Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (5): 94-105.DOI: 10.11686/cyxb2022228
Previous Articles Next Articles
Yu-ying CAO(), Xue-meng SU, Zheng-chao ZHOU(), Qun-wei ZHENG, Jia-hui YUE
Received:
2022-05-24
Revised:
2022-07-08
Online:
2023-05-20
Published:
2023-03-20
Contact:
Zheng-chao ZHOU
Yu-ying CAO, Xue-meng SU, Zheng-chao ZHOU, Qun-wei ZHENG, Jia-hui YUE. Spatial differences in, and factors influencing, the shear strength of typical herb root-soil complexes in the Loess Plateau of China[J]. Acta Prataculturae Sinica, 2023, 32(5): 94-105.
土壤质地 Soil texture | 植物类型 Plant type | 土层 Soil layer (cm) | 根长密度 RLD (×10-2 cm·cm-3) | 根表面积密度 RSAD (×10-2 cm2·cm-3) | 根体积密度 RVD (×10-3 cm3·cm-3) |
---|---|---|---|---|---|
S | H | 0~10 | 423.87±163.41Aa | 60.56±32.19Aa | 10.73±6.53Aa |
10~20 | 245.62±68.19Ab | 36.63±13.07Aa | 6.46±2.94Aa | ||
20~30 | 99.48±56.06Ac | 11.86±8.41Ab | 1.77±1.51Ab | ||
Z | 0~10 | 22.36±14.51Ab | 7.65±7.34Ab | 5.27±7.26Aa | |
10~20 | 76.59±25.76Aa | 10.67±4.77Aab | 2.45±1.17Aa | ||
20~30 | 117.91±44.24Aa | 16.48±7.09Aa | 2.74±1.28Aa | ||
A | H | 0~10 | 295.56±121.61ABa | 21.11±11.34Ba | 2.74±2.03Ba |
10~20 | 367.83±244.30Aa | 24.70±11.82Aa | 3.24±3.32ABa | ||
20~30 | 88.80±70.06Ab | 6.97±4.93Ab | 1.00±0.58Aa | ||
Z | 0~10 | 10.42±6.43Aa | 1.08±0.74Ab | 0.16±0.11Aa | |
10~20 | 17.49±10.82Ba | 2.36±1.09Ba | 0.72±0.70Ba | ||
20~30 | 16.72±12.49Ba | 2.09±1.00Ba | 1.04±1.14Ba | ||
Y | H | 0~10 | 167.67±138.46Ba | 21.19±13.89Ba | 3.61±1.56Ba |
10~20 | 19.09±13.92Bb | 2.12±1.95Bb | 0.34±0.32Bb | ||
20~30 | 6.07±3.39Bb | 0.61±0.46Bb | 0.08±0.07Bb | ||
Z | 0~10 | 9.50±5.17Aa | 2.44±1.35Aa | 0.77±0.52Aa | |
10~20 | 3.94±2.88Cb | 1.07±1.12Bab | 0.36±0.48Bab | ||
20~30 | 4.56±3.93Bb | 0.73±0.59Cb | 0.20±0.16Bb |
Table 1 Root changes characteristics of herbaceous plants under different soil textures in Loess Plateau
土壤质地 Soil texture | 植物类型 Plant type | 土层 Soil layer (cm) | 根长密度 RLD (×10-2 cm·cm-3) | 根表面积密度 RSAD (×10-2 cm2·cm-3) | 根体积密度 RVD (×10-3 cm3·cm-3) |
---|---|---|---|---|---|
S | H | 0~10 | 423.87±163.41Aa | 60.56±32.19Aa | 10.73±6.53Aa |
10~20 | 245.62±68.19Ab | 36.63±13.07Aa | 6.46±2.94Aa | ||
20~30 | 99.48±56.06Ac | 11.86±8.41Ab | 1.77±1.51Ab | ||
Z | 0~10 | 22.36±14.51Ab | 7.65±7.34Ab | 5.27±7.26Aa | |
10~20 | 76.59±25.76Aa | 10.67±4.77Aab | 2.45±1.17Aa | ||
20~30 | 117.91±44.24Aa | 16.48±7.09Aa | 2.74±1.28Aa | ||
A | H | 0~10 | 295.56±121.61ABa | 21.11±11.34Ba | 2.74±2.03Ba |
10~20 | 367.83±244.30Aa | 24.70±11.82Aa | 3.24±3.32ABa | ||
20~30 | 88.80±70.06Ab | 6.97±4.93Ab | 1.00±0.58Aa | ||
Z | 0~10 | 10.42±6.43Aa | 1.08±0.74Ab | 0.16±0.11Aa | |
10~20 | 17.49±10.82Ba | 2.36±1.09Ba | 0.72±0.70Ba | ||
