Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (6): 17-28.DOI: 10.11686/cyxb2023243
Previous Articles Next Articles
Hai-xin JIANG1,2,3(), Yao ZHOU1,2,3,4, Ke HU5, Zhan-sheng DING5, Hong-bin MA1,2,3,4()
Received:
2023-07-13
Revised:
2023-09-11
Online:
2024-06-20
Published:
2024-03-20
Contact:
Hong-bin MA
Hai-xin JIANG, Yao ZHOU, Ke HU, Zhan-sheng DING, Hong-bin MA. Effects of different grazing times on soil particle composition and fractal dimension in the desert steppe[J]. Acta Prataculturae Sinica, 2024, 33(6): 17-28.
项目Item | FY | FG | YG | TG | YT |
---|---|---|---|---|---|
容重Bulk density (g·cm-3) | 1.40±0.03ab | 1.45±0.01a | 1.35±0.03b | 1.41±0.01ab | 1.38±0.02b |
毛管孔隙度Capillary porosity (%) | 38.74±0.64a | 38.59±0.70a | 37.32±0.46a | 37.62±0.54a | 37.28±0.75a |
总孔隙度Total porosity (%) | 43.96±0.55a | 42.27±0.64b | 43.33±0.48ab | 42.89±0.52ab | 42.91±0.34ab |
pH | 8.83±0.03a | 8.85±0.06a | 8.87±0.02a | 8.87±0.02a | 8.91±0.02a |
土壤有机碳Soil organic carbon (g·kg-1) | 5.38±0.32ab | 4.88±0.33b | 5.41±0.37ab | 4.70±0.18b | 5.80±0.16a |
全氮Total nitrogen (g·kg-1) | 0.29±0.01ab | 0.27±0.01b | 0.27±0.01b | 0.28±0.02b | 0.32±0.01a |
全磷Total phosphorus (g·kg-1) | 0.24±0.02b | 0.28±0.00a | 0.30±0.01a | 0.22±0.02b | 0.18±0.01c |
速效钾Available potassium (mg·kg-1) | 151.11±18.73a | 121.75±17.80a | 137.86±23.42a | 109.04±17.80a | 114.21±15.37a |
速效氮Alkaline nitrogen (mg·kg-1) | 14.36±0.79a | 11.97±0.51a | 12.98±0.85a | 12.91±0.69a | 13.54±0.88a |
地上生物量Aboveground biomass (g·m-2) | 56.28±7.88a | 43.22±2.01b | 39.78±5.66b | 35.32±4.42b | 34.99±2.49b |
地下生物量Belowground biomass (g·m-2) | 291.40±4.22b | 353.86±10.73a | 267.69±10.70b | 280.59±8.58b | 269.55±3.63b |
植被盖度Plant coverage (%) | 66.17±4.84a | 60.17±2.80ab | 50.17±3.26bc | 49.00±4.06c | 45.50±3.24c |
Table 1 Soil properties and vegetation characteristics
项目Item | FY | FG | YG | TG | YT |
---|---|---|---|---|---|
容重Bulk density (g·cm-3) | 1.40±0.03ab | 1.45±0.01a | 1.35±0.03b | 1.41±0.01ab | 1.38±0.02b |
毛管孔隙度Capillary porosity (%) | 38.74±0.64a | 38.59±0.70a | 37.32±0.46a | 37.62±0.54a | 37.28±0.75a |
总孔隙度Total porosity (%) | 43.96±0.55a | 42.27±0.64b | 43.33±0.48ab | 42.89±0.52ab | 42.91±0.34ab |
pH | 8.83±0.03a | 8.85±0.06a | 8.87±0.02a | 8.87±0.02a | 8.91±0.02a |
土壤有机碳Soil organic carbon (g·kg-1) | 5.38±0.32ab | 4.88±0.33b | 5.41±0.37ab | 4.70±0.18b | 5.80±0.16a |
全氮Total nitrogen (g·kg-1) | 0.29±0.01ab | 0.27±0.01b | 0.27±0.01b | 0.28±0.02b | 0.32±0.01a |
全磷Total phosphorus (g·kg-1) | 0.24±0.02b | 0.28±0.00a | 0.30±0.01a | 0.22±0.02b | 0.18±0.01c |
速效钾Available potassium (mg·kg-1) | 151.11±18.73a | 121.75±17.80a | 137.86±23.42a | 109.04±17.80a | 114.21±15.37a |
速效氮Alkaline nitrogen (mg·kg-1) | 14.36±0.79a | 11.97±0.51a | 12.98±0.85a | 12.91±0.69a | 13.54±0.88a |
地上生物量Aboveground biomass (g·m-2) | 56.28±7.88a | 43.22±2.01b | 39.78±5.66b | 35.32±4.42b | 34.99±2.49b |
地下生物量Belowground biomass (g·m-2) | 291.40±4.22b | 353.86±10.73a | 267.69±10.70b | 280.59±8.58b | 269.55±3.63b |
植被盖度Plant coverage (%) | 66.17±4.84a | 60.17±2.80ab | 50.17±3.26bc | 49.00±4.06c | 45.50±3.24c |
