Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (11): 30-45.DOI: 10.11686/cyxb2023484
Previous Articles Next Articles
Hao SHI1(), Cai-hong YANG1(), Fei XIA3(), Jun-qiang WANG2,3, Wei WEI3, Jing-long WANG3, Yun-yin XUE2, Shai-kun ZHENG1, Hao-yang WU2, Lin-ling RAN2, Shuang YAN2, Xiao-min JIANG1
Received:
2023-12-18
Revised:
2024-01-03
Online:
2024-11-20
Published:
2024-09-09
Contact:
Cai-hong YANG,Fei XIA
Hao SHI, Cai-hong YANG, Fei XIA, Jun-qiang WANG, Wei WEI, Jing-long WANG, Yun-yin XUE, Shai-kun ZHENG, Hao-yang WU, Lin-ling RAN, Shuang YAN, Xiao-min JIANG. Initial effects of short-term warming on the productivity of alpine degraded grassland in northern Tibet during the restoration process[J]. Acta Prataculturae Sinica, 2024, 33(11): 30-45.
月份 Month | CK | NR | S | TS | ||||
---|---|---|---|---|---|---|---|---|
不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | |
4 | 9.75 | 4.34 | 12.67 | 7.67 | 10.42 | 5.21 | 10.40 | 7.47 |
5 | 10.23 | 4.35 | 12.26 | 6.79 | 9.90 | 3.45 | 10.63 | 8.33 |
6 | 12.15 | 6.63 | 13.46 | 7.16 | 11.16 | 6.22 | 11.61 | 5.36 |
7 | 11.93 | 6.59 | 14.11 | 6.77 | 12.76 | 5.41 | 11.36 | 5.96 |
8 | 17.53 | 13.88 | 13.37 | 11.59 | 10.55 | 9.60 | 10.58 | 10.00 |
9 | 15.92 | 14.30 | 13.63 | 11.10 | 11.01 | 9.67 | 11.30 | 10.52 |
平均值Mean | 12.92 | 8.35 | 13.25 | 8.51 | 10.97 | 6.59 | 10.98 | 7.94 |
Table 1 Changes in soil moisture during plant growing season (May-September) under different treatments (%)
月份 Month | CK | NR | S | TS | ||||
---|---|---|---|---|---|---|---|---|
不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | |
4 | 9.75 | 4.34 | 12.67 | 7.67 | 10.42 | 5.21 | 10.40 | 7.47 |
5 | 10.23 | 4.35 | 12.26 | 6.79 | 9.90 | 3.45 | 10.63 | 8.33 |
6 | 12.15 | 6.63 | 13.46 | 7.16 | 11.16 | 6.22 | 11.61 | 5.36 |
7 | 11.93 | 6.59 | 14.11 | 6.77 | 12.76 | 5.41 | 11.36 | 5.96 |
8 | 17.53 | 13.88 | 13.37 | 11.59 | 10.55 | 9.60 | 10.58 | 10.00 |
9 | 15.92 | 14.30 | 13.63 | 11.10 | 11.01 | 9.67 | 11.30 | 10.52 |
平均值Mean | 12.92 | 8.35 | 13.25 | 8.51 | 10.97 | 6.59 | 10.98 | 7.94 |
处理 Treatment | 植物种类名称 Species name | 相对高度 Relative height | 相对密度 Relative density | 相对盖度 Relative coverage | 相对地上生物量 Relative aboveground biomass | ||||
---|---|---|---|---|---|---|---|---|---|
不增温 NO-OTC | 增温 OTC | 不增温 NO-OTC | 增温 OTC | 不增温 NO-OTC | 增温 OTC | 不增温 NO-OTC | 增温 OTC | ||
CK | 丝颖针茅 Stipa capillacea | 0.20 | / | 0.02 | / | 0.15 | / | 0.25 | / |
二裂委陵菜 P. bifurca | 0.04 | 0.05 | 0.15 | 0.20 | 0.15 | 0.15 | 0.11 | 0.16 | |
藏豆 S. tibetica | 0.07 | 0.05 | 0.21 | 0.17 | 0.25 | 0.29 | 0.26 | 0.33 | |
早熟禾 P. annua | 0.19 | 0.10 | 0.04 | 0.10 | 0.05 | 0.22 | 0.07 | 0.15 | |
火绒草 L. leontopodioides | 0.01 | 0.03 | 0.84 | 0.38 | 0.60 | 0.27 | 0.46 | 0.29 | |
洽草 K. macrantha | 0.09 | 0.03 | 0.29 | 0.04 | 0.30 | 0.08 | 0.28 | 0.03 | |
香藜 D. botrys | 0.02 | 0.03 | 0.01 | 0.21 | 0.01 | 0.04 | 0.12 | 0.03 | |
披碱草 E. dahuricus | / | 0.10 | / | 0.04 | / | 0.09 | / | 0.13 | |
紫花针茅 S. purpurea | 0.22 | 0.01 | 0.01 | 0.02 | 0.05 | 0.01 | 0.02 | 0.01 | |
肉果草 L. tibetica | 0.02 | 0.01 | 0.04 | 0.06 | 0.02 | 0.08 | 0.02 | 0.06 | |
藏蒿草 Carex tibetikobresia | / | 0.03 | / | 0.03 | / | 0.03 | / | 0.03 | |
NR | 洽草 K. macrantha | 0.05 | 0.16 | 0.16 | 0.24 | 0.08 | 0.19 | 0.12 | 0.55 |
早熟禾 P. annua | 0.10 | 0.09 | 0.13 | 0.22 | 0.07 | 0.14 | 0.24 | 0.22 | |
藏三毛 Trisetum spicatum subsp. tibeticum | 0.16 | 0.10 | 0.28 | 0.26 | 0.24 | 0.30 | 0.27 | 0.39 | |
