Y, Yang N, et al. Litter species diversity is more important than genotypic diversity of dominant grass species Stipa grandis in influencing litter decomposition in a bare field. Science of the Total Environment, 2019, 666: 490-498. |
83 | Mori A S, Cornelissen J H C, Fujii S, et al. A meta-analysis on decomposition quantifies afterlife effects of plant diversity as a global change driver. Nature Communications, 2020, 11(1): 4547. |
84 | McNaughton S J, Banyikwa F F, McNaughton M M. Promotion of the cycling of diet-enhancing nutrients by African grazers. Science, 1997, 278(5344): 1798-1800. |
85 | Chaneton E J, Perelman S B, Omacini M, et al. Grazing, environmental heterogeneity, and alien plant invasions in temperate Pampa grasslands. Biological Invasions, 2002, 4(1): 7-24. |
86 | Pastor J, Dewey B, Naiman R J, et al. Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology, 1993, 74(2): 467-480. |
87 | Semmartin M, Aguiar M R, Distel R A, et al. Litter quality and nutrient cycling affected by grazing-induced species replacements along a precipitation gradient. Oikos, 2004, 107(1): 148-160. |
88 | Burke C, Steinberg P, Rusch D, et al. Bacterial community assembly based on functional genes rather than species. Proceedings of the National Academy of Sciences, 2011, 108(34): 14288-14293. |
89 | Tang H, Nolte S, Jensen K, et al. Grazing mediates soil microbial activity and litter decomposition in salt marshes. Science of the Total Environment, 2020, 720: 137559. |
90 | Ye R H, Sarulaqiqige, Wen C, et al. Research advances on the effects of precipitation, nitrogen deposition and grazing on litter decomposition in grassland ecosystem. Animal Husbandry and Feed Science, 2021, 42(4): 89-97. |
晔薷罕, 萨茹拉其其格, 温超, 等. 降水、氮沉降及放牧对草地生态系统凋落物分解的影响研究进展. 畜牧与饲料科学, 2021, 42(4): 89-97. | |
91 | Yang T T, Yao G Z, Ding Y, et al. Effects of grazing intensities on litter mass and decomposition of typical steppe in Inner Mongolia. Journal of Arid Land Resources and Environment, 2019, 33(2): 171-176. |
杨婷婷, 姚国征, 丁勇, 等. 放牧对内蒙古典型草原枯落物积累及分解的影响. 干旱区资源与环境, 2019, 33(2): 171-176. | |
92 | Moretto A S, Distel R A, Didoné N G. Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland. Applied Soil Ecology, 2001, 18(1): 31-37. |
93 | Penner J F, Frank D A. Litter decomposition in Yellowstone grasslands: the roles of large herbivores, litter quality, and climate. Ecosystems, 2019, 22(4): 929-937. |
[1] | Yuan-yuan JIN, Zhen-jiang CHEN, Tian WANG, Chun-jie LI. Effects of Epichloë endophyte and field management practices on the abundance and diversity of the soil fungal community [J]. Acta Prataculturae Sinica, 2023, 32(4): 142-152. |
[2] | Chao PENG, Zi-jian LI, Hu-cheng WANG, Qiang FENG, Yu-ying SHEN. A comparative study of slaughter and meat quality for sheep fed indoors or grazed with supplementary feed in the hill and gully region of the Loess Plateau [J]. Acta Prataculturae Sinica, 2023, 32(2): 140-147. |
[3] | Zi-jing LI, Cui-ping GAO, Zhong-wu WANG, Guo-dong HAN. Research status and suggestions for grassland carbon sequestration and emission reduction in China [J]. Acta Prataculturae Sinica, 2023, 32(2): 191-200. |
[4] | Peng-chong DU, Yu-zhen PAN, Shuang-li HOU, Zhi-hui WANG, Hong-yi WANG. Effects of nitrogen and phosphorus addition on litter decomposition in Hulunber steppe [J]. Acta Prataculturae Sinica, 2023, 32(2): 44-53. |
[5] | Ze-dong ZHOU, Hui-ling MA, Xu HAN, Yuan-heng LI, Xi-liang LI, Kun-na LI. Responses of photosynthetic characteristics of Leymus chinensis in temperate typical steppe to component factors of simulated grazing [J]. Acta Prataculturae Sinica, 2022, 31(8): 81-89. |
[6] | Jiao-yun LU, He-shan ZHANG, Hong TIAN, Jun-bo XIONG, Yang LIU. Research progress on effects of nitrogen deposition on soil nitrogen cycling in grassland ecosystems [J]. Acta Prataculturae Sinica, 2022, 31(6): 221-234. |
[7] | Xiao-ning ZHANG, Xiao-dan LI, Li-li NIAN, Ying-bo YANG, Xue-lu LIU. A bibliometric evaluation of the status of the water conservation function of grassland ecosystems [J]. Acta Prataculturae Sinica, 2022, 31(6): 35-49. |
[8] | Jia-yu JIANG, Xue LIAN, Xi-ming TANG, Ren-tao LIU, An-ning ZHANG. The arthropod community structure in Reaumuria soongorica litter at the early stage of its decomposition in arid and semi-arid regions [J]. Acta Prataculturae Sinica, 2022, 31(5): 156-168. |
[9] | Dong-wen DAI, Kai-yue Pang, xun WANG, Ying-kui YANG, Sha-tuo CHAI, Shu-xiang WANG. Effects of different concentrate supplement levels on rumen fermentation and microbial community structure of grazing yaks in the warm season [J]. Acta Prataculturae Sinica, 2022, 31(5): 169-177. |
[10] | Jie SHEN, Lei DING, Xiao-ping XIN, Xiang ZHANG, Da-wei XU, Lu-lu HOU, Rui-rui YAN. Canopy scale characteristics of grassland under different grazing intensities based on UAV lidar and multispectral data [J]. Acta Prataculturae Sinica, 2022, 31(3): 1-15. |
[11] | Cai-cai SUN, Quan-min DONG, Wen-ting LIU, Bin FENG, Guang SHI, Yu-zhen LIU, Yang YU, Chun-ping ZHANG, Xiao-fang ZHANG, Cai-di LI, Zeng-zeng YANG, Xiao-xia YANG. Effects of grazing modes on the community structure and diversity of soil arthropod in an alpine meadow on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(2): 62-75. |
[12] | De-li WANG, Ling WANG, Guo-dong HAN. Precision grazing management of grassland: Concept, theory, technology and paradigm [J]. Acta Prataculturae Sinica, 2022, 31(12): 191-199. |
[13] | Yan-ming CHENG, Hong-bin MA, Jing MA, Zi-yuan MA, Jin-di LIU, Yao ZHOU, Wen-dong PENG. Effects of different grazing patterns on soil carbon and nitrogen storage and sequestration in desert steppee [J]. Acta Prataculturae Sinica, 2022, 31(10): 18-27. |
[14] | Yong-hong WANG, Li-ming TIAN, Yi AI, Shi-yong CHEN, Tserang-donko MIPAM. Effects of short-term yak grazing on soil fungal communities in an alpine meadow on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(10): 41-52. |
[15] | Xiao-yu HAN, Ning GUO, Dong-dong LI, Ming-yang XIE, Feng JIAO. Effects of nitrogen addition on soil carbon and nitrogen and biomass change in different grassland types in Inner Mongolia [J]. Acta Prataculturae Sinica, 2022, 31(1): 13-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||