Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (11): 186-197.DOI: 10.11686/cyxb2023479
Yi-ran CHANG1(), Jia-mei SHI1, Dong-mei XU1,2(), Ru-long KANG1, Yuan MA1
Received:
2023-12-13
Revised:
2024-01-12
Online:
2024-11-20
Published:
2024-09-09
Contact:
Dong-mei XU
Yi-ran CHANG, Jia-mei SHI, Dong-mei XU, Ru-long KANG, Yuan MA. Trade-off relationships between biomass and nutrient allocation in different natural populations of Agropyron mongolicum on the desert steppe[J]. Acta Prataculturae Sinica, 2024, 33(11): 186-197.
指标 Index | 不同自然种群所在样地Plots of different natural populations | |||
---|---|---|---|---|
D | Q | H | G | |
经度Longitude (E) | 106°58′04″ | 107°01′28″ | 107°16′48″ | 107°00′06″ |
纬度Latitude (N) | 37°24′54″ | 37°30′50″ | 37°45′42″ | 37°55′47″ |
海拔Altitude (m) | 1515.2 | 1462.0 | 1395.2 | 1386.5 |
多年平均降水量Average annual precipitation (mm) | 340.6 | 266.0 | 304.7 | 231.7 |
平均植被盖度Average vegetation coverage (%) | 71.93 | 65.53 | 67.27 | 56.67 |
Table 1 General situation for the plots of A. mongolicum of different natural populations
指标 Index | 不同自然种群所在样地Plots of different natural populations | |||
---|---|---|---|---|
D | Q | H | G | |
经度Longitude (E) | 106°58′04″ | 107°01′28″ | 107°16′48″ | 107°00′06″ |
纬度Latitude (N) | 37°24′54″ | 37°30′50″ | 37°45′42″ | 37°55′47″ |
海拔Altitude (m) | 1515.2 | 1462.0 | 1395.2 | 1386.5 |
多年平均降水量Average annual precipitation (mm) | 340.6 | 266.0 | 304.7 | 231.7 |
平均植被盖度Average vegetation coverage (%) | 71.93 | 65.53 | 67.27 | 56.67 |
指标 Index | 不同自然种群所在样地 Plots of different natural populations | |||
---|---|---|---|---|
D | Q | H | G | |
土壤含水量 Soil moisture content (%) | 6.68±1.10a | 5.01±1.00b | 5.90±2.13ab | 4.93±1.08b |
黏粒 Soil clay content (%) | 2.12±0.61a | 2.72±0.61a | 2.47±0.39a | 1.96±0.31a |
粉粒 Soil silt content (%) | 50.90±0.78ab | 50.32±0.21b | 54.10±1.12a | 51.98±1.59ab |
砂粒 Soil sand content (%) | 46.98±1.36a | 46.96±0.82a | 43.43±1.47a | 46.06±1.88a |
土壤全碳 Soil total carbon (g·kg-1) | 11.56±1.14a | 7.55±0.95b | 12.12±0.48a | 6.96±0.11b |
土壤全氮 Soil total nitrogen (g·kg-1) | 0.27±0.01b | 0.21±0.01c | 0.33±0.03a | 0.23±0.02bc |
土壤全磷Soil total phosphorus (g·kg-1) | 0.22±0.01b | 0.22±0.01b | 0.27±0.01a | 0.25±0.01ab |
土壤全钾 Soil total potassium (g·kg-1) | 19.89±0.15b | 24.83±0.18a | 24.87±0.43a | 20.86±0.02b |
Table 2 Soil physical and chemical properties for the plots of different natural populations
指标 Index | 不同自然种群所在样地 Plots of different natural populations | |||
---|---|---|---|---|
D | Q | H | G | |
土壤含水量 Soil moisture content (%) | 6.68±1.10a | 5.01±1.00b | 5.90±2.13ab | 4.93±1.08b |
黏粒 Soil clay content (%) | 2.12±0.61a | 2.72±0.61a | 2.47±0.39a | 1.96±0.31a |
粉粒 Soil silt content (%) | 50.90±0.78ab | 50.32±0.21b | 54.10±1.12a | 51.98±1.59ab |
砂粒 Soil sand content (%) | 46.98±1.36a | 46.96±0.82a | 43.43±1.47a | 46.06±1.88a |
土壤全碳 Soil total carbon (g·kg-1) | 11.56±1.14a | 7.55±0.95b | 12.12±0.48a | 6.96±0.11b |
土壤全氮 Soil total nitrogen (g·kg-1) | 0.27±0.01b | 0.21±0.01c | 0.33±0.03a | 0.23±0.02bc |
土壤全磷Soil total phosphorus (g·kg-1) | 0.22±0.01b | 0.22±0.01b | 0.27±0.01a | 0.25±0.01ab |