肉果草 L. tibetica | 0.01 | 0.01 | 0.24 | 0.06 | 0.19 | 0.08 | 0.10 | 0.02 | |
二裂委陵菜 P. bifurca | 0.02 | 0.04 | 0.01 | 0.09 | 0.04 | 0.09 | 0.02 | 0.11 | |
火绒草 L. leontopodioides | 0.02 | 0.02 | 0.03 | 0.04 | 0.05 | 0.05 | 0.02 | 0.01 | |
狗娃花 A. hispidus | 0.03 | 0.05 | 1.00 | 0.09 | 0.02 | 0.26 | 0.01 | 0.08 | |
藏豆 S. tibetica | 0.03 | 0.05 | 0.27 | 0.34 | 0.41 | 0.28 | 0.37 | 0.29 | |
马先蒿 Pedicularis tibetica | 0.00 | / | 0.03 | / | 0.02 | / | 0.00 | / | |
青藏苔草 C. thibetica | 0.04 | 0.06 | 0.03 | 0.12 | 0.01 | 0.16 | 0.04 | 0.09 | |
香藜 D. botrys | 0.01 | / | 0.03 | / | 0.07 | / | 0.01 | / | |
S | 披碱草 E. dahuricus | 0.20 | 0.16 | 0.43 | 0.20 | 0.56 | 0.20 | 0.48 | 0.32 |
藏豆 S. tibetica | 0.02 | 0.03 | 0.25 | 0.08 | 0.09 | 0.11 | 0.04 | 0.05 | |
早熟禾 P. annua | 0.12 | 0.14 | 0.32 | 0.62 | 0.35 | 0.51 | 0.37 | 0.52 | |
藏三毛 T. spicatum subsp. tibeticum | 0.05 | / | 0.25 | / | 0.10 | / | 0.39 | / | |
二裂委陵菜 P. bifurca | / | 0.02 | / | 0.20 | / | 0.32 | / | 0.19 | |
TS | 披碱草 E. dahuricus | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Table 2 Changes in plant populations and eigenvalues in different treatments after short-term warming
处理 Treatment | 植物种类名称 Species name | 相对高度 Relative height | 相对密度 Relative density | 相对盖度 Relative coverage | 相对地上生物量 Relative aboveground biomass | ||||
---|---|---|---|---|---|---|---|---|---|
不增温 NO-OTC | 增温 OTC | 不增温 NO-OTC | 增温 OTC | 不增温 NO-OTC | 增温 OTC | 不增温 NO-OTC | 增温 OTC | ||
CK | 丝颖针茅 Stipa capillacea | 0.20 | / | 0.02 | / | 0.15 | / | 0.25 | / |
二裂委陵菜 P. bifurca | 0.04 | 0.05 | 0.15 | 0.20 | 0.15 | 0.15 | 0.11 | 0.16 | |
藏豆 S. tibetica | 0.07 | 0.05 | 0.21 | 0.17 | 0.25 | 0.29 | 0.26 | 0.33 | |
早熟禾 P. annua | 0.19 | 0.10 | 0.04 | 0.10 | 0.05 | 0.22 | 0.07 | 0.15 | |
火绒草 L. leontopodioides | 0.01 | 0.03 | 0.84 | 0.38 | 0.60 | 0.27 | 0.46 | 0.29 | |
洽草 K. macrantha | 0.09 | 0.03 | 0.29 | 0.04 | 0.30 | 0.08 | 0.28 | 0.03 | |
香藜 D. botrys | 0.02 | 0.03 | 0.01 | 0.21 | 0.01 | 0.04 | 0.12 | 0.03 | |
披碱草 E. dahuricus | / | 0.10 | / | 0.04 | / | 0.09 | / | 0.13 | |
紫花针茅 S. purpurea | 0.22 | 0.01 | 0.01 | 0.02 | 0.05 | 0.01 | 0.02 | 0.01 | |
肉果草 L. tibetica | 0.02 | 0.01 | 0.04 | 0.06 | 0.02 | 0.08 | 0.02 | 0.06 | |
藏蒿草 Carex tibetikobresia | / | 0.03 | / | 0.03 | / | 0.03 | / | 0.03 | |
NR | 洽草 K. macrantha | 0.05 | 0.16 | 0.16 | 0.24 | 0.08 | 0.19 | 0.12 | 0.55 |
早熟禾 P. annua | 0.10 | 0.09 | 0.13 | 0.22 | 0.07 | 0.14 | 0.24 | 0.22 | |
藏三毛 Trisetum spicatum subsp. tibeticum | 0.16 | 0.10 | 0.28 | 0.26 | 0.24 | 0.30 | 0.27 | 0.39 | |
肉果草 L. tibetica | 0.01 | 0.01 | 0.24 | 0.06 | 0.19 | 0.08 | 0.10 | 0.02 | |
二裂委陵菜 P. bifurca | 0.02 | 0.04 | 0.01 | 0.09 | 0.04 | 0.09 | 0.02 | 0.11 | |
火绒草 L. leontopodioides | 0.02 | 0.02 | 0.03 | 0.04 | 0.05 | 0.05 | 0.02 | 0.01 | |
狗娃花 A. hispidus | 0.03 | 0.05 | 1.00 | 0.09 | 0.02 | 0.26 | 0.01 | 0.08 | |
藏豆 S. tibetica | 0.03 | 0.05 | 0.27 | 0.34 | 0.41 | 0.28 | 0.37 | 0.29 | |
马先蒿 Pedicularis tibetica | 0.00 | / | 0.03 | / | 0.02 | / | 0.00 | / | |
青藏苔草 C. thibetica | 0.04 | 0.06 | 0.03 | 0.12 | 0.01 | 0.16 | 0.04 | 0.09 | |
香藜 D. botrys | 0.01 | / | 0.03 | / | 0.07 | / | 0.01 | / | |
S | 披碱草 E. dahuricus | 0.20 | 0.16 | 0.43 | 0.20 | 0.56 | 0.20 | 0.48 | 0.32 |
藏豆 S. tibetica | 0.02 | 0.03 | 0.25 | 0.08 | 0.09 | 0.11 | 0.04 | 0.05 | |
早熟禾 P. annua | 0.12 | 0.14 | 0.32 | 0.62 | 0.35 | 0.51 | 0.37 | 0.52 | |