20~30 | 16.72±12.49Ba | 2.09±1.00Ba | 1.04±1.14Ba | ||
Y | H | 0~10 | 167.67±138.46Ba | 21.19±13.89Ba | 3.61±1.56Ba |
10~20 | 19.09±13.92Bb | 2.12±1.95Bb | 0.34±0.32Bb | ||
20~30 | 6.07±3.39Bb | 0.61±0.46Bb | 0.08±0.07Bb | ||
Z | 0~10 | 9.50±5.17Aa | 2.44±1.35Aa | 0.77±0.52Aa | |
10~20 | 3.94±2.88Cb | 1.07±1.12Bab | 0.36±0.48Bab | ||
20~30 | 4.56±3.93Bb | 0.73±0.59Cb | 0.20±0.16Bb |
指标 Index | S | A | Y | |||
---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | |
土壤含水量ω | -0.17 | 0.94 | -0.86 | 0.46 | 0.95 | -0.10 |
容重Bulk density | -0.36 | 0.92 | -0.98 | 0.04 | -0.89 | 0.25 |
土壤有机质Soil organic matter | 0.89 | 0.34 | 0.71 | -0.59 | 0.01 | 0.70 |
平均重量直径MWD | 0.21 | 0.69 | 0.86 | -0.34 | 0.57 | 0.68 |
根长密度RLD | 0.94 | -0.26 | -0.21 | 0.97 | -0.37 | 0.90 |
根表面积密度RSAD | 0.95 | -0.27 | -0.19 | 0.97 | -0.42 | 0.88 |
根体积密度RVD | 0.89 | -0.23 | -0.13 | 0.98 | -0.50 | 0.82 |
特征值Eigenvalue | 4.58 | 2.47 | 5.48 | 2.04 | 4.64 | 2.09 |
方差贡献率Variance contribution rate (%) | 57.21 | 30.87 | 68.52 | 25.55 | 58.00 | 26.08 |
累计方差贡献率Cumulative variance contribution rate (%) | 57.21 | 88.08 | 68.52 | 94.07 | 58.00 | 84.08 |
Table 2 Principal component variance contribution rate and rotated factor loading matrix of root parameters and soil properties of root-soil complex
指标 Index | S | A | Y | |||
---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | |
土壤含水量ω | -0.17 | 0.94 | -0.86 | 0.46 | 0.95 | -0.10 |
容重Bulk density | -0.36 | 0.92 | -0.98 | 0.04 | -0.89 | 0.25 |
土壤有机质Soil organic matter | 0.89 | 0.34 | 0.71 | -0.59 | 0.01 | 0.70 |
平均重量直径MWD | 0.21 | 0.69 | 0.86 | -0.34 | 0.57 | 0.68 |
根长密度RLD | 0.94 | -0.26 | -0.21 | 0.97 | -0.37 | 0.90 |
根表面积密度RSAD | 0.95 | -0.27 | -0.19 | 0.97 | -0.42 | 0.88 |
根体积密度RVD | 0.89 | -0.23 | -0.13 | 0.98 | -0.50 | 0.82 |
特征值Eigenvalue | 4.58 | 2.47 | 5.48 | 2.04 | 4.64 | 2.09 |
方差贡献率Variance contribution rate (%) | 57.21 | 30.87 | 68.52 | 25.55 | 58.00 | 26.08 |
累计方差贡献率Cumulative variance contribution rate (%) | 57.21 | 88.08 | 68.52 | 94.07 | 58.00 | 84.08 |
土壤质地Soil texture | 指标Index | 多元线性回归方程Multiple linear regression equation | R2 |
---|---|---|---|
S | c | c =1.205PC1+1.618PC2+8.883 | 0.873 |
φ | φ=-0.112PC1-0.135PC2+27.339 | 0.791 | |
A | c | c =-0.377PC1+1.541PC2+9.055 | 0.605 |
φ | φ=-0.340PC1-0.716PC2+27.028 | 0.805 | |
Y | c | c=1.685PC1-1.236PC2+14.298 | 0.891 |
φ | φ=0.291PC1-0.118PC2+25.705 | 0.666 |
Table 3 Multiple regression equations for cohesion and internal friction angles
土壤质地Soil texture | 指标Index | 多元线性回归方程Multiple linear regression equation | R2 |
---|---|---|---|
S | c | c =1.205PC1+1.618PC2+8.883 | 0.873 |
φ | φ=-0.112PC1-0.135PC2+27.339 | 0.791 | |