处理Treatments | 土层深度Soil depth(cm) | 颗粒分布 Particle size distribution (%) | ||||
---|---|---|---|---|---|---|
粉粒Silt (< 50 μm) | 极细砂粒Very fine sand (50~100 μm) | 细砂粒Fine sand (100~250 μm) | 中砂粒Medium sand (250~500 μm) | 粗砂粒Coarse sand (500~2000 μm) | ||
FY | 0~10 | 11.49±3.02Bc | 38.39±15.69Aa | 35.18±1.34Aa | 8.67±7.75Aa | 6.27±6.26Aa |
10~20 | 33.18±1.48Bb | 41.62±1.30ABa | 22.88±0.38BCb | 2.12±0.16Aa | 0.21±0.04Aa | |
20~30 | 41.12±1.71Aab | 35.69±1.28Aa | 20.19±0.58Bbc | 2.59±0.10ABa | 0.41±0.05Ba | |
30~40 | 51.54±7.09Aa | 28.45±5.87Aa | 16.36±2.15Ac | 2.81±0.46Aa | 0.84±0.47Aa | |
0~40 | 35.08±5.15AB | 36.01±3.26A | 23.27±2.42AB | 3.88±1.58AB | 1.76±1.35AB | |
FG | 0~10 | 14.22±4.62ABb | 38.06±13.70Aab | 34.72±2.53Aa | 7.84±6.48Aa | 5.16±5.13Aa |
10~20 | 10.79±0.94Db | 52.44±2.38Aa | 35.38±2.63Aa | 1.36±0.39Aa | 0.03±0.01Aa | |
20~30 | 21.26±3.62Bb | 29.21±6.75Ab | 29.93±2.36Aa | 10.69±3.02Aa | 8.91±3.18Aa | |
30~40 | 41.33±4.72Aa | 28.59±3.23Ab | 20.61±2.01Ab | 5.65±2.73Aa | 3.82±3.20Aa | |
0~40 | 22.49±3.85B | 36.34±4.07A | 29.76±2.02A | 6.62±1.73A | 4.79±1.68A | |
YG | 0~10 | 19.36±1.29Ac | 48.94±1.10Aa | 29.83±1.02Aa | 1.79±0.25Ab | 0.09±0.03Ac |
10~20 | 43.18±1.88Ab | 36.79±0.85Bb | 18.02±1.29Cb | 1.81±0.34Ab | 0.22±0.07Abc | |
20~30 | 54.81±4.20Aa | 24.42±1.54Ac | 15.80±1.92Bb | 3.60±0.68ABa | 1.38±0.35ABa | |
30~40 | 52.86±1.94Aa | 27.94±1.34Ac | 15.83±0.72Ab | 2.69±0.16Aab | 0.69±0.10Ab | |
0~40 | 40.77±4.42A | 35.63±2.90A | 20.63±1.87B | 2.42±0.27B | 0.55±0.16B | |
TG | 0~10 | 19.29±1.04Ab | 42.51±8.96Aab | 29.60±0.63Aa | 5.32±4.05Aa | 3.28±3.24Aa |
10~20 | 22.74±2.85Cb | 49.45±1.26Aa | 26.43±1.65Ba | 1.33±0.04Aa | 0.05±0.01Aa | |
20~30 | 47.23±4.03Aa | 32.18±0.59Aab | 17.61±2.48Bb | 2.50±0.75Ba | 0.48±0.21ABa | |
30~40 | 51.37±6.34Aa | 27.61±3.49Ab | 16.92±2.61Ab | 3.19±0.29Aa | 0.91±0.05Aa | |
0~40 | 32.33±4.86AB | 39.55±3.70A | 23.71±1.94AB | 3.13±1.18AB | 1.28±0.95AB | |
YT | 0~10 | 14.09±0.43ABb | 46.12±5.53Aa | 35.28±2.75Aa | 3.88±2.46Aa | 0.62±0.58Aa |
10~20 | 28.33±2.47BCb | 37.91±5.44Bab | 25.59±1.91Bb | 4.93±2.63Aa | 3.24±3.01Aa | |
20~30 | 45.79±8.34Aa | 24.66±1.99Abc | 18.35±4.22Bb | 6.27±3.04ABa | 4.94±3.06ABa | |
30~40 | 55.59±5.33Aa | 19.06±0.64Ac | 15.57±1.97Ab | 5.54±1.26Aa | 4.24±1.47Aa | |
0~40 | 33.68±4.93AB | 33.51±3.66A | 24.53±2.51AB | 5.10±1.19AB | 3.18±1.24AB |
Table 2 Soil particle composition at different grazing times
处理Treatments | 土层深度Soil depth(cm) | 颗粒分布 Particle size distribution (%) | ||||
---|---|---|---|---|---|---|
粉粒Silt (< 50 μm) | 极细砂粒Very fine sand (50~100 μm) | 细砂粒Fine sand (100~250 μm) | 中砂粒Medium sand (250~500 μm) | 粗砂粒Coarse sand (500~2000 μm) | ||
FY | 0~10 | 11.49±3.02Bc | 38.39±15.69Aa | 35.18±1.34Aa | 8.67±7.75Aa | 6.27±6.26Aa |
10~20 | 33.18±1.48Bb | 41.62±1.30ABa | 22.88±0.38BCb | 2.12±0.16Aa | 0.21±0.04Aa | |
20~30 | 41.12±1.71Aab | 35.69±1.28Aa | 20.19±0.58Bbc | 2.59±0.10ABa | 0.41±0.05Ba | |
30~40 | 51.54±7.09Aa | 28.45±5.87Aa | 16.36±2.15Ac | 2.81±0.46Aa | 0.84±0.47Aa | |