藏三毛 T. spicatum subsp. tibeticum | 0.05 | / | 0.25 | / | 0.10 | / | 0.39 | / | |
二裂委陵菜 P. bifurca | / | 0.02 | / | 0.20 | / | 0.32 | / | 0.19 | |
TS | 披碱草 E. dahuricus | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
影响因子 Impact factor | 修复措施 Restoration measures | 增温 OTC | 修复措施×增温 Restoration measures×OTC |
---|---|---|---|
盖度Coverage | 62.198** | 5.982* | 3.391* |
高度Height | 17.914** | 1.212 | 2.758* |
Table 3 Two-factor ANOVA of the effects of restoration measures and warming on community coverage and height
影响因子 Impact factor | 修复措施 Restoration measures | 增温 OTC | 修复措施×增温 Restoration measures×OTC |
---|---|---|---|
盖度Coverage | 62.198** | 5.982* | 3.391* |
高度Height | 17.914** | 1.212 | 2.758* |
处理 Treatment | 不同功能群地上生物量 Aboveground biomass of different functional groups | 总地上生物量 Total aboveground biomass | 地下生物量 Below-ground biomass | ||||
---|---|---|---|---|---|---|---|
不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | ||
CK | 禾草Grass | 26.27±17.79e | 19.40±12.87d | 81.39±23.89c | 78.72±0.87c | 223.67±88.64ab | 290.00±94.12a |
豆科Legume | 23.09±20.51a | 23.25±5.60a | |||||
杂草Forb | 32.03±3.45a | 36.07±9.41a | |||||
NR | 禾草Grass | 41.39±4.89e | 40.80±4.64de | 87.37±16.46c | 94.88±4.78bc | 368.67±65.62a | 293.67±32.72b |
豆科Legume | 31.65±14.36a | 32.21±4.87a | |||||
杂草Forb | 14.33±3.07b | 21.87±4.73a | |||||
S | 禾草Grass | 110.40±7.32c | 94.21±11.92cd | 113.55±8.32c | 113.61±17.92c | 389.33±62.66a | 269.00±84.50b |
豆科Legume | 3.15±1.46a | 3.89±1.22a | |||||
杂草Forb | / | 15.51±3.79 | |||||
TS | 禾草Grass | 879.08±69.68a | 800.81±37.40b | 879.08±69.68a | 800.81±37.40b | 567.33±162.72c | 272.33±97.09d |
豆科Legume | / | / | |||||
杂草Forb | / | / |
Table 4 Changes in biomass of different treatments after short-term warming (g·m-2)
处理 Treatment | 不同功能群地上生物量 Aboveground biomass of different functional groups | 总地上生物量 Total aboveground biomass | 地下生物量 Below-ground biomass | ||||
---|---|---|---|---|---|---|---|
不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | ||
CK | 禾草Grass | 26.27±17.79e | 19.40±12.87d | 81.39±23.89c | 78.72±0.87c | 223.67±88.64ab | 290.00±94.12a |
豆科Legume | 23.09±20.51a | 23.25±5.60a | |||||
杂草Forb | 32.03±3.45a | 36.07±9.41a | |||||
NR | 禾草Grass | 41.39±4.89e | 40.80±4.64de | 87.37±16.46c | 94.88±4.78bc | 368.67±65.62a | 293.67±32.72b |
豆科Legume | 31.65±14.36a | 32.21±4.87a | |||||
杂草Forb | 14.33±3.07b | 21.87±4.73a | |||||
S | 禾草Grass | 110.40±7.32c | 94.21±11.92cd | 113.55±8.32c | 113.61±17.92c | 389.33±62.66a | 269.00±84.50b |
豆科Legume | 3.15±1.46a | 3.89±1.22a | |||||
杂草Forb | / | 15.51±3.79 | |||||
TS | 禾草Grass | 879.08±69.68a | 800.81±37.40b | 879.08±69.68a | 800.81±37.40b | 567.33±162.72c | 272.33±97.09d |
豆科Legume | / | / | |||||
杂草Forb | / | / |
影响因子Impact factor | 修复措施Restoration measures | 增温OTC | 修复措施×增温Restoration measures×OTC |
---|---|---|---|
总地上生物量Total aboveground biomass | 29.077** | 1.892* | 4.047* |
总地下生物量Total below-ground biomass | 1.938 | 4.267* | 2.787** |
禾草地上生物量Grass aboveground biomass | 106.992** | 3.553* | 2.566 |
豆科地上生物量Legume aboveground biomass | 1.689 | 0.051 | 0.343 |
杂草地上生物量Forb aboveground biomass | 17.432** | 2.480 | 1.124* |
Table 5 Two-way ANOVA of biomass by restoration measures and warming
影响因子Impact factor | 修复措施Restoration measures | 增温OTC | 修复措施×增温Restoration measures×OTC |
---|---|---|---|
总地上生物量Total aboveground biomass | 29.077** | 1.892* | 4.047* |