A | c | c =-0.377PC1+1.541PC2+9.055 | 0.605 |
φ | φ=-0.340PC1-0.716PC2+27.028 | 0.805 | |
Y | c | c=1.685PC1-1.236PC2+14.298 | 0.891 |
φ | φ=0.291PC1-0.118PC2+25.705 | 0.666 |
1 | Wang S, Fu B J, Wu X T, et al. Dynamics and sustainability of social-ecological systems in the Loess Plateau. Resources Science, 2020, 42(1): 96-103. |
王帅, 傅伯杰, 武旭同, 等. 黄土高原社会-生态系统变化及其可持续性. 资源科学, 2020, 42(1): 96-103. | |
2 | Wang C, Wu X, Fu B J, et al. Ecological restoration in the key ecologically vulnerable regions: Current situation and development direction. Acta Ecologica Sinica, 2019, 39(20): 7333-7343. |
王聪, 伍星, 傅伯杰, 等. 重点脆弱生态区生态恢复模式现状与发展方向. 生态学报, 2019, 39(20): 7333-7343. | |
3 | Shao Y M, Gao G Y, Liu J B, et al. Effects of vertical cover structure of grass and shrub on reducing runoff and soil loss under natural rainfall in the loess hilly region. Acta Ecologica Sinica, 2022, 42(1): 322-331. |
邵奕铭, 高光耀, 刘见波, 等. 自然降雨下黄土丘陵区草灌植物垂直覆盖结构的减流减沙效应. 生态学报, 2022, 42(1): 322-331. | |
4 | Cheng L, Zhan H G, Guo Z L. Root system responses of three herbs to soil anti-erodibility. Pratacultural Science, 2019, 36(2): 284-294. |
程谅, 占海歌, 郭忠录. 3种草本植物根系对土壤抗蚀特性的响应. 草业科学, 2019, 36(2): 284-294. | |
5 | Marston R A. Geomorphology and vegetation on hillslopes: Interactions, dependencies, and feedback loops. Geomorphology, 2010, 116(3/4): 206-217. |
6 | Baets S D, Poesen J, Gyssels G, et al. Effects of grass roots on the erodibility of topsoils during concentrated flow. Geomorphology, 2006, 76(1/2): 54-67. |
7 | Lin J H, Huang M Y, Zhang L T, et al. Effects of Dicranopteris dichotoma roots on soil shear strength of red soil layer in Benggang. Journal of Soil and Water Conservation, 2020, 34(6): 159-165. |
林嘉辉, 黄梦元, 张莉婷, 等. 芒萁根系对崩岗红土层土壤抗剪强度的影响. 水土保持学报, 2020, 34(6): 159-165. | |
8 | Cazzuffi D, Cardile G, Gioffrè D. Geosynthetic engineering and vegetation growth in soil reinforcement applications. Transportation Infrastructure Geotechnology, 2014, 1(3): 262-300. |
9 | Fan C C, Tsai M H. Spatial distribution of plant root forces in root-permeated soils subject to shear. Soil and Tillage Research, 2016, 156: 1-15. |
10 | Liu C Y, Hu X S, Dou Z N, et al. Shear strength tests of the root-soil composite system of alpine grassland vegetation at different stages of degradation and the determination of thresholds in the Yellow River source region. Acta Prataculturae Sinica, 2017, 26(9): 14-26. |
刘昌义, 胡夏嵩, 窦增宁, 等. 黄河源区高寒草地植被根-土复合体抗剪强度试验及退化程度阈值确定. 草业学报, 2017, 26(9): 14-26. | |
11 | Zhou T, Chen Y, Wang R Z, et al. Effect of planting grasses and adding polyacrylamide on the shear performance and erodibility-resistance of purple soil in barren hillsides. Acta Prataculturae Sinica, 2019, 28(3): 62-73. |
