Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (6): 46-58.DOI: 10.11686/cyxb2024276
Previous Articles Next Articles
Can CUI(
), Meng-qi WANG, Wan-lu ZHAO, Xin-ying LIU, Jing-jing JIAN, Jun-xin YAN(
)
Received:2024-07-16
Revised:2024-09-18
Online:2025-06-20
Published:2025-04-03
Contact:
Jun-xin YAN
Can CUI, Meng-qi WANG, Wan-lu ZHAO, Xin-ying LIU, Jing-jing JIAN, Jun-xin YAN. The effect on seed germination and seedling growth of soaking seeds with diethyl aminoethyl hexanoate in alfalfa under NaCl stress[J]. Acta Prataculturae Sinica, 2025, 34(6): 46-58.
| 指标Index | 项目Item | DA-6 | NaCl | DA-6×NaCl |
|---|---|---|---|---|
| 发芽率Germination percentage | P | <0.001 | <0.001 | 0.054 |
| F | 7.644 | 651.806 | 2.795 | |
| 发芽势Germination potential | P | <0.001 | <0.001 | <0.001 |
| F | 18.448 | 1336.209 | 9.143 | |
| 发芽指数Germination index | P | <0.001 | <0.001 | <0.001 |
| F | 30.26 | 2218.26 | 16.96 | |
| 平均萌发时间Mean germination time | P | 0.054 | <0.001 | 0.270 |
| F | 2.798 | 72.284 | 1.400 |
Table 1 Effect of diethyl aminoethyl hexanoate, NaCl and their interaction on seed germination of alfalfa
| 指标Index | 项目Item | DA-6 | NaCl | DA-6×NaCl |
|---|---|---|---|---|
| 发芽率Germination percentage | P | <0.001 | <0.001 | 0.054 |
| F | 7.644 | 651.806 | 2.795 | |
| 发芽势Germination potential | P | <0.001 | <0.001 | <0.001 |
| F | 18.448 | 1336.209 | 9.143 | |
| 发芽指数Germination index | P | <0.001 | <0.001 | <0.001 |
| F | 30.26 | 2218.26 | 16.96 | |
| 平均萌发时间Mean germination time | P | 0.054 | <0.001 | 0.270 |
| F | 2.798 | 72.284 | 1.400 |
| 指标Index | 项目Item | DA-6 | NaCl | DA-6×NaCl |
|---|---|---|---|---|
| 鲜重Fresh weight | P | <0.010 | <0.001 | 0.054 |
| F | 4.822 | 89.294 | 45.451 | |
| 干重Dry weight | P | 0.278 | <0.001 | <0.001 |
| F | 1.375 | 56.563 | 8.707 | |
| 茎长Stem length | P | 0.101 | <0.001 | 0.056 |
| F | 0.240 | 158.889 | 2.756 | |
| 根长Root length | P | <0.001 | <0.001 | <0.001 |
| F | 22.89 | 807.43 | 8.89 |
Table 2 Effect of diethyl aminoethyl hexanoate, NaCl and their interaction on seedling growth of alfalfa
| 指标Index | 项目Item | DA-6 | NaCl | DA-6×NaCl |
|---|---|---|---|---|
| 鲜重Fresh weight | P | <0.010 | <0.001 | 0.054 |
| F | 4.822 | 89.294 | 45.451 | |
| 干重Dry weight | P | 0.278 | <0.001 | <0.001 |
| F | 1.375 | 56.563 | 8.707 | |
| 茎长Stem length | P | 0.101 | <0.001 | 0.056 |
| F | 0.240 | 158.889 | 2.756 | |
| 根长Root length | P | <0.001 | <0.001 | <0.001 |
| F | 22.89 | 807.43 | 8.89 |
| 指标Index | 项目Item | DA-6 | NaCl | DA-6×NaCl |
|---|---|---|---|---|
| 超氧化物歧化酶Superoxide dismutase (SOD) | P | <0.001 | <0.001 | <0.001 |
| F | 921.2 | 200.8 | 232.8 | |
| 过氧化物酶Peroxidase (POD) | P | <0.001 | <0.001 | <0.001 |
| F | 3948 | 5163 | 2445 | |
| 过氧化氢酶Catalase (CAT) | P | <0.001 | <0.001 | <0.001 |
| F | 2672 | 1793 | 1079 |
Table 3 Effect of diethyl aminoethyl hexanoate, NaCl and their interaction on antioxidant enzyme activity of alfalfa
| 指标Index | 项目Item | DA-6 | NaCl | DA-6×NaCl |
|---|---|---|---|---|
| 超氧化物歧化酶Superoxide dismutase (SOD) | P | <0.001 | <0.001 | <0.001 |
| F | 921.2 | 200.8 | 232.8 | |
| 过氧化物酶Peroxidase (POD) | P | <0.001 | <0.001 | <0.001 |
| F | 3948 | 5163 | 2445 | |
| 过氧化氢酶Catalase (CAT) | P | <0.001 | <0.001 | <0.001 |
| F | 2672 | 1793 | 1079 |
| 指标Index | 项目Item | DA-6 | NaCl | DA-6×NaCl |
|---|---|---|---|---|
| 游离脯氨酸Free proline | P | <0.001 | <0.001 | <0.01 |
| F | 22.075 | 78.479 | 5.927 | |
| 叶绿素Chlorophyll | P | <0.001 | <0.001 | <0.001 |
| F | 7.861 | 169.416 | 7.124 | |
| 可溶性糖Soluble sugar | P | <0.001 | <0.001 | <0.001 |
| F | 37.68 | 22.74 | 11.33 | |
| 丙二醛Malondialdehyde (MDA) | P | <0.001 | <0.001 | <0.001 |
| F | 11.95 | 452.53 | 18.46 | |
| 可溶性蛋白Soluble protein | P | <0.001 | <0.001 | <0.001 |
| F | 150.10 | 122.76 | 72.78 |
Table 4 Effect of diethyl aminoethyl hexanoate, NaCl and their interaction on osmotic regulator of alfalfa
| 指标Index | 项目Item | DA-6 | NaCl | DA-6×NaCl |
|---|---|---|---|---|
| 游离脯氨酸Free proline | P | <0.001 | <0.001 | <0.01 |
| F | 22.075 | 78.479 | 5.927 | |
| 叶绿素Chlorophyll | P | <0.001 | <0.001 | <0.001 |
| F | 7.861 | 169.416 | 7.124 | |
| 可溶性糖Soluble sugar | P | <0.001 | <0.001 | <0.001 |
| F | 37.68 | 22.74 | 11.33 | |
| 丙二醛Malondialdehyde (MDA) | P | <0.001 | <0.001 | <0.001 |
| F | 11.95 | 452.53 | 18.46 | |
| 可溶性蛋白Soluble protein | P | <0.001 | <0.001 | <0.001 |
| F | 150.10 | 122.76 | 72.78 |
| 项目Item | 发芽率 Germination percentage | 发芽势 Germination potential | 发芽 指数 Germination index | 平均萌发时间 Mean germination time | 鲜重 Fresh weight | 干重 Dry weight | 根长 Root length | 茎长 Stem length | 游离脯氨酸 Free proline | 叶绿素 Chlorophyll | 可溶 性糖 Soluble sugar | 丙二醛 Malondialdehyde (MDA) | 可溶性蛋白 Soluble protein | 过氧化物酶 Peroxidase (POD) | 超氧化物歧化酶 Superoxide dismutase (SOD) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 发芽势Germination potential | 0.981** | ||||||||||||||
| 发芽指数Germination index | 0.984** | 0.995** | |||||||||||||
| 平均萌发时间Mean germination time | -0.883** | -0.952** | -0.947** | ||||||||||||
| 鲜重Fresh weight | 0.629 | 0.662* | 0.608 | -0.547 | |||||||||||
| 干重Dry weight | 0.767** | 0.845** | 0.819** | -0.851** | 0.735* | ||||||||||
| 根长Root length | 0.968** | 0.962** | 0.980** | -0.911** | 0.508 | 0.710* | |||||||||
| 茎长Stem length | 0.907** | 0.901** | 0.902** | -0.858** | 0.418 | 0.613 | 0.896** | ||||||||
| 游离脯氨酸Free proline | -0.593 | -0.626 | -0.626 | 0.637* | -0.204 | -0.547 | -0.549 | -0.667* | |||||||
| 叶绿素Chlorophyll | 0.865** | 0.898** | 0.918** | -0.908** | 0.494 | 0.743* | 0.890** | 0.843** | -0.663* | ||||||
| 可溶性糖Soluble sugar | 0.270 | 0.200 | 0.204 | -0.143 | 0.077 | -0.014 | 0.216 | 0.326 | 0.128 | 0.183 | |||||
| 丙二醛Malondialdehyde (MDA) | -0.862** | -0.873** | -0.845** | 0.813** | -0.748* | -0.701* | -0.795** | -0.839** | 0.403 | -0.768** | -0.481 | ||||
| 可溶性蛋白Soluble protein | -0.268 | -0.231 | -0.258 | 0.197 | 0.020 | -0.333 | -0.178 | -0.184 | 0.617 | -0.310 | 0.099 | 0.060 | |||
| 过氧化物酶Peroxidase (POD) | 0.371 | 0.449 | 0.396 | -0.438 | 0.535 | 0.656* | 0.247 | 0.367 | -0.690* | 0.356 | -0.448 | -0.338 | -0.412 | ||
| 超氧化物歧化酶Superoxide dismutase (SOD) | -0.370 | -0.324 | -0.299 | 0.120 | -0.602 | -0.374 | -0.296 | -0.097 | -0.128 | -0.029 | 0.223 | 0.199 | -0.170 | -0.259 | |
| 过氧化氢酶Catalase (CAT) | 0.387 | 0.470 | 0.422 | -0.455 | 0.515 | 0.597 | 0.361 | 0.354 | -0.359 | 0.262 | -0.510 | -0.266 | 0.145 | 0.730* | -0.619 |
Table 5 Correlation analysis of physicochemical properties of alfalfa seed germination after soaking in different concentrations of diethyl aminoethyl hexanoate solution
| 项目Item | 发芽率 Germination percentage | 发芽势 Germination potential | 发芽 指数 Germination index | 平均萌发时间 Mean germination time | 鲜重 Fresh weight | 干重 Dry weight | 根长 Root length | 茎长 Stem length | 游离脯氨酸 Free proline | 叶绿素 Chlorophyll | 可溶 性糖 Soluble sugar | 丙二醛 Malondialdehyde (MDA) | 可溶性蛋白 Soluble protein | 过氧化物酶 Peroxidase (POD) | 超氧化物歧化酶 Superoxide dismutase (SOD) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 发芽势Germination potential | 0.981** | ||||||||||||||
| 发芽指数Germination index | 0.984** | 0.995** | |||||||||||||
| 平均萌发时间Mean germination time | -0.883** | -0.952** | -0.947** | ||||||||||||
| 鲜重Fresh weight | 0.629 | 0.662* | 0.608 | -0.547 | |||||||||||
| 干重Dry weight | 0.767** | 0.845** | 0.819** | -0.851** | 0.735* | ||||||||||
| 根长Root length | 0.968** | 0.962** | 0.980** | -0.911** | 0.508 | 0.710* | |||||||||
| 茎长Stem length | 0.907** | 0.901** | 0.902** | -0.858** | 0.418 | 0.613 | 0.896** | ||||||||
| 游离脯氨酸Free proline | -0.593 | -0.626 | -0.626 | 0.637* | -0.204 | -0.547 | -0.549 | -0.667* | |||||||
| 叶绿素Chlorophyll | 0.865** | 0.898** | 0.918** | -0.908** | 0.494 | 0.743* | 0.890** | 0.843** | -0.663* | ||||||
| 可溶性糖Soluble sugar | 0.270 | 0.200 | 0.204 | -0.143 | 0.077 | -0.014 | 0.216 | 0.326 | 0.128 | 0.183 | |||||
| 丙二醛Malondialdehyde (MDA) | -0.862** | -0.873** | -0.845** | 0.813** | -0.748* | -0.701* | -0.795** | -0.839** | 0.403 | -0.768** | -0.481 | ||||
| 可溶性蛋白Soluble protein | -0.268 | -0.231 | -0.258 | 0.197 | 0.020 | -0.333 | -0.178 | -0.184 | 0.617 | -0.310 | 0.099 | 0.060 | |||
| 过氧化物酶Peroxidase (POD) | 0.371 | 0.449 | 0.396 | -0.438 | 0.535 | 0.656* | 0.247 | 0.367 | -0.690* | 0.356 | -0.448 | -0.338 | -0.412 | ||
| 超氧化物歧化酶Superoxide dismutase (SOD) | -0.370 | -0.324 | -0.299 | 0.120 | -0.602 | -0.374 | -0.296 | -0.097 | -0.128 | -0.029 | 0.223 | 0.199 | -0.170 | -0.259 | |
| 过氧化氢酶Catalase (CAT) | 0.387 | 0.470 | 0.422 | -0.455 | 0.515 | 0.597 | 0.361 | 0.354 | -0.359 | 0.262 | -0.510 | -0.266 | 0.145 | 0.730* | -0.619 |
| 处理Treatment | D值D value | 排序Sort |
|---|---|---|
| CK+CONC0 | 0.74 | 3 |
| CK+CONC2.5 | 0.82 | 1 |
| CK+CONC5 | 0.80 | 2 |
| CK+CONC10 | 0.66 | 4 |
| CK+CONC15 | 0.65 | 5 |
| SALT+CONC0 | 0.08 | 10 |
| SALT+CONC2.5 | 0.30 | 7 |
| SALT+CONC5 | 0.33 | 6 |
| SALT+CONC10 | 0.22 | 8 |
| SALT+CONC15 | 0.18 | 9 |
Table 6 The comprehensive membership function values of alfalfa growth under diethyl aminoethyl hexanoate and NaCl treatments
| 处理Treatment | D值D value | 排序Sort |
|---|---|---|
| CK+CONC0 | 0.74 | 3 |
| CK+CONC2.5 | 0.82 | 1 |
| CK+CONC5 | 0.80 | 2 |
| CK+CONC10 | 0.66 | 4 |
| CK+CONC15 | 0.65 | 5 |
| SALT+CONC0 | 0.08 | 10 |
| SALT+CONC2.5 | 0.30 | 7 |
| SALT+CONC5 | 0.33 | 6 |
| SALT+CONC10 | 0.22 | 8 |
| SALT+CONC15 | 0.18 | 9 |
| 1 | Shabala S. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 2013, 112(7): 1209-1221. |
| 2 | Ondrasek G, Rathod S, Manohara K K, et al. Salt stress in plants and mitigation approaches. Plants, 2022, 11(6): 717. |
| 3 | Huang J, Kong Y L, Xu Q S, et al. Progresses for characteristics and amelioration measures of saline soil. Soils, 2022, 54(1): 18-23. |
| 黄晶, 孔亚丽, 徐青山, 等. 盐渍土壤特征及改良措施研究进展. 土壤, 2022, 54(1): 18-23. | |
| 4 | Qadir M, Oster J D, Schubert S, et al. Phytoremediation of sodic and saline-sodic soils. Advances in Agronomy, 2007, 96: 197-247. |
| 5 | Sun Q Z, Yu Z, Xu C C. Urgency of further developing alfalfa industry in China. Pratacultural Science, 2012, 29(2): 314-319. |
| 孙启忠, 玉柱, 徐春城. 我国苜蓿产业亟待振兴. 草业科学, 2012, 29(2): 314-319. | |
| 6 | Amirinejad A A, Sayyari M, Ghanbari F, et al. Salicylic acid improves salinity-alkalinity tolerance in pepper (Capsicum annuum L.). Advances in Horticultural Science, 2017, 31(3): 157-163. |
| 7 | Wang X S, Ren H L, Wei Z W, et al. Effects of neutral salt and alkali on ion distributions in the roots, shoots, and leaves of two alfalfa cultivars with differing degrees of salt tolerance. Journal of Integrative Agriculture, 2017, 16(8): 1800-1807. |
| 8 | Khan I, Muhammad A, Chattha M U, et al. Mitigation of salinity-induced oxidative damage, growth, and yield reduction in fine rice by sugarcane press mud application. Frontiers in Plant Science, 2022, 13(26): 840900. |
| 9 | Khatri K, Rathore M S. Salt and osmotic stress-induced changes in physio-chemical responses, PSII photochemistry and chlorophyll a fluorescence in peanut. Plant Stress, 2022, 3: 100063. |
| 10 | Ghosh U K, Islam M N, Siddiqui M N, et al. Understanding the roles of osmolytes for acclimatizing plants to changing environment: A review of potential mechanism. Plant Signaling & Behavior, 2021,16(8): 1913306. |
| 11 | Chauhan J, Srivastava J P, Singhal R K, et al. Alterations of oxidative stress indicators, antioxidant enzymes, soluble sugars, and amino acids in mustard [Brassica juncea(L.) Czern and Coss.] in response to varying sowing time, and field temperature. Frontiers in Plant Science, 2022, 13(3): 875009. |
| 12 | Libertad Carrasco-Ríos, Pinto M Manuel. Effect of salt stress on antioxidant enzymes and lipid peroxidation in leaves in two contrasting corn, ‘Lluteno’ and ‘Jubilee’. Chilean Journal of Agricultural Research, 2014, 74(1): 89-95. |
| 13 | Pan L Q, Wei H Z, Zhang H, et al. Effects of chitosan on seed germination and seedling growth of Trifolium repens under salt stress. Molecular Plant Breeding, 2018, 16(11): 3740-3744. |
| 潘丽芹, 韦海忠, 张浩, 等. 壳聚糖对盐胁迫下白三叶种子萌发及幼苗生长的缓解作用. 分子植物育种, 2018, 16(11): 3740-3744. | |
| 14 | Zheng X F, Sun B J, Liu L, et al. A study on acute toxicity of hexanoic acid 2- (diethylamino) ethyl ester. Journal of Henan Agricultural University, 2006, 40(1): 74-76. |
| 郑先福, 孙炳剑, 刘玲, 等. 己酸二乙氨基乙醇酯急性毒性研究. 河南农业大学学报, 2006, 40(1): 74-76. | |
| 15 | Zhang X M, Wang Y X, Zhu Y Z, et al. Effects of diethyl aminoethyl hexanoate on nutrient uptake and physiological indexse of Cyphomandra betacea seedlings. Journal of Yunnan Agricultural University (Natural Science), 2023, 38(4): 606-614. |
| 张雪梅, 王雨熙, 朱沿舟, 等. 胺鲜酯对树番茄幼苗养分吸收和生理指标的影响. 云南农业大学学报(自然科学), 2023, 38(4): 606-614. | |
| 16 | Huang W T, Feng N J, Zheng D F, et al. Effects of uniconazole and diethyl aminoethyl hexanoate on photosynthetic characteristics and carbon metabolism of soybean leaves. Soybean Science, 2020, 39(2): 243-251. |
| 黄文婷, 冯乃杰, 郑殿峰, 等. 烯效唑和胺鲜酯对大豆叶片光合特性与碳代谢的调控效应. 大豆科学, 2020, 39(2): 243-251. | |
| 17 | Wang C X, Ren R J, Chang R X, et al. Optimum concentration of different bioactive substances to improve the germination and salt tolerance of maize seeds. Journal of China Agricultural University, 2020, 25(7): 20-27. |
| 王晨霞, 任如佳, 常瑞雪, 等. 生物活性物质提高玉米种子萌发及抗盐能力. 中国农业大学学报, 2020, 25(7): 20-27. | |
| 18 | Wang D, Tian Y L, Zhang H J, et al. Effects of diethyl aminoethyl hexanoate on seed germination characteristics of white clover under chromium stress. Pratacultural Science, 2021, 38(10): 1986-1997. |
| 王铎, 田雨龙, 张鸿建, 等. 胺鲜酯对铬胁迫下白三叶种子萌发特性的影响. 草业科学, 2021, 38(10): 1986-1997. | |
| 19 | Liu L, Han J, Deng L, et al. Effects of diethyl aminoethyl hexanoate on the physiology and selenium absorption of grape seedlings. Acta Physiologiae Plantarum, 2021, 43: 115. |
| 20 | Huang P, Li Q W, Sun L F, et al. Effects of NaCl stress on seed germination and leaf physiological characteristics of Veronica persica Poir. Journal of Xinyang Normal University (Natural Science Edition), 2021, 34(2): 195-200. |
| 黄萍, 李庆伟, 孙龙飞, 等. NaCl胁迫对阿拉伯婆婆纳种子萌发及叶片生理特性的影响. 信阳师范学院学报(自然科学版), 2021, 34(2): 195-200. | |
| 21 | Giannopolites C N, Ries S K. Superoxide dismutase occurrence in higher plants. Plant Physiology, 1977, 59(2): 309-314. |
| 22 | Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1980, 22(5): 867-880. |
| 23 | Chen J X, Wang X F. Experimental guidance of plant physiology. Guangzhou: South China University of Technology Press, 2022. |
| 陈建勋, 王晓峰. 植物生理学实验指导. 广州: 华南理工大学出版社, 2002. | |
| 24 | Li H S. Principles and techniques of plant physiology and biochemical experiments. Beijing: Higher Education Press, 2001: 134-170. |
| 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2001: 134-170. | |
| 25 | lbrahim E A. Seed priming to alleviate salinity stress in germinating seeds. Plant Physiology, 2016, 15(192): 38-46. |
| 26 | Khoso M A, Hussain A, Ritonga F N, et al. WRKY transcription factors (TFs): Molecular switches to regulate drought, temperature, and salinity stresses in plants. Frontiers in Plant Science, 2022, 13(8): 1039329. |
| 27 | Zhang X, Yang F, Ma H Y, et al. Evaluation of the saline-alkaline tolerance of rice (Oryza sativa L.) mutants induced by heavy-ion beam mutagenesis. Biology, 2022, 11(1): 126. |
| 28 | Feng S, Ren L, Sun H, et al. Morphological and physiological responses of two willow species from different habitats to salt stress. Scientific Reports, 2020, 10(1): 18228. |
| 29 | Cheng C, Liu J, Wang Z, et al. Analysis of effect of compound salt stress on seed germination and salt tolerance analysis of pepper (Capsicum annuum L.). Journal of Visualized Experiments, 2022, 30(189): e64702. |
| 30 | Farooq M, Irfan M, Aziz T, et al. Seed priming with ascorbic acid improves drought