总地下生物量Total below-ground biomass | 1.938 | 4.267* | 2.787** |
禾草地上生物量Grass aboveground biomass | 106.992** | 3.553* | 2.566 |
豆科地上生物量Legume aboveground biomass | 1.689 | 0.051 | 0.343 |
杂草地上生物量Forb aboveground biomass | 17.432** | 2.480 | 1.124* |
影响因子Impact factor | 修复措施Restoration measures | 增温OTC | 修复措施×增温Restoration measures×OTC |
---|---|---|---|
物种丰富度指数Species richness index | 19.320** | 0.082 | 0.354 |
香农-威纳指数Shannon-Wiener index | 45.297** | 0.402 | 0.492 |
辛普森指数Simpson index | 82.105** | 0.398 | 0.917 |
Pielou指数Pielou index | 64.213** | 0.521 | 1.654* |
Table 6 Two-way ANOVA of species diversity by restoration measures and warming
影响因子Impact factor | 修复措施Restoration measures | 增温OTC | 修复措施×增温Restoration measures×OTC |
---|---|---|---|
物种丰富度指数Species richness index | 19.320** | 0.082 | 0.354 |
香农-威纳指数Shannon-Wiener index | 45.297** | 0.402 | 0.492 |
辛普森指数Simpson index | 82.105** | 0.398 | 0.917 |
Pielou指数Pielou index | 64.213** | 0.521 | 1.654* |
1 | Wangchuk K, Darabant A, Nirola H, et al. Climate warming decreases plant diversity but increases community biomass in high-altitude grasslands. Rangeland Ecology & Management, 2021, 75: 51-57. |
2 | Xu X F, Tian H Q, Wan S Q. Climate warming impacts on carbon cycling in terrestrial ecosystems. Chinese Journal of Plant Ecology, 2007, 31(2): 175-188. |
徐小锋, 田汉勤, 万师强. 气候变暖对陆地生态系统碳循环的影响. 植物生态学报, 2007, 31(2): 175-188. | |
3 | Qin D H, Stocker T. Highlights of the IPCC working group I fifth assessment report. Climate Change Research, 2014, 10(1): 1-6. |
秦大河, Stocker T. IPCC第五次评估报告第一工作组报告的亮点结论. 气候变化研究进展, 2014, 10(1): 1-6. | |
4 | Qin D H. Climate change sciences into the 21st century: facts, impacts and strategies addressing climate change. Science & Technology Review, 2004(7): 4-7. |
秦大河. 进入21世纪的气候变化科学-气候变化的事实、影响与对策. 科技导报, 2004(7): 4-7. | |
5 | Houghton J T, Ding Y H, Griggs D J, et al. Climate change 2001: The scientific basis. Cambridge: Cambridge University Press, 2001: 881. |
6 | Thomas C D, Cameron A, Green R E, et al. Extinction risk from climate change. Nature, 2004, 427(6970): 145-148. |
7 | Qiu J. China: The third pole. Nature, 2008, 454(7203): 393-396. |
8 | Yin H J, Lai T, Cheng X Y, et al. Warming effects on growth and physiology of seedlings of Betula albo-sinensis and Abies faxoniana under two contrasting light conditions in subalpine coniferous forest of western Sichuan, China. Chinese Journal of Plant Ecology, 2008, 32(5): 1072-1083. |
尹华军, 赖挺, 程新颖, 等. 增温对川西亚高山针叶林内不同光环境下红桦和岷江冷杉幼苗生长和生理的影响. 植物生态学报, 2008, 32(5): 1072-1083. | |
9 | Piao S L, Fang J Y, He J S, et al. Spatial distribution of grassland biomass in China. Chinese Journal of Plant Ecology, 2004, 28(4): 491-498. |
朴世龙, 方精云, 贺金生, 等. 中国草地植被生物量及其空间分布格局. 植物生态学报, 2004, 28(4): 491-498. | |
10 | Liu Y J, Yang Q. Research progress and prospect of degraded grassland restoration in Qinghai-Tibet Plateau. Chinese Journal of Grassland, 2023, 45(10): 131-143. |
刘永杰, 杨琴. 青藏高原退化草地修复研究进展及展望. 中国草地学报, 2023, 45(10): 131-143. | |
11 | Du B Y, Guo Y G, Guan F C, et al. Degradation status and restoration of alpine grassland in Tibet. Special Economic Animals and Plants, 2023, 26(7): 185-188. |
杜帛洋, 郭永刚, 关法春, 等. 西藏高寒草地退化现状与修复途径.特种经济动植物, 2023, 26(7): 185-188. | |
12 | Bardgett R D, Bullock J M, Lavorel S, et al. Combatting global grassland degradation. Nature Reviews Earth and Environment, 2021, 2(10): 720-735. |