0~40 | 35.08±5.15AB | 36.01±3.26A | 23.27±2.42AB | 3.88±1.58AB | 1.76±1.35AB | |
FG | 0~10 | 14.22±4.62ABb | 38.06±13.70Aab | 34.72±2.53Aa | 7.84±6.48Aa | 5.16±5.13Aa |
10~20 | 10.79±0.94Db | 52.44±2.38Aa | 35.38±2.63Aa | 1.36±0.39Aa | 0.03±0.01Aa | |
20~30 | 21.26±3.62Bb | 29.21±6.75Ab | 29.93±2.36Aa | 10.69±3.02Aa | 8.91±3.18Aa | |
30~40 | 41.33±4.72Aa | 28.59±3.23Ab | 20.61±2.01Ab | 5.65±2.73Aa | 3.82±3.20Aa | |
0~40 | 22.49±3.85B | 36.34±4.07A | 29.76±2.02A | 6.62±1.73A | 4.79±1.68A | |
YG | 0~10 | 19.36±1.29Ac | 48.94±1.10Aa | 29.83±1.02Aa | 1.79±0.25Ab | 0.09±0.03Ac |
10~20 | 43.18±1.88Ab | 36.79±0.85Bb | 18.02±1.29Cb | 1.81±0.34Ab | 0.22±0.07Abc | |
20~30 | 54.81±4.20Aa | 24.42±1.54Ac | 15.80±1.92Bb | 3.60±0.68ABa | 1.38±0.35ABa | |
30~40 | 52.86±1.94Aa | 27.94±1.34Ac | 15.83±0.72Ab | 2.69±0.16Aab | 0.69±0.10Ab | |
0~40 | 40.77±4.42A | 35.63±2.90A | 20.63±1.87B | 2.42±0.27B | 0.55±0.16B | |
TG | 0~10 | 19.29±1.04Ab | 42.51±8.96Aab | 29.60±0.63Aa | 5.32±4.05Aa | 3.28±3.24Aa |
10~20 | 22.74±2.85Cb | 49.45±1.26Aa | 26.43±1.65Ba | 1.33±0.04Aa | 0.05±0.01Aa | |
20~30 | 47.23±4.03Aa | 32.18±0.59Aab | 17.61±2.48Bb | 2.50±0.75Ba | 0.48±0.21ABa | |
30~40 | 51.37±6.34Aa | 27.61±3.49Ab | 16.92±2.61Ab | 3.19±0.29Aa | 0.91±0.05Aa | |
0~40 | 32.33±4.86AB | 39.55±3.70A | 23.71±1.94AB | 3.13±1.18AB | 1.28±0.95AB | |
YT | 0~10 | 14.09±0.43ABb | 46.12±5.53Aa | 35.28±2.75Aa | 3.88±2.46Aa | 0.62±0.58Aa |
10~20 | 28.33±2.47BCb | 37.91±5.44Bab | 25.59±1.91Bb | 4.93±2.63Aa | 3.24±3.01Aa | |
20~30 | 45.79±8.34Aa | 24.66±1.99Abc | 18.35±4.22Bb | 6.27±3.04ABa | 4.94±3.06ABa | |
30~40 | 55.59±5.33Aa | 19.06±0.64Ac | 15.57±1.97Ab | 5.54±1.26Aa | 4.24±1.47Aa | |
0~40 | 33.68±4.93AB | 33.51±3.66A | 24.53±2.51AB | 5.10±1.19AB | 3.18±1.24AB |
1 | Scott W T, Stephen W W. Application of fractal mathematics to soil water retention estimation. Soil Science Society of America Journal, 1989, 53(4): 987-996. |
2 | Montero E. Rényi dimensions analysis of soil particle size distributions. Ecological Modelling, 2005, 182(3/4): 305-315. |
3 | Tyler S W, Wheatcraft S W. Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Science Society of America Journal, 1992, 56(2): 362-369. |
4 | Li Y, Li M, Horton R. Single and joint multifractal analysis of soil particle size distributions. Pedosphere, 2011, 21(1): 75-83. |
5 | Dong Z J, Zhan X L, Ding X H. Fractal features of soil particles under different land uses in the southwestern edge of the Mu Us Sandy Land. Research of Soil and Water Conservation, 2022, 29(3): 43-48. |
董智今, 展秀丽, 丁小花. 毛乌素沙地西南缘不同土地利用类型土壤颗粒分形特征. 水土保持研究, 2022, 29(3): 43-48. | |
6 | Xu G C, Li Z B, Li P. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. Catena, 2013, 101: 17-23. |
7 | Kohler F, Hamelin J, Gillet F, et al. Soil microbial community changes in Wooded Mountain Pastures due to simulated effects of cattle grazing. Plant and Soil, 2005, 278(1/2): 327-340. |
8 | Wang R D, Gao Y, Dang X H, et al. Characteristics of soil fractals and the influencing factors of different plant communities in the XiLamuren grassland. Research of Soil and Water Conservation, 2020, 27(3): 51-56. |