周涛, 谌芸, 王润泽, 等. 种草和施用聚丙烯酰胺对荒坡紫色土抗剪和抗蚀性能的影响研究. 草业学报, 2019, 28(3): 62-73. | |
12 | Wang Y, Du F, Zhou M, et al. Research on shear strength of root-soil composite in a forest and grass standing site in Northern Shaanxi. Research of Soil and Water Conservation, 2018, 25(2): 213-219. |
王月, 杜峰, 周敏, 等. 陕北林草混交根土复合体抗剪强度研究. 水土保持研究, 2018, 25(2): 213-219. | |
13 | Feng S Y, Wang J G, Wen H, et al. Soil shear strength of collapsing erosion area in south Jiangxi of China relative to position of the soil and its influencing factors. Acta Pedologica Sinica, 2020, 57(1): 71-83. |
冯舒悦, 王军光, 文慧, 等. 赣南崩岗侵蚀区不同部位土壤抗剪强度及影响因素研究. 土壤学报, 2020, 57(1): 71-83. | |
14 | Yan Z H, Chen Y, Liu X H, et al. Comprehensive evaluation of shear strength and anti-scourability of root-soil complex of two grass hedgerows in karst slope land. Acta Ecologica Sinica, 2022, 42(5): 1811-1820. |
颜哲豪, 谌芸, 刘枭宏, 等. 喀斯特坡地2种地埂篱根-土复合体抗剪和抗冲性能综合评价. 生态学报, 2022, 42(5): 1811-1820. | |
15 | Ge N N, Shi Y, Yang X L, et al. Distribution of soil organic carbon, total nitrogen, total phosphorus and water stable aggregates of cropland with different soil textures on the Loess Plateau, Northwest China. Chinese Journal of Applied Ecology, 2017, 28(5): 1626-1632. |
葛楠楠, 石芸, 杨宪龙, 等. 黄土高原不同土壤质地农田土壤碳、氮、磷及团聚体分布特征. 应用生态学报, 2017, 28(5): 1626-1632. | |
16 | Shen N. Study on rill water separation and sediment transport process in loess region. Xianyang: Northwest A&F University, 2018. |
申楠. 黄土地区细沟水流分离输沙过程研究. 咸阳: 西北农林科技大学, 2018. | |
17 | Laboratory of Soil Physics, Nanjing Institute of Soil Sciences, Chinese Academy of Sciences. Determination of physical properties of soil. Beijing: Science Press, 1978. |
中国科学院南京土壤研究所土壤物理研究室. 土壤物理性质测定法. 北京: 科学出版社, 1978. | |
18 | Liu J Y, Zhou Z C, Su X M. Review of the mechanism of root system on the formation of soil aggregates. Journal of Soil and Water Conservation, 2020, 34(3): 267-273. |
刘均阳, 周正朝, 苏雪萌. 植物根系对土壤团聚体形成作用机制研究回顾. 水土保持学报, 2020, 34(3): 267-273. | |
19 | Bao G S, Wang Y Q, Song M L, et al. Effects of Stellera chamaejasme patches on the surrounding grassland community and on soil physical-chemical properties in degraded grasslands susceptible to S. chamaejasme invasion. Acta Prataculturae Sinica, 2019, 28(3): 51-61. |
鲍根生, 王玉琴, 宋梅玲, 等. 狼毒斑块对狼毒型退化草地植被和土壤理化性质影响的研究. 草业学报, 2019, 28(3): 51-61. | |
20 | Liu H Y, Zhou Z C, Wang N, et al. Soil anti-scourability at early growth stage of grasses and its influencing factors in loess region. Science of Soil and Water Conservation, 2018, 16(2): 55-61. |
刘红岩, 周正朝, 王宁, 等. 黄土区草被生长初期土壤抗冲性及其影响因素. 中国水土保持科学, 2018, 16(2): 55-61. | |