土壤全钾 Soil total potassium (g·kg-1) | 19.89±0.15b | 24.83±0.18a | 24.87±0.43a | 20.86±0.02b |
种群 Population | 茎生物量 Stem biomass | 叶生物量 Leaf biomass | 穗生物量 Spike biomass | 地上生物量 Aboveground biomass | 根生物量 Root biomass | 个体总生物量 Total biomass |
---|---|---|---|---|---|---|
D | 12.57±1.45Aa | 1.27±0.07Ab | 2.42±0.25Ab | 16.26±1.73A | 3.11±0.32Bb | 19.38±2.01B |
Q | 6.10±0.86Ba | 0.56±0.14Bc | 1.31±0.28Bb | 7.97±1.08B | 2.37±0.42Bb | 10.34±1.34BC |
H | 10.09±1.42Aa | 1.39±0.13Ab | 1.84±0.41ABb | 13.33±1.89A | 11.36±1.56Aa | 24.69±3.01A |
G | 2.39±0.74Ba | 0.34±0.01Bb | 0.58±0.25Cb | 3.31±0.07B | 2.13±0.40Ba | 5.44±0.39C |
Table 3 Component biomass of A. mongolicum for different natural populations (g·plant-1)
种群 Population | 茎生物量 Stem biomass | 叶生物量 Leaf biomass | 穗生物量 Spike biomass | 地上生物量 Aboveground biomass | 根生物量 Root biomass | 个体总生物量 Total biomass |
---|---|---|---|---|---|---|
D | 12.57±1.45Aa | 1.27±0.07Ab | 2.42±0.25Ab | 16.26±1.73A | 3.11±0.32Bb | 19.38±2.01B |
Q | 6.10±0.86Ba | 0.56±0.14Bc | 1.31±0.28Bb | 7.97±1.08B | 2.37±0.42Bb | 10.34±1.34BC |
H | 10.09±1.42Aa | 1.39±0.13Ab | 1.84±0.41ABb | 13.33±1.89A | 11.36±1.56Aa | 24.69±3.01A |
G | 2.39±0.74Ba | 0.34±0.01Bb | 0.58±0.25Cb | 3.31±0.07B | 2.13±0.40Ba | 5.44±0.39C |
种群Population | 构件Component | 碳储量Carbon storage | 氮储量Nitrogen storage | 磷储量Phosphorus storage |
---|---|---|---|---|
D | 根Root | 755.91±80.03Bb | 12.54±1.73Bc | 0.97±0.10Bb |
茎Stem | 8037.88±850.99Aa | 52.89±5.47Aa | 3.90±0.39Aa | |
叶Leaf | 811.28±40.48Ab | 21.91±1.01Abc | 1.18±0.03Ab | |
穗Spike | 1478.49±152.74Ab | 37.12±3.30Ab | 3.53±0.42Aa | |
Q | 根Root | 574.86±135.25Bb | 8.95±1.63Bb | 0.80±0.14Bb |
茎Stem | 3878.47±533.75Ba | 23.56±3.51Ba | 1.94±0.35Ba | |
叶Leaf | 358.08±91.59Bb | 8.86±2.51Bb | 0.53±0.14Bb | |
穗Spike | 804.35±180.71Bb | 16.80±2.68Bab | 1.60±0.28Ba | |
H | 根Root | 2489.87±158.46Ab | 43.20±4.09Ab | 3.42±0.13Aa |
茎Stem | 6492.72±994.74Aa | 67.76±9.82Aa | 3.84±0.45Aa | |
叶Leaf | 1008.27±117.61Ab | 28.45±3.64Ab | 1.29±0.18Ab | |
穗Spike | 1100.17±235.92ABb | 28.13±5.36ABb | 2.29±0.61ABb | |
G | 根Root | 500.24±51.88Bb | 9.11±1.00Ba | 0.79±0.16Ba |
茎Stem | 1507.66±460.74Ba | 17.09±6.17Ba | 1.62±0.84Ba | |
叶Leaf | 216.98±5.95Bb | 7.37±0.71Ba | 0.41±0.06Ba | |
穗Spike | 357.09±160.08Bb | 8.31±3.53Ba | 0.78±0.36Ca |
Table 4 Component nutrient storage of A. mongolicum for different natural populations (g·m-2)
种群Population | 构件Component | 碳储量Carbon storage | 氮储量Nitrogen storage | 磷储量Phosphorus storage |
---|---|---|---|---|
D | 根Root | 755.91±80.03Bb | 12.54±1.73Bc | 0.97±0.10Bb |
茎Stem | 8037.88±850.99Aa | 52.89±5.47Aa | 3.90±0.39Aa | |
叶Leaf | 811.28±40.48Ab | 21.91±1.01Abc | 1.18±0.03Ab | |
穗Spike | 1478.49±152.74Ab | 37.12±3.30Ab | 3.53±0.42Aa | |
Q | 根Root | 574.86±135.25Bb | 8.95±1.63Bb | 0.80±0.14Bb |
茎Stem | 3878.47±533.75Ba | 23.56±3.51Ba | 1.94±0.35Ba | |
叶Leaf | 358.08±91.59Bb | 8.86±2.51Bb | 0.53±0.14Bb | |
穗Spike | 804.35±180.71Bb | 16.80±2.68Bab | 1.60±0.28Ba | |
H | 根Root | 2489.87±158.46Ab | 43.20±4.09Ab | 3.42±0.13Aa |
茎Stem | 6492.72±994.74Aa | 67.76±9.82Aa | 3.84±0.45Aa | |
叶Leaf | 1008.27±117.61Ab | 28.45±3.64Ab | 1.29±0.18Ab | |
穗Spike | 1100.17±235.92ABb | 28.13±5.36ABb | 2.29±0.61ABb | |