13 | Wang Z Q, Zhang Y Z, Yang Y, et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai-Tibet Plateau, in China. Ecological Informatics, 2016, 33: 32-44. |
14 | Hao A H, Xue X, Peng F, et al. Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2020, 40(3): 964-975. |
郝爱华, 薛娴, 彭飞, 等. 青藏高原典型草地植被退化与土壤退化研究.生态学报, 2020, 40(3): 964-975. | |
15 | Chen D D, Zhang S H, Dong S K, et al. Effect of land-use on soil nutrients and microbial biomass of an alpine region on the northeastern Tibetan Plateau, China. Land Degradation and Development, 2010, 21(5): 446-452. |
16 | Wang C T, Wang G X, Liu W, et al. Effects of establishing an artificial grassland on vegetation characteristics and soil quality in a degraded meadow. Israel Journal of Ecology and Evolution, 2013, 59(3): 141-153. |
17 | Shi F S, Wu N, Luo P. Effect of temperature enhancement on community structure and biomass of subalpine meadow in northwestern Sichuan. Acta Ecologica Sinica, 2008, 28(11): 5286-5293. |
石福孙, 吴宁, 罗鹏. 川西北亚高山草甸植物群落结构及生物量对温度升高的响应. 生态学报, 2008, 28(11): 5286-5293. | |
18 | Li N, Wang G X, Yang Y, et al. Short-term effects of temperature enhancement on community structure and biomass of alpine meadow in the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2011, 31(4): 895-905. |
李娜, 王根绪, 杨燕, 等. 短期增温对青藏高原高寒草甸植物群落结构和生物量的影响. 生态学报, 2011, 31(4): 895-905. | |
19 | Wang Y H, Zhou G S. Responses of temporal dynamics of aboveground net primary productivity of Leymus chinensis community to precipitation fluctuation in Inner Mongolia. Acta Ecologica Sinica, 2004, 24(6): 1140-1145. |
王玉辉, 周广胜. 内蒙古羊草草原植物群落地上初级生产力时间动态对降水变化的响应. 生态学报, 2004, 24(6): 1140-1145. | |
20 | Hector A, Bagchi R. Biodiversity and ecosystem multi-functionality. Nature, 2007, 448(7150): 188-190. |
21 | Klein J A, Harte J, Zhao X Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters, 2004, 7(12): 1170-1179. |
22 | Jansson J K, Hofmockel K S. Soil microbiomes and climate change. Nature Reviews Microbiology, 2020, 18(1): 35-46. |
23 | Li J X, Zhang Y J, Zhu J T, et al. Responses of community characteristics and productivity to a warming gradient in a Kobresia pygmaea meadow of the Tibetan Plateau. Acta Ecologica Sinica, 2019, 39(2): 474-485. |
李军祥, 张扬建, 朱军涛, 等. 藏北高山嵩草草甸群落特征及生产力对模拟增温幅度的响应. 生态学报, 2019, 39(2): 474-485. | |
24 | Zhou J J, Liu Y F, Wang J L, et al. Effect of short-term nutrient addition on aboveground biomass, plant diversity, and functional traits of swampy alpine meadow in Tibet. Acta Prataculturae Sinica, 2023, 32(11): 17-29. |
周娟娟, 刘云飞, 王敬龙, 等. 短期养分添加对西藏沼泽化高寒草甸地上生物量、植物多样性和功能性状的影响. 草业学报, 2023, 32(11): 17-29. | |
25 | Walker M D, Wahren C H, Hollister R D, et al. Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences, 2006, 103(5): 1342-1346. |
26 | Suzuki S, Kudo G. Short term effects of simulated environmental change on phenology, leaf traits, and shoot growth of alpine plants on a temperate mountain, northern Japan. Global Change Biology, 1997, 3(Supple1): 108-115. |
27 | Zhang H Z, Shi X Z, Yu D S, et al. Seasonal and regional variations of soil temperature in China. Acta Pedologica Sinica, 2009, 46(2): 227-234. |
张慧智, 史学正, 于东升, 等. 中国土壤温度的季节性变化及其区域分异研究. 土壤学报, 2009, 46(2): 227-234. | |
28 | Niu S L, Han X G, Ma K P, et al. Field facilities in global warming and terrestrial ecosystem research.Chinese Journal of Plant Ecology, 2007, 31(2): 262-271. |