21 | Liu Y B, Hu X S, Yu D M, et al. Distribution characteristics of combined herb and shrub roots in loess area of Xining basin and their effect on enhancing soil shear strength. Journal of Engineering Geology, 2020, 28(3): 471-481. |
刘亚斌, 胡夏嵩, 余冬梅, 等. 西宁盆地黄土区草本和灌木组合根系分布特征及其增强土体抗剪强度效应. 工程地质学报, 2020, 28(3): 471-481. | |
22 | Chen Y, He B H, Lian C X, et al. Root-soil system anti-scourability on steep slopes in the Three Gorges Reservoir Area. Acta Ecologica Sinica, 2016, 36(16): 5173-5181. |
谌芸, 何丙辉, 练彩霞, 等. 三峡库区陡坡根-土复合体抗冲性能. 生态学报, 2016, 36(16): 5173-5181. | |
23 | Su Y Z, Liu W J, Yang R, et al. Changes in soil aggregate, carbon, and nitrogen storages following the conversion of cropland to alfalfa forage land in the marginal oasis of northwest China. Environmental Management, 2009, 43(6): 1061-1070. |
24 | Jia Q M, Chen Y Y, Yang Y, et al. Effect of different artificial grassland on soil physicochemical properties and microbial quantities of abandoned land in arid area. Journal of Soil and Water Conservation, 2014, 28(1): 178-182, 220. |
贾倩民, 陈彦云, 杨阳, 等. 不同人工草地对干旱区弃耕地土壤理化性质及微生物数量的影响. 水土保持学报, 2014, 28(1): 178-182, 220. | |
25 | Hao H X, Qin J H, Sun Z X, et al. Erosion-reducing effects of plant roots during concentrated flow under contrasting textured soils. Catena, 2021, 203(9): 105378. |
26 | Ge N, Wei X, Wang X, et al. Soil texture and phosphorous under two contrasting land use types in the Loess Plateau. Catena, 2019, 172: 148-157. |
27 | Schweizer S A, Bucka F B, Graf-Rosenfellner M, et al. Soil microaggregate size composition and organic matter distribution as affected by clay content. Geoderma, 2019, 355: 113901. |
28 | Zhu A N, Zhang J B, Cheng Z H. A simple method to estimate water retention curves of light-textured soil. Chinese Journal of Soil Science, 2003, 34(4): 253-258. |
朱安宁, 张佳宝, 程竹华. 轻质土壤水分特征曲线估计的简便方法. 土壤通报, 2003, 34(4): 253-258. | |
29 | Borden K A, Anglaaere L, Owusu S, et al. Soil texture moderates root functional traits in agroforestry systems across a climatic gradient. Agriculture Ecosystems and Environment, 2020, 295: 106915. |
30 | Bouma T J, Nielsen K L, Van Hal J, et al. Root system topology and diameter distribution of species from habitats differing in inundation frequency. Functional Ecology, 2001, 15(3): 360-369. |
31 | Wang J, Zhao W W, Liu Y, et al. Effects of plant functional traits on soil conservation: A review. Acta Ecologica Sinica, 2019, 39(9): 3355-3364. |
王晶, 赵文武, 刘月, 等. 植物功能性状对土壤保持的影响研究述评. 生态学报, 2019, 39(9): 3355-3364. | |
32 | Shen Z Y, Liu C Y, Hu X S, et al. Relationships between the physical and chemical properties of soil and the shear strength of root-soil composite systems at different soil depths in alpine grassland in the source region of the Yellow River. Arid Zone Research, 2021, 38(2): 392-401. |