G | 根Root | 500.24±51.88Bb | 9.11±1.00Ba | 0.79±0.16Ba |
茎Stem | 1507.66±460.74Ba | 17.09±6.17Ba | 1.62±0.84Ba | |
叶Leaf | 216.98±5.95Bb | 7.37±0.71Ba | 0.41±0.06Ba | |
穗Spike | 357.09±160.08Bb | 8.31±3.53Ba | 0.78±0.36Ca |
环境因子 Environmental factor | 解释量 Explains (%) | 贡献率 Contribution (%) | F | P |
---|---|---|---|---|
土壤全氮 Soil total nitrogen | 39.3 | 45.5 | 6.5 | 0.010** |
土壤全钾 Soil total potassium | 27.7 | 32.1 | 7.5 | 0.022* |
土壤全碳 Soil total carbon | 4.0 | 4.7 | 1.1 | 0.314 |
砂粒 Soil sand content | 7.1 | 8.2 | 2.3 | 0.132 |
土壤含水量 Soil water content | 6.9 | 7.9 | 2.7 | 0.090 |
黏粒 Soil clay content | 1.1 | 1.3 | 0.4 | 0.772 |
土壤全磷Soil total phosphorus | 0.3 | 0.3 | <0.1 | 0.980 |
粉粒 Soil silt content | <0.1 | <0.1 | <0.1 | 1.000 |
Table 5 Results by redundancy analysis ordination with the first two axes and Monte Carlo permutation test
环境因子 Environmental factor | 解释量 Explains (%) | 贡献率 Contribution (%) | F | P |
---|---|---|---|---|
土壤全氮 Soil total nitrogen | 39.3 | 45.5 | 6.5 | 0.010** |
土壤全钾 Soil total potassium | 27.7 | 32.1 | 7.5 | 0.022* |
土壤全碳 Soil total carbon | 4.0 | 4.7 | 1.1 | 0.314 |
砂粒 Soil sand content | 7.1 | 8.2 | 2.3 | 0.132 |
土壤含水量 Soil water content | 6.9 | 7.9 | 2.7 | 0.090 |
黏粒 Soil clay content | 1.1 | 1.3 | 0.4 | 0.772 |
土壤全磷Soil total phosphorus | 0.3 | 0.3 | <0.1 | 0.980 |
粉粒 Soil silt content | <0.1 | <0.1 | <0.1 | 1.000 |
1 | Penuelas J, Janssens I A, Ciais P, et al. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Global Change Biology, 2020, 26(4): 1962-1985. |
2 | Ma Z, Liu H, Mi Z, et al. Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 2017, 8: 15378. |
3 | Zhou Y, Ma H, Lu Q, et al. Different responses of leaf and root economics spectrum to grazing time at the community level in desert steppe, China. Science of the Total Environment, 2024, 909: 168547. |
4 | Li X, Song Z, Hu Y, et al. Drought intensity and post-drought precipitation determine vegetation recovery in a desert steppe in Inner Mongolia, China. Science of the Total Environment, 2024, 906: 167449. |
5 | Huang X Y, Chen Z, Huang M Y, et al. Functional traits of woody plants along the environmental gradients in eastern Tibet. Acta Ecologica Sinica, 2022, 42(22): 8964-8976. |
黄汐月, 陈卓, 黄梦月, 等. 藏东木本植物群落功能性状分布与环境的关系. 生态学报, 2022, 42(22): 8964-8976. | |
6 | Freschet G T, Swart E M, Cornelissen J H. Integrated plant phenotypic responses to contrasting above- and below-ground resources: key roles of specific leaf area and root mass fraction. New Phytologist, 2015, 206(4): 1247-1260. |
7 | Raza M A, Bin K M, Zhang X, et al. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Scientific Reports, 2019, 9(1): 4947. |
8 | He Y Y, Guo S L, Wang Z. Research progress of trade-off relationships of plant functional traits. Chinese Journal of Plant Ecology, 2019, 43(12): 1021-1035. |
何芸雨, 郭水良, 王喆. 植物功能性状权衡关系的研究进展. 植物生态学报, 2019, 43(12): 1021-1035. | |
9 | Li S J, Wang Z H, Su P X, et al. Research progress on the trade-off strategy and functional diversity of desert plants. Acta Ecologica Sinica, 2022, 42(18): 7308-7320. |
李善家, 王子濠, 苏培玺, 等. 荒漠植物性状权衡策略及功能多样性研究进展. 生态学报, 2022, 42(18): 7308-7320. | |