牛书丽, 韩兴国, 马克平, 等. 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 2007, 31(2): 262-271. | |
29 | Lemmens C, Boeck H D, Gielen B, et al. End-of-season effects of elevated temperature on ecophysiological processes of grassland species at different species richness levels. Environmental and Experimental Botany, 2006, 56(3): 245-254. |
30 | Boeck H D, Lemmens C, Gielen B, et al. Combined effects of climate warming and plant diversity loss on above- and below-ground grassland productivity. Environmental and Experimental Botany, 2007, 60(1): 95-104. |
31 | Wen J, Qin R M, Zhang S X, et al. Effects of long-term warming on the aboveground biomass and species diversity in an alpine meadow on the Qinghai-Tibetan Plateau of China. Journal of Arid Land, 2020, 12(2): 252-266. |
32 | Dai L C, Ke X, Guo X W, et al. Responses of biomass allocation across two vegetation types to climate fluctuations in the northern Qinghai-Tibet Plateau. Ecology and Evolution, 2019, 9(10): 6105-6115. |
33 | Zhang C M, Shi S L, Liu Z, et al. Effects of drought stress on the root morphology and anatomical structure of alfalfa (Medicago sativa) varieties with differing drought-tolerance. Acta Prataculturae Sinica, 2019, 28(5): 79-89. |
张翠梅, 师尚礼, 刘珍, 等. 干旱胁迫对不同抗旱性苜蓿品种根系形态及解剖结构的影响. 草业学报, 2019, 28(5): 79-89. | |
34 | Xu M H, Peng F, You Q G, et al.Year-round warming and autumnal clipping lead to downward transport of root biomass, carbon and total nitrogen in soil of an alpine meadow. Environmental and Experimental Botany, 2015, 109: 54-62. |
35 | Xiao Y C, Wang D Y, Chen B, et al. Effects of short-term warming on structure and stability of typical plant communities in Nyenchenthanglha Mountain, Tibet. Acta Ecologica Sinica, 2023, 43(20): 8608-8619. |
肖昱承, 王端阳, 陈波, 等. 短期增温对西藏念青唐古拉山典型植物群落结构和稳定性的影响. 生态学报, 2023, 43(20): 8608-8619. | |
36 | Mäkiranta P, Laiho R, Mehtätalo L, et al. Responses of phenology and biomass production of boreal fens to climate warming under different water-table level regimes. Global Change Biology, 2018, 24(3): 944-956. |
37 | Zhang Q Y, Peng S L. Effects of warming on the biomass allocation and allometric growth of the invasive shrub Lantana camara. Acta Ecologica Sinica, 2018, 38(18): 6670-6676. |
张桥英, 彭少麟. 增温对入侵植物马缨丹生物量分配和异速生长的影响. 生态学报, 2018, 38(18): 6670-6676. | |
38 | Aerts R, Cornelissen J, Dorrepaal E. Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology, 2006, 182(1): 65-77. |
39 | Eatherall A. Modeling climate change impacts on ecosystems using linked models and a GIS. Climatic Change, 1997, 35(1):17-34. |
40 | Saleska S R, Harte J, Torn M S. The effect of experimental ecosystem warming on CO2 fluxes in a mountain meadow. Global Change Biology, 1999, 5(2): 125-141. |
41 | Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production. Nature, 1993, 363(6426): 234-240. |
42 | Xu M H, Liu M, Zhai D T, et al. Dynamic changes in biomass and its relationship with environmental factors in an alpine meadow on the Qinghai-Tibetan Plateau, based on simulated warming experiments. Acta Ecologica Sinica, 2016, 36(18): 5759-5767. |
徐满厚, 刘敏, 翟大彤, 等. 青藏高原高寒草甸生物量动态变化及与环境因子的关系——基于模拟增温实验. 生态学报, 2016, 36(18): 5759-5767. | |
43 | Pauli H, Gottfried M, Grabherr G. High summits of the Alps in a changing climate//Walther G R, Burga C A, Edwards P J. “Fingerprints” of climate change: Adapted behaviour and shifting species ranges. New York: Kluwer Academic/Plenum Publishers, 2001: 139-149. |