申紫雁, 刘昌义, 胡夏嵩, 等. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究. 干旱区研究, 2021, 38(2): 392-401. | |
33 | Liao B, Liu J P, Zhou H Y. Effects of the influence of root content on the shear strength of rootsoil composite of Bischofia javanica. Journal of Soil and Water Conservation, 2021, 35(3): 104-110. |
廖博, 刘建平, 周花玉. 含根量对秋枫根-土复合体抗剪强度的影响. 水土保持学报, 2021, 35(3): 104-110. | |
34 | Comino E, Druetta A. The effect of Poaceae roots on the shear strength of soils in the Italian alpine environment. Soil and Tillage Research, 2010, 106(2): 194-201. |
35 | Xing S K, Zhang G H, Zhu P Z. Effects of vegetation restoration age on shear strength of root-soil system in hilly and gully region of the Loess Plateau. Journal of Soil and Water Conservation, 2021, 35(4): 41-48. |
邢书昆, 张光辉, 朱平宗. 黄土丘陵沟壑区退耕年限对根-土复合体抗剪强度的影响. 水土保持学报, 2021, 35(4): 41-48. | |
36 | Ge R L, Liu Y Q, Zuo Z Y, et al. Effect of soil moisture on the characteristics of root-soil interaction. Journal of Soil and Water Conservation, 2018, 32(1): 135-140. |
格日乐, 刘艳琦, 左志严, 等. 土壤水分对植物根-土界面相互作用特性的影响. 水土保持学报, 2018, 32(1): 135-140. |
[1] | Wei-peng HE, Xia-song HU, Chang-yi LIU, Xuan LI, Xi-lai LI, Jiang-tao FU, Hai-jing LU, Fu-cheng YANG, Guo-rong LI. Impact of the different duration years of grazing prohibition on the mechanical strength characteristics of Elymus nutans roots and its composite systems in the Yellow River source region [J]. Acta Prataculturae Sinica, 2023, 32(5): 106-117. |
[2] | Li-li ZHU, Ye-meng ZHANG, Wan-cai LI, Ya-li ZHAO, Xiang LI, Zhi-guo CHEN. Adaption to the Plateau climate in Qinghai of 39 silage maize varieties cultivated in different ecological regions of China [J]. Acta Prataculturae Sinica, 2023, 32(4): 68-78. |
[3] | Chun-yan LI, Yan WANG, Xin-rui LI, Ying-zhu LI, Ming-feng LI, Li-li CHEN, Xiong LEI, Li-jun YAN, Ming-hong YOU, Xiao-fei JI, Chang-bing ZHANG, Qi WU, Wen-long GOU, Da-xu LI, Jia-jun YAN, Shi-qie BAI. Morphological diversity and germplasm utilization potential of wild Elymus sibiricus [J]. Acta Prataculturae Sinica, 2023, 32(3): 67-79. |
[4] | Jiang-wen LI, Bang-yin HE, Cai LI, Hong-yan HUI, Bo LIU, Xiao-xi ZHANG, Hui FAN, Wen-yu SU. Analysis of grassland community-level plant functional traits and functional diversity at different times during restoration [J]. Acta Prataculturae Sinica, 2023, 32(1): 16-25. |
[5] | Shan-shan WANG, Hai-tao GU, Hui-fang XIE, Shao-dong HE, Chang-bo GAN, Xiao-yong WEI, Guang-chao KONG. Evaluation of forage yield and quality traits of 113 forage hexaploid triticale germplasm lines [J]. Acta Prataculturae Sinica, 2023, 32(1): 192-202. |