10 | Chai Y F, Zhong J Y, Zhao J L, et al. Environment and plant traits explain shrub biomass allocation and species composition across ecoregions in North China. Journal of Vegetation Science, 2021, 2: e13080. |
11 | Ali S, Hafeez A, Ma X L, et al. Equal potassium-nitrogen ratio regulated the nitrogen metabolism and yield of high-density late-planted cotton (Gossypium hirsutum L.) in Yangtze River valley of China. Industrial Crops and Products, 2019, 129: 231-241. |
12 | Erfan A, Li J, Zhuang W W. Relationship between habitat soil factor and stoichiometric characteristics of two kinds of desert leguminous plants. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(8): 1384-1395. |
依里帆·艾克拜尔江, 李进, 庄伟伟. 两种荒漠豆科植物化学计量特征与生境土壤因子的关系. 西北植物学报, 2022, 42(8): 1384-1395. | |
13 | Freschet G T, Violle C, Bourget M Y, et al. Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. New Phytologist, 2018, 219(4): 1338-1352. |
14 | Yan B G, Fan B, He G X, et al. Biomass allocations and their response to environmental factors for grass species in an arid-hot valley. Chinese Journal of Applied Ecology, 2016, 27(10): 3173-3181. |
闫帮国, 樊博, 何光熊, 等. 干热河谷草本植物生物量分配及其对环境因子的响应. 应用生态学报, 2016, 27(10): 3173-3181. | |
15 | Zhang K, Su Y, Yang R. Biomass and nutrient allocation strategies in a desert ecosystem in the Hexi Corridor, northwest China. Journal of Plant Research, 2017, 130(4): 699-708. |
16 | Jin Y, Tian D, Li J, et al. Water causes divergent responses of specific carbon sink to long-term grazing in a desert grassland. Science of the Total Environment, 2023, 873: 162166. |
17 | Han H, Liu W, Lu Y, et al. Isolation and application of P genome-specific DNA sequences of Agropyron Gaertn. in Triticeae. Planta, 2017, 245(2): 425-437. |
18 | Xu A Y, Wang X, Wang X J, et al. Agropyron mongolicum Keng’s growth in response to nitrogen addition is linked to root morphological traits and nitrogen-use efficiency. Agronomy Journal, 2022, 12(5): 1146. |
19 | Du J, Li X, Li T, et al. Genome-wide transcriptome profiling provides overwintering mechanism of Agropyron mongolicum. BMC Plant Biology, 2017, 17(1): 138. |
20 | Li X Q, Gao Y H, Liu Y, et al. The genetic diversity of 9 populations of dry-desert Agropyron mongolicun collected in northern China. Acta Prataculturae Sinica, 2016, 25(3): 77-85. |
李晓全, 高有汉, 刘扬, 等. 我国北方9份旱生-沙生植物蒙古冰草遗传多样性研究. 草业学报, 2016, 25(3): 77-85. | |
21 | Li Y F, Zhang X, Liu Z X, et al. Response of functional traits and rhizosphere effects of Agropyron mongolicum to soil properties in desert steppe of Ningxia. Acta Ecologica Sinica, 2023, 43(21): 8683-8691. |
李云飞, 张雪, 刘智贤, 等. 宁夏荒漠草原蒙古冰草功能性状和根际效应对土壤性状的响应. 生态学报, 2023, 43(21): 8683-8691. | |
22 | Fan B B, Sun F C, Yu Z, et al. Corrigendum: Integrated analysis of small RNAs, transcriptome and degradome sequencing reveal the drought stress network in Agropyron mongolicum Keng. Frontiers in Plant Science, 2023, 14: 1152603. |
23 | Jia Z F, Ma X, Lei S C, et al. Effects of fertilization on vegetation characteristics of light degraded meadow in Guinan county. Acta Agrestia Sinica, 2019, 27(4): 987-996. |