44 | Gao P F, Zhang J, Fan W F, et al. Effects of drought stress on root characteristics structure and physiological characteristics of Potentilla bifurca var. glabrata. Acta Prataculturae Sinica, 2022, 31(2): 203-212. |
高鹏飞, 张静, 范卫芳, 等. 干旱胁迫对光叉委陵菜根系特征、结构和生理特性的影响. 草业学报, 2022, 31(2): 203-212. | |
45 | Li M H, Li Y H, Yan X H, et al. Characteristics of plant diversity and aboveground productivity and their relationship driven by subshrub expansion. Acta Prataculturae Sinica, 2023, 32(5): 27-39. |
李美慧, 李玉华, 晏昕辉, 等. 半灌木扩张驱动的草地植物多样性与地上生产力特征及其关系研究. 草业学报, 2023, 32(5): 27-39. | |
46 | Zhang Y Q, Welker J M. Tibetan alpine tundra responses to simulated changes in climate: aboveground biomass and community responses. Arctic, Antarctic and Alpine Research, 1996, 28(2): 203-209. |
47 | Ganjurjav H, Gao Q Z, Gornish E S, et al. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 2016, 223: 233-240. |
48 | Gao L, Ding Y. Progress in research and practice of restoration of degraded grassland around the world. Acta Prataculturae Sinica, 2022, 31(10): 189-205. |
高丽, 丁勇. 世界退化草地恢复研究和实践进展. 草业学报, 2022, 31(10): 189-205. | |
49 | Zhao H X, Li Q, Zhou J, et al. The characteristics of low temperature tolerance during seed germination of the ephemeral plant Lepidium apetalum (Cruciferae). Acta Botanica Yunnanica, 2010, 32(5): 448-454. |
50 | Xia L, Song X N, Cai S H, et al. Role of surface hydrothermal elements in grassland degradation over the Tibetan Plateau. Acta Ecologica Sinica, 2021, 41(11): 4618-4631. |
夏龙, 宋小宁, 蔡硕豪, 等. 地表水热要素在青藏高原草地退化中的作用. 生态学报, 2021, 41(11): 4618-4631. | |
51 | Wang Q, Zheng J H, Zhao M L, et al. Effects of warming on early restoration of degraded grassland in desert steppe. Acta Agrestia Sinica, 2022, 30(5): 1077-1085. |
王琪, 郑佳华, 赵萌莉, 等. 增温对荒漠草原不同退化程度草地恢复初期影响的研究. 草地学报, 2022, 30(5): 1077-1085. | |
52 | Gugerli F, Bauert M R. Growth and reproduction of Polygonum viviparum show weak responses to experimentally increased temperature at a Swiss alpine site. Botanica Helvetica, 2001, 111(2): 169-180. |
53 | Xu M H, Liu M, Xue X, et al. Effects of warming and clipping on the growth of aboveground vegetation in an alpine meadow. Ecology and Environmental Sciences, 2015, 24(2): 231-236. |
徐满厚, 刘敏, 薛娴, 等. 增温、刈割对高寒草甸地上植被生长的影响.生态环境学报, 2015, 24(2): 231-236. | |
54 | Ma Z Y, Liu H Y, Mi Z R, et al. Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 2017, 8(1): 15378. |
55 | Shi Z, Sherry R, Xu X, et al. Evidence for long-term shift in plant community composition under decadal experimental warming. Journal of Ecology, 2015, 103(5): 1131-1140. |
[1] | Wen-pan DU, Gui-qin ZHAO, Ji-kuan CHAI, Li YANG, Jian-gui ZHANG, Yi-chao SHI, Guan-lu ZHANG. Effects of root separation on aboveground biomass, soil nutrient contents, and root characters of intercropped oat and pea [J]. Acta Prataculturae Sinica, 2024, 33(8): 25-36. |
[2] | Ling-ling XU, Ben NIU, Xian-zhou ZHANG, Yong-tao HE, Pei-li SHI, Ning ZONG, Jian-shuang WU, Xiang-tao WANG. Climate responses of carbon fluxes in two adjacent alpine grasslands in northern Tibet [J]. Acta Prataculturae Sinica, 2024, 33(6): 1-16. |
[3] | Qian LIU, Yan-fen DING, Shan-shan SONG, Wen-jie XU, Wei YANG. Quantitative classification and ordination analysis of spontaneous vegetation communities in herb layer along the green belt of Nanjing Ming City Wall [J]. Acta Prataculturae Sinica, 2024, 33(5): 1-15. |