[6] | Wei-jie LI, Li WANG, Jing-yong MA, Zi-kui WANG. Effects of a cover crop on deep soil water and root characteristics in a dryland apple orchard on the Loess Plateau [J]. Acta Prataculturae Sinica, 2023, 32(1): 63-74. |
[7] | Rui-qiang LI, Yu-xiang WANG, Yu-lan SUN, Lei ZHANG, Ai-ping CHEN. Effects of salt stress on the growth, physiology, and biochemistry of five Bromus inermis varieties [J]. Acta Prataculturae Sinica, 2023, 32(1): 99-111. |
[8] | Zhan-dong PAN, Qian-qian MA, Xiao-long CHEN, Li-qun CAI, Xue-mei CAI, Bo DONG, Jun WU, Ren-zhi ZHANG. Effects of biochar addition on nutrient levels and humus and its components in dry farmland soils on the Loess Plateau [J]. Acta Prataculturae Sinica, 2022, 31(2): 14-24. |
[9] | Zi-ying CHEN, Dan-na CHANG, Mei HAN, Zheng-peng LI, Qing-biao YAN, Jiu-dong ZHANG, Guo-peng ZHOU, Xiao-feng SUN, Wei-dong CAO. Capability evaluation of 47 common vetch cultivars (lines) as autumn green manure in Qinghai Province, Northwest China [J]. Acta Prataculturae Sinica, 2022, 31(2): 39-51. |
[10] | Ting-mei WU, Hui-long LIN, Di FAN, Chang-ting JI, Yu-ting ZHAO, Jing-qiong WEI. Factors influencing the scale of herdsmen’s livestock farming in tundra alpine grassland-A case study from Qinghai Province [J]. Acta Prataculturae Sinica, 2021, 30(9): 117-126. |
[11] | Gulnazar Ali, Hai-ning TAO, Zi-kui WANG, Yu-ying SHEN. Evaluating the deep-horizon soil water content and water use efficiency in the alfalfa-wheat rotation system on the dryland of Loess Plateau using APSIM [J]. Acta Prataculturae Sinica, 2021, 30(7): 22-33. |
[12] | Ji-xiang WANG, Huan-yu GONG, Xiang-jian TU, Zhen-xing GUO, Jia-nan ZHAO, Jian SHEN, Zhen-yi LI, Juan SUN. Screening of phosphite-tolerant alfalfa varieties and identification of phosphite tolerance indicators [J]. Acta Prataculturae Sinica, 2021, 30(5): 186-199. |
[13] | Jin-wei HOU, Tao CHEN, Zhi-biao NAN. Effects of fungicide and sowing treatments on seed survival of three plant species on the Loess Plateau [J]. Acta Prataculturae Sinica, 2021, 30(3): 129-136. |
[14] | Dou-dou LIN, Gui-qin ZHAO, Ze-liang JU, Wen-long GONG. Comprehensive evaluation of drought resistance of 15 oat varieties at the seedling stage [J]. Acta Prataculturae Sinica, 2021, 30(11): 108-121. |
[15] | ZHANG Tong-rui, LI Fu-cui, LI Hui, JI Shuang-xuan, FAN Zhi-hao, CHEN Yu-feng, CHAO Yue-hui, HAN Lie-bao. Effect of carpet mesh implantation on hybrid turf stability and performance quality [J]. Acta Prataculturae Sinica, 2020, 29(8): 27-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||