贾志锋, 马祥, 雷生春, 等. 施肥对贵南县轻度退化草甸植被特征的影响.草地学报, 2019, 27(4): 987-996. | |
24 | Bao S D. Agrochemical analysis of soil. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
25 | Yue K, Fornara D A, Li W, et al. Nitrogen addition affects plant biomass allocation but not allometric relationships among different organs across the globe. Journal of Plant Ecology, 2021, 14(3): 361-371. |
26 | Rutger A W, Mark V K. Drought alters plant-soil feedback effects on biomass allocation but not on plant performance. Plant and Soil, 2021, 462(1/2): 1-12. |
27 | McCarthy M C, Enquist B J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology, 2007, 21(4): 713-720. |
28 | Rogério P S, Adalton M F. Phosphorus effects on biomass accumulation and nutrient uptake and rmoval in two potato cultivars. Agronomy Journal, 2016, 108(3): 1225-1236. |
29 | Peng L, Xu X, Liao X, et al. Ampelocalamus luodianensis (Poaceae), a plant endemic to karst, adapts to resource heterogeneity in differing microhabitats by adjusting its biomass allocation. Global Ecology and Conservation, 2023, 41: e02374. |
30 | Qi Y L, Wei W, Chen C G, et al. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Global Ecology and Conservation, 2019, 18: e00606. |
31 | Shi J M. Study on phenotypic traits and ecophysiological adaptation strategies of Agropyron mongolicum under heterogeneous habitats. Yinchuan: Ningxia University, 2022. |
史佳梅. 异质生境下蒙古冰草表型性状及生理生态适应策略研究. 银川: 宁夏大学, 2022. | |
32 | Chen S, Chen L, Tang J R, et al. Biomass allocation and allometric growth of Pinus yunnanensis seedings of different classes. Journal of Sichuan Agricultural University, 2023, 41(2): 209-216, 256. |
陈诗, 陈林, 唐军荣, 等. 云南松不同等级苗木的生物量分配及其异速生长. 四川农业大学学报, 2023, 41(2): 209-216, 256. | |
33 | Yang Y, Fang J, Ma W, et al. Large-scale pattern of biomass partitioning across China’s grasslands. Global Ecology and Biogeography, 2010, 19(2): 268-277. |
34 | Gong L, Zhai W, Lyu D, et al. Variations and trade-offs in reproductive organ traits of an invasive plant Plantago virginica in different habitats. Bulletin of Botanical Research, 2022, 42(4): 544-555. |
龚莉, 翟伟, 吕丹, 等. 不同生境入侵植物北美车前繁殖器官性状变异与权衡特征. 植物研究, 2022, 42(4): 544-555. | |
35 | Li Y K, Liu J L, Xu D M, et al. Resource allocation characteristics of Agropyron mongolicum in the desert steppe in Ningxia. Acta Agrestia Sinica, 2023, 31(4): 1125-1133. |
李永康, 刘金龙, 许冬梅, 等. 宁夏荒漠草原蒙古冰草资源分配特征. 草地学报, 2023, 31(4): 1125-1133. | |
36 | Wang D, Li J F, Li Y Q, et al. Allometric growth and phenotypic plasticity of Pinus yunnanensis at different seedling ages. Journal of Central South University of Forestry & Technology, 2022, 42(1): 36-44. |
王丹, 李江飞, 李亚麒, 等. 不同苗龄云南松异速生长及其表型可塑性. 中南林业科技大学学报, 2022, 42(1): 36-44. | |
37 | Shen Y, Gilbert G S, Li W, et al. Linking aboveground traits to root traits and local environment: implications of the plant economics spectrum. Frontiers in Plant Science, 2019, 10: 1412. |
38 | Minden V, Kleyer M. Internal and external regulation of plant organ stoichiometry. Plant Biology, 2014, 16(5): 897-907. |
39 | Malgwi O D, Odunze A C, Otene I J J, et al. Carbon, nitrogen, and phosphorus stocks from fallow of forage legumes on alfisols of Guinea Savanna Nigeria. World Journal of Agricultural Research, 2019, 7(4): 119-123. |