[4] | Xiao-jing SUO, Lei XIANG, He GAO, Xiang-jun YUN, Ba-gen HASI, Jin-rui WU, Wen-cheng DONG, Bo-wei HUA, Jin-yi MOU, Qi WANG. Effects of different utilization methods on community characteristics of primary vegetation of Stipa grandis steppe, Inner Mongolia, China [J]. Acta Prataculturae Sinica, 2024, 33(4): 12-21. |
[5] | Rui ZHANG, Xue-jiao AN, Jian-ye LI, Zeng-kui LU, Chun-e NIU, Zhen-fei XU, Jin-xia ZHANG, Zhi-guang GENG, Yao-jing YUE, Bo-hui YANG. Comparative analysis of growth performance, meat productivity, and meat quality in Hu sheep and its hybrids [J]. Acta Prataculturae Sinica, 2024, 33(3): 186-197. |
[6] | Yi-ran CHANG, Jia-mei SHI, Dong-mei XU, Ru-long KANG, Yuan MA. Trade-off relationships between biomass and nutrient allocation in different natural populations of Agropyron mongolicum on the desert steppe [J]. Acta Prataculturae Sinica, 2024, 33(11): 186-197. |
[7] | Wen-long LI, Feng LI, Zhong-juan ZHANG, Dian-qing WANG, Huan WANG, Hui-qing JIN, Mu-re TE, Zhi-ling HU, Ya TAO. A performance evaluation of two crops of forage oats per year in the northern Ordos Plateau [J]. Acta Prataculturae Sinica, 2024, 33(1): 159-168. |
[8] | Qi-fei HAN, Long YIN, Chao-fan LI, Run-gang ZHANG, Wen-biao WANG, Zheng-nan CUI. Nitrogen fertilizer threshold and uncertainty analysis of typical grassland on the northern slopes of Tianshan Mountains [J]. Acta Prataculturae Sinica, 2024, 33(1): 19-32. |
[9] | Zeng-hui LIU, Su-jin LU, Yu-xin WANG, Chun-hui ZHANG, Xin YIN. Effects of biodiversity on primary productivity and its mechanism in artificially sown clonal plant communities of the Sanjiangyuan region [J]. Acta Prataculturae Sinica, 2023, 32(9): 27-38. |
[10] | Dong ZHANG, Chen HOU, Wen-ming MA, Chang-ting WANG, Zhuo-ma DENGZENG, Ting ZHANG. Study on soil enzyme activities under shrub encroachment gradients in alpine grassland [J]. Acta Prataculturae Sinica, 2023, 32(9): 79-92. |
[11] | Ji-liang LIU, Wen-zhi ZHAO, Yong-zhen WANG, Yi-lin FENG, Jin-xian QI, Yong-yuan LI. Effect of fencing and grazing on soil macro- and meso-arthropod diversity in alpine grassland ecosystems in the Qilian Mountains in the fall [J]. Acta Prataculturae Sinica, 2023, 32(8): 214-221. |
[12] | Zi-li LYU, Bin LIU, Feng CHANG, Zi-jing MA, Qiu-mei CAO. Species diversity and phylogenetic diversity in Bayinbrook alpine grasslands: elevation gradient distribution patterns and drivers [J]. Acta Prataculturae Sinica, 2023, 32(7): 12-22. |
[13] | Cai-feng LIU, Yuan-yuan DUAN, Ling-ling WANG, Yi-mo WANG, Zheng-gang GUO. Effects of plateau pika (Ochotona curzoniae) disturbance on the relationship between plant species diversity and soil ecological stoichiometry in alpine meadows [J]. Acta Prataculturae Sinica, 2023, 32(6): 157-166. |
[14] | Si-yuan LI, Yu-xuan CUI, Zong-jiu SUN, Hui-xia LIU, Hua-wei YE. Effect of grazing exclusion on soil organic carbon and stoichiometry characteristics of soil microbial biomass in sagebrush desert [J]. Acta Prataculturae Sinica, 2023, 32(6): 58-70. |
[15] | Ting YE, Xiao-juan WU, Yi-xiao LU, Sheng-juan LIU, Zhuo-hui JIANG, Hui-min YANG. Effect of planting ratio on the stability of forage yield and population density in two alfalfa-grass mixtures [J]. Acta Prataculturae Sinica, 2023, 32(5): 127-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||