王瑞东, 高永, 党晓宏, 等. 希拉穆仁天然草地不同群落土壤分形特征及其影响因素. 水土保持研究, 2020, 27(3): 51-56. | |
9 | Su Y Z, Zhao H L. Fractal features of soil particle size distribution in the desertification process of the farmland in Horqin Sandy Land. Acta Ecologica Sinica, 2004, 24(1): 71-74. |
苏永中, 赵哈林. 科尔沁沙地农田沙漠化演变中土壤颗粒分形特征. 生态学报, 2004, 24(1): 71-74. | |
10 | Lin H L, Ren J Z. Integrated influence of experimental trampling and simulated precipitation on fractal dimension of soil particle size distributions in the steppes of Huanxian County in Eastern Gansu Province, China. Acta Prataculturae Sinica, 2009, 18(4): 202-209. |
林慧龙, 任继周. 践踏和降水对环县典型草原土壤颗粒分维特征的影响. 草业学报, 2009, 18(4): 202-209. | |
11 | Dong L, Wang J, Li J R, et al. Assessing the impact of grazing management on wind erosion risk in grasslands: A case study on how grazing affects aboveground biomass and soil particle composition in Inner Mongolia. Global Ecology and Conservation, 2022, 40: e02344. |
12 | Geng L S, Li H L, Dong Z, et al. Distribution characteristics of soil particle size in Xilamuren grassland with different grazing intensities. Journal of Arid Land Resources and Environment, 2021, 35(12): 121-126. |
耿林昇, 李红丽, 董智, 等. 放牧对希拉穆仁草原土壤粒度特征的影响. 干旱区资源与环境, 2021, 35(12): 121-126. | |
13 | Zhang B, Zhao T Q, He Q S, et al. Effects of grazing on soil aggregate composition and stability in Stipa breviflora desert steppe. Chinese Journal of Applied Ecology, 2022, 33(12): 3263-3270. |
张彬, 赵天启, 贺启珅, 等. 放牧对短花针茅荒漠草原土壤团聚体组成及稳定性的影响. 应用生态学报, 2022, 33(12): 3263-3270. | |
14 | Yang Y N, Yang Z Q, Guo J Y. Effects of grazing intensity on features of vegetation, soil and its erosion in a steppe desert. Bulletin of Soil and Water Conservation, 2022, 42(4): 66-73. |
杨雅楠, 杨振奇, 郭建英. 放牧强度对荒漠草原植被、土壤及其侵蚀特征的影响. 水土保持通报, 2022, 42(4): 66-73. | |
15 | Li H, Jiang K W, Yang Y Q, et al. Response of vegetation characteristics and soil nutrients to grazing in mountain meadows on the north slope of the Tianshan Mountains. Pratacultural Science, 2023, 40(4): 874-884. |
李宏, 江康威, 杨永强, 等. 天山北坡山地草甸植被特征和土壤养分对放牧的响应. 草业科学, 2023, 40(4): 874-884. | |
16 | Zuo W Q, Wang Y H, Wang F Y, et al. Effects of enclosure on the community characteristics of Leymus chinensis in degenerated steppe. Acta Prataculturae Sinica, 2009, 18(3): 12-19. |
左万庆, 王玉辉, 王风玉, 等. 围栏封育措施对退化羊草草原植物群落特征影响研究. 草业学报, 2009, 18(3): 12-19. | |
17 | Bryan B A, Gao L, Ye Y, et al. China’s response to a national land-system sustainability emergency. Nature, 2018, 559(7713): 193-204. |
18 | Zhao L P, Tan S T, Bai X, et al. Effects of enclosure duration on plant propagation and vegetation regeneration in the semiarid steppe of Yunwu Mountain. Acta Prataculturae Sinica, 2017, 26(10): 1-9. |
赵凌平, 谭世图, 白欣, 等. 封育年限对云雾山典型草原植物繁殖与植被更新的影响. 草业学报, 2017, 26(10): 1-9. | |
19 | Shi M M, Niu D C, Wang Y, et al. Effect of fencing and grazing management on the plant functional traits and functional diversity in an alpine meadow on the Tibetan Plateau. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(6): 1216-1225. |
石明明, 牛得草, 王莹, 等. 围封与放牧管理对高寒草甸植物功能性状和功能多样性的影响. 西北植物学报, 2017, 37(6): 1216-1225. | |
20 | Pan J C, Dong Z, Li H L, et al. Multi-fractal characteristics of soil particles and soil physicochemical properties in responses to grazing intensity in desert steppe. Journal of Arid Land Resources and Environment, 2021, 35(8): 93-99. |
潘嘉琛, 董智, 李红丽, 等. 短花针茅荒漠草原土壤颗粒多重分形及理化性质对放牧强度的响应. 干旱区资源与环境, 2021, 35(8): 93-99. | |
21 | Zhong B, Sun G, Chen D M, et al. Effects of different restoration measures on soil microbial biomass carbon and nitrogen and soil enzymes in the process of restoration of the desertified grassland in Zoige. Ecology and Environmental Sciences, 2017, 26(3): 392-399. |
仲波, 孙庚, 陈冬明, 等. 不同恢复措施对若尔盖沙化退化草地恢复过程中土壤微生物生物量碳氮及土壤酶的影响. 生态环境学报, 2017, 26(3): 392-399. | |
22 | Liu H M. Effect of different rotational grazing time on the plant population and the soil of Desert Steppe. Hohhot: Inner Mongolia Agricultural University, 2007. |
刘红梅. 不同轮牧时间对荒漠草原植物群落和土壤理化性质的影响. 呼和浩特: 内蒙古农业大学, 2007. | |
23 | Ren J, Wei Y, Lv S J, et al. Effect of different grazing time on under-ground biomass of plant communities in desert steppe. Animal Husbandry and Feed Science, 2016, 37(10): 32-35. |
任佳, 卫媛, 吕世杰, 等. 不同放牧时间对荒漠草原群落地下生物量的影响. 畜牧与饲料科学, 2016, 37(10): 32-35. | |
24 | Ma H B, Xie Y Z. Study on plant compensatory growth under different grazing ways in desert steppe. Acta Agriculturae Boreali-Occidentalis Sinica, 2008, 17(1): 211-215. |
马红彬, 谢应忠. 不同放牧方式下荒漠草原植物补偿性生长研究. 西北农业学报, 2008, 17(1): 211-215. | |
25 | Yoshihara Y, Tatsuno Y, Miyasaka K, et al. Can complementarity in water use help explain diversity-productivity relationships in semi-arid grasslands? Journal of Arid Environments, 2020, 173: 103994. |
26 | Nanjing Soil Institute of Chinese Academy of Sciences. Soil physical properties analysis. Shanghai: Shanghai Science and Technology Press, 1978. |
中国科学院南京土壤研究所土壤物理研究室. 土壤物理性质测定法. 上海: 上海科技出版社, 1978. | |
27 | Bao S D. Soil agrochemistry analysis (The Third Edition). Beijing: China Agriculture Press, 2000: 25-114. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000: 25-114. | |
28 | Yang P L, Luo Y P, Shi Y C. Soil fractal characteristics measured by mass of particle-size distribution. Chinese Science Bulletin, 1993, 38(20): 1896-1899. |
杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征. 科学通报, 1993, 38(20): 1896-1899. | |
29 | Wang P J, Dai Q H, Ding G J, et al. Infiltration characteristics of soil and its affecting factors in the process of vegetation recovery in Karst region. Science of Soil and Water Conservation, 2012, 10(6): 12-18. |
王佩将, 戴全厚, 丁贵杰, 等. 喀斯特地区植被恢复过程中土壤渗透性能及其影响因素. 中国水土保持科学, 2012, 10(6): 12-18. | |
30 | Ta F, Dong Z B, Nan W G, et al. Study on the characteristics of aeolian sandy soils in plantation and natural stand of Sabina vulgaris. Research of Soil and Water Conservation, 2021, 28(2): 80-87. |
拓飞, 董治宝, 南维鸽, 等. 沙地柏人工林和天然林风沙土特性研究. 水土保持研究, 2021, 28(2): 80-87. | |
31 | Yan Y C, Wang X, Yang G X, et al. Review on mechanism of fine soil particles increase in enclosed grassland. Journal of Desert Research, 2011, 31(5): 1162-1166. |
闫玉春, 王旭, 杨桂霞, 等. 退化草地封育后土壤细颗粒增加机理探讨及研究展望. 中国沙漠, 2011, 31(5): 1162-1166. | |
32 | Xie L, Song N P, Meng C, et al. Time course of changes in soil particle size and carbon and nitrogen reserves after fencing Ningxia desert steppe. Acta Prataculturae Sinica, 2020, 29(2): 1-10. |
谢莉, 宋乃平, 孟晨, 等. 不同封育年限对宁夏荒漠草原土壤粒径及碳氮储量的影响. 草业学报, 2020, 29(2): 1-10. | |
33 | Wan Q, Wang J, Wang X T, et al. Effects of different meadow use types on the fractal characteristics of soil particle in the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2022, 42(5): 1716-1726. |
宛倩, 王杰, 王向涛, 等. 青藏高原不同草地利用方式对土壤粒径分形特征的影响. 生态学报, 2022, 42(5): 1716-1726. | |
34 | Lu Q, Ma H B, Yu H Q, et al. Effects of rotational grazing methods on soil aggregates and organic carbon characteristics in desert steppe. Chinese Journal of Applied Ecology, 2019, 30(9): 3028-3038. |
陆琪, 马红彬, 俞鸿千, 等. 轮牧方式对荒漠草原土壤团聚体及有机碳特征的影响. 应用生态学报, 2019, 30(9): 3028-3038. | |
35 | Wang Q L, Hua L M, Wang G Z, et al. Effects of deferred grazing on grassland community characteristics and productivity in alpine meadow. Acta Agrestia Sinica, 2015, 23(5): 1068-1072. |
王巧玲, 花立民, 王贵珍, 等. 春季延迟放牧对高寒草甸草地群落特征及生产力的影响. 草地学报, 2015, 23(5): 1068-1072. | |
36 | Wen H Y, Fu H, Zhao H L. Fractal features of soil particle size distribution in degraded sandy grassland during reclamation and enclosure. Chinese Journal of Applied Ecology, 2006, 17(1): 55-59. |
文海燕, 傅华, 赵哈林. 退化沙质草地开垦和围封过程中的土壤颗粒分形特征. 应用生态学报, 2006, 17(1): 55-59. | |
37 | Zhang Y, Li J P, Jing L. Effect of grazing enclosure on the fractal characteristics of deep soil of grassland on the loess plateau. Research of Soil and Water Conservation, 2018, 25(5): 131-135. |
张翼, 李建平, 井乐. 封育对天然草地深层土壤粒径分形特征的影响. 水土保持研究, 2018, 25(5): 131-135. | |
38 | Ma W F, Zhu Y P, Guo Q Q, et al. Fractal characteristics of soil particle compositions in soil profiles of typical vegetation types on Loess Hilly Region. Soils, 2019, 51(3): 578-585. |
马文芳, 朱云鹏, 郭倩倩, 等. 黄土丘陵区典型植被土壤剖面的颗粒分形特征. 土壤, 2019, 51(3): 578-585. | |
39 | Du D D, Gao R Z, Jia D B.Analys of fractal characteristics and spatial variablility of soil particles in the Jilantai Salt Lake Basin. Research of Soil and Water Conservation, 2023, 30(6): 1-9. |
杜丹丹, 高瑞忠, 贾德彬. 吉兰泰盐湖盆地土壤颗粒分形特征与空间变异分析. 水土保持研究, 2023, 30(6): 1-9. | |
40 | Diao E L, Cao G C, Yuan J, et al. Fractal characteristics of soil particles under different land use patterns in Xiangride-Chaidamu River Basin. Southwest China Journal of Agricultural Sciences, 2022, 35(10): 2353-2360. |
刁二龙, 曹广超, 袁杰, 等. 香日德-柴达木河流域不同土地利用方式下土壤颗粒分形特征. 西南农业学报, 2022, 35(10): 2353-2360. | |
41 | Sun Z C, Guo T D, Yu L, et al. Changes in soil particle size distribution and fractal characteristics across an anthropogenic transition from desert steppe grassland to shrubland in eastern Ningxia. Acta Prataculturae Sinica, 2021, 30(4): 34-45. |
孙忠超, 郭天斗, 于露, 等. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征. 草业学报, 2021, 30(4): 34-45. | |
42 | Liu Y Y, Hu Y K, Gong Y M. Fractal dimensions of soil particles in different degenerate stages of alpine steppe. Bulletin of Soil and Water Conservation, 2013, 33(5): 138-142. |
柳妍妍, 胡玉昆, 公延明. 高寒草原不同退化阶段土壤颗粒分形特征. 水土保持通报, 2013, 33(5): 138-142. | |
43 | Jin Z, Dong Y S, Qi Y C, et al. Characterizing variations in soil particle-size distribution along a grass-desert shrub transition in the Ordos plateau of Inner Mongolia, China. Land Degradation & Development, 2013, 24(2): 141-146. |
44 | Luo Y X, Liu R T, Zhang J, et al. Soil particle composition, fractal dimension and their effects on soil properties following sand-binding revegetation within straw checkerboard in Tengger Desert, China. Chinese Journal of Applied Ecology, 2019, 30(2): 525-535. |
罗雅曦, 刘任涛, 张静, 等. 腾格里沙漠草方格固沙林土壤颗粒组成、分形维数及其对土壤性质的影响. 应用生态学报, 2019, 30(2): 525-535. | |
45 | Lv S Q, Gao P, Geng G P, et al. Characteristics of soil particles and their correlation with soil organic matter in lowlands of the Yellow River Delta. Journal of Soil and Water Conservation, 2011, 25(6): 134-138. |
吕圣桥, 高鹏, 耿广坡, 等. 黄河三角洲滩地土壤颗粒分形特征及其与土壤有机质的关系. 水土保持学报, 2011, 25(6): 134-138. | |
46 | Lin L, Zhang D G, Cao G M, et al. Responses of soil nutrient traits to grazing intensities in alpine Kobresia meadows. Acta Ecologica Sinica, 2016, 36(15): 4664-4671. |
林丽, 张德罡, 曹广民, 等. 放牧强度对高寒嵩草草甸土壤养分特性的影响. 生态学报, 2016, 36(15): 4664-4671. | |
47 | Shan G M, Zhang C P, Liu X, et al. Grain structure and nutrient degradation characteristics of soil from small watershed’s sloping lands in Yimeng Mountainous areas. Science of Soil and Water Conservation, 2013, 11(5): 76-82. |
单桂梅, 张春平, 刘霞, 等. 沂蒙山区小流域坡耕地土壤颗粒结构与养分退化特征. 中国水土保持科学, 2013, 11(5): 76-82. | |
48 | Zhang N. Effects of grazing intensity on vegetation community characteristics and soil physical and chemical properties of typical steppe. Beijing: Chinese Academy of Agricultural Sciences, 2020. |
张娜. 不同放牧强度对典型草原植被群落特征及土壤理化性状的影响. 北京: 中国农业科学院, 2020. | |
49 | Song C G, Zhang M Y, He Q, et al. Effects of grazing prohibition on vegetation community structure and soil moisture characteristics of alpine meadows on the southern slope of the Qilian Mountains. Chinese Journal of Grassland, 2023, 45(4): 22-32. |
宋成刚, 张铭洋, 何琦, 等. 禁牧封育对祁连山南麓高寒草甸植被群落结构及土壤水分特征的影响. 中国草地学报, 2023, 45(4): 22-32. |
[1] | Ya-nan ZHAO, Hong-mei WANG, Zhi-li LI, Zhen-jie ZHANG, Yan-shuo CHEN, Rong-xia SU. Responses of spatial pattern and driving factors for soil water deficit of desert grassland-shrubland transition sites [J]. Acta Prataculturae Sinica, 2024, 33(4): 22-34. |
[2] | Jun-yao LI, Xing-chi JIANG, Jin-yu HU, Dong-guang WEI, Xue-yong ZHAO, Shao-kun WANG. The effect of microbial organic fertilizers application on vegetation-soil-microbe in desert steppe [J]. Acta Prataculturae Sinica, 2024, 33(3): 34-45. |
[3] | Ping-an BAO, Kai-yang QIU, Ye-yun HUANG, Si-yao WANG, Lu-yao CUI, Xin-yi LUO, Yun-tao YANG, Ying-zhong XIE. Leaf functional trait characteristics and plasticity of desert steppe plants under nitrogen and phosphorus addition [J]. Acta Prataculturae Sinica, 2024, 33(3): 97-106. |
[4] | Min ZHAO, Kun ZHAO, Yun-bo WANG, Guo-mei YIN, Si-bo LIU, Bao-long YAN, Wei-jun MENG, Shi-jie LYU, Guo-dong HAN. Long-term grazing disturbance reduced plant diversity in Stipa breviflora desert steppe [J]. Acta Prataculturae Sinica, 2023, 32(9): 39-49. |
[5] | Xin-lei LIU, He-qiang DU, Xiu-fan LIU, Ya-wei FAN. Response of aeolian activity to grazing intensities in the desert steppe, Northern China [J]. Acta Prataculturae Sinica, 2023, 32(7): 1-11. |
[6] | Yan-shuo CHEN, Yan-ping MA, Hong-mei WANG, Ya-nan ZHAO, Zhi-li LI, Zhen-jie ZHANG. Carbon source utilization by soil bacteria at different lengths of time after introducing shrubs to the desert steppe [J]. Acta Prataculturae Sinica, 2023, 32(6): 30-44. |
[7] | Yu-xia HU, Ji-rui GONG, Chen-chen ZHU, Jia-yu SHI, Zi-he ZHANG, Liang-yuan SONG, Wei-yuan ZHANG. Spatial distribution of ecosystem services in the desert steppe, Inner Mongolia based on ecosystem service bundles [J]. Acta Prataculturae Sinica, 2023, 32(4): 1-14. |
[8] | Ye-yun HUANG, Kai-yang QIU, Ya-chao ZHU, Ying-zhong XIE, Wang-suo LIU, Yi YANG, Si-yao WANG, Lu-yao CUI, Ping-an BAO. Correlation between vegetation biomass and soil fractal characteristics and soil moisture at different elevations in the Helan Mountains [J]. Acta Prataculturae Sinica, 2023, 32(12): 24-35. |
[9] | Jiang-wen LI, Jing-hong PEI, Guo-dong HAN, Bang-yin HE, Cai LI. Effect of abnormal precipitation on the diversity of plant functional groups on the desert steppe under different stocking rates [J]. Acta Prataculturae Sinica, 2023, 32(11): 212-222. |
[10] | Xu-dong WU, Qi JIANG, Zhan-jun WANG, Bo JI, Xiao-bin REN. Effects of precipitation on the stability of aboveground biomass in desert steppe [J]. Acta Prataculturae Sinica, 2023, 32(11): 30-39. |
[11] | Yang MI, Rong GUO, Yuan WANG, Zhan-jun WANG, Qi JIANG, Hong-qian YU, Kun MA. Responses of soil bacterial and fungal communities to precipitation in the desert steppe ecosystem of Ningxia [J]. Acta Prataculturae Sinica, 2023, 32(11): 81-92. |
[12] | Wei-ling NIU, Hui CHEN, Hui-xin HOU, Chen-rui GUO, Jiao-lin MA, Jian-shuang WU. Ten-year livestock exclusion did not affect water and nitrogen use efficiency of alpine desert-steppe plants in Northwest Tibet [J]. Acta Prataculturae Sinica, 2022, 31(8): 35-48. |
[13] | Wan-long LIU, Dong-mei XU, Jia-mei SHI, Ai-yun XU. Plant cluster structure and leaf functional characters of Agropyron mongolicum populations in different plant species associations [J]. Acta Prataculturae Sinica, 2022, 31(8): 72-80. |
[14] | Wen-zhang GUO, Chang-qing JING, Xiao-jin DENG, Chen CHEN, Wei-kang ZHAO, Zhi-xiong HOU, Gong-xin WANG. Variations in carbon flux and factors influencing it on the northern slopes of the Tianshan Mountains [J]. Acta Prataculturae Sinica, 2022, 31(5): 1-12. |
[15] | Ling JIN, Ying LU, Hong-bin MA, Ying-zhong XIE, Yan SHEN. Numerical classification and ordination of the desert steppe plant community in Etuokeqianqi, Inner Mongolia [J]. Acta Prataculturae Sinica, 2022, 31(4): 12-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||