40 | Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001-11006. |
41 | Li D F, Yu S L, Wang G X, et al. Environmental heterogeneity and mechanism of stoichiometry properties of vegetative organs in dominant shrub communities across the Loess Plateau. Chinese Journal of Plant Ecology, 2015, 39(5): 453-465. |
李单凤, 于顺利, 王国勋, 等. 黄土高原优势灌丛营养器官化学计量特征的环境分异和机制. 植物生态学报, 2015, 39(5): 453-465. | |
42 | Wang L, Zhang G, Zhu P, et al. Correlations between plant and soil for their C, N, P contents and stoichiometry on the steep gully slopes. Ecological Indicators, 2023, 154: 110545. |
43 | Liu Z Y, Baoyin T G, Sun J, et al. Plant sizes mediate mowing-induced changes in nutrient stoichiometry and allocation of a perennial grass in semi-arid grassland. Ecology and Evolution, 2018, 8(6): 3109-3118. |
44 | He M, Dijkstra F A, Zhang K, et al. Influence of life form, taxonomy, climate, and soil properties on shoot and root concentrations of 11 elements in herbaceous plants in a temperate desert. Plant and Soil, 2016, 398(1/2): 339-350. |
45 | Liu Y Z, Liu W T, Yang X X, et al. Effects of livestock grazing on the C∶N∶P stoichiometry in global grassland ecosystems: A meta analysis. Chinese Journal of Applied Ecology, 2022, 33(5): 1251-1259. |
刘玉祯, 刘文亭, 杨晓霞, 等. 放牧对全球草地生态系统碳氮磷化学计量特征影响的Meta分析. 应用生态学报, 2022, 33(5): 1251-1259. | |
46 | Gass T M, Binkley D. Soil nutrient losses in an altered ecosystem are associated with native ungulate grazing. The Journal of Applied Ecology, 2011, 48(4): 952-960. |
47 | Han M Q, Pan Z L, Jin Y X, et al. Response of soil nitrogen mineraliztion to different stocking rates on the Stipa breviflora desert steppe. Acta Prataculturae Sinica, 2017, 26(9): 27-35. |
韩梦琪, 潘占磊, 靳宇曦, 等. 短花针茅荒漠草原土壤氮素矿化对载畜率的响应. 草业学报, 2017, 26(9): 27-35. | |
48 | Li Q, Zhao C, Kang M, et al. The relationship of the main root-shoot morphological characteristics and biomass allocation of Saussurea salsa under different habitat conditions in Sugan lake wetland on the northern margin of the Qinghai-Tibet Plateau. Ecological Indicators, 2021, 128: 107836. |
49 | Reich P B, Wright I J, Bavender-Bares J, et al. The evolution of plant functional variation: Traits, spectra, and strategies. International Journal of Plant Sciences, 2003, 164(Supple3): S143-S164. |
[1] | Shi-long HE, He YE, Jing LI, Ya-ling ZHANG, Hai-shan DE, Mei HONG. Effects of nitrogen deposition and precipitation changes in different time spans on community structure and diversity of soil meso- and micro-fauna in Stipa breviflora desert steppe [J]. Acta Prataculturae Sinica, 2024, 33(9): 140-154. |
[2] | Ying CAO, Ming-he NIE, Yan SHEN, Yan HU, Deng-bao MA, Dong LI, Teng-si HOU, Peng FANG, Xue-qin WANG. Changes in vegetation and soil characteristics and their correlations in grasslands at different stages of degradation on the desert steppe in an arid wind-sandy area of Ningxia [J]. Acta Prataculturae Sinica, 2024, 33(8): 1-14. |
[3] | Teng-si HOU, Yan SHEN, Hong-bin MA, Peng FANG, Ying CAO. Effects of Caragana intermedia stubble on soil water characteristics and water balance on the desert steppe [J]. Acta Prataculturae Sinica, 2024, 33(8): 15-24. |
[4] | Hai-xin JIANG, Yao ZHOU, Ke HU, Zhan-sheng DING, Hong-bin MA. Effects of different grazing times on soil particle composition and fractal dimension in the desert steppe [J]. Acta Prataculturae Sinica, 2024, 33(6): 17-28. |
[5] | Ya-nan ZHAO, Hong-mei WANG, Zhi-li LI, Zhen-jie ZHANG, Yan-shuo CHEN, Rong-xia SU. Responses of spatial pattern and driving factors for soil water deficit of desert grassland-shrubland transition sites [J]. Acta Prataculturae Sinica, 2024, 33(4): 22-34. |
[6] | Jun-yao LI, Xing-chi JIANG, Jin-yu HU, Dong-guang WEI, Xue-yong ZHAO, Shao-kun WANG. The effect of microbial organic fertilizers application on vegetation-soil-microbe in desert steppe [J]. Acta Prataculturae Sinica, 2024, 33(3): 34-45. |
[7] | Ping-an BAO, Kai-yang QIU, Ye-yun HUANG, Si-yao WANG, Lu-yao CUI, Xin-yi LUO, Yun-tao YANG, Ying-zhong XIE. Leaf functional trait characteristics and plasticity of desert steppe plants under nitrogen and phosphorus addition [J]. Acta Prataculturae Sinica, 2024, 33(3): 97-106. |
[8] | Min ZHAO, Kun ZHAO, Yun-bo WANG, Guo-mei YIN, Si-bo LIU, Bao-long YAN, Wei-jun MENG, Shi-jie LYU, Guo-dong HAN. Long-term grazing disturbance reduced plant diversity in Stipa breviflora desert steppe [J]. Acta Prataculturae Sinica, 2023, 32(9): 39-49. |
[9] | Xin-lei LIU, He-qiang DU, Xiu-fan LIU, Ya-wei FAN. Response of aeolian activity to grazing intensities in the desert steppe, Northern China [J]. Acta Prataculturae Sinica, 2023, 32(7): 1-11. |
[10] | Yan-shuo CHEN, Yan-ping MA, Hong-mei WANG, Ya-nan ZHAO, Zhi-li LI, Zhen-jie ZHANG. Carbon source utilization by soil bacteria at different lengths of time after introducing shrubs to the desert steppe [J]. Acta Prataculturae Sinica, 2023, 32(6): 30-44. |
[11] | Yu-xia HU, Ji-rui GONG, Chen-chen ZHU, Jia-yu SHI, Zi-he ZHANG, Liang-yuan SONG, Wei-yuan ZHANG. Spatial distribution of ecosystem services in the desert steppe, Inner Mongolia based on ecosystem service bundles [J]. Acta Prataculturae Sinica, 2023, 32(4): 1-14. |
[12] | Jiang-wen LI, Jing-hong PEI, Guo-dong HAN, Bang-yin HE, Cai LI. Effect of abnormal precipitation on the diversity of plant functional groups on the desert steppe under different stocking rates [J]. Acta Prataculturae Sinica, 2023, 32(11): 212-222. |
[13] | Xu-dong WU, Qi JIANG, Zhan-jun WANG, Bo JI, Xiao-bin REN. Effects of precipitation on the stability of aboveground biomass in desert steppe [J]. Acta Prataculturae Sinica, 2023, 32(11): 30-39. |
[14] | Yang MI, Rong GUO, Yuan WANG, Zhan-jun WANG, Qi JIANG, Hong-qian YU, Kun MA. Responses of soil bacterial and fungal communities to precipitation in the desert steppe ecosystem of Ningxia [J]. Acta Prataculturae Sinica, 2023, 32(11): 81-92. |
[15] | Wei-ling NIU, Hui CHEN, Hui-xin HOU, Chen-rui GUO, Jiao-lin MA, Jian-shuang WU. Ten-year livestock exclusion did not affect water and nitrogen use efficiency of alpine desert-steppe plants in Northwest Tibet [J]. Acta Prataculturae Sinica, 2022, 31(8): 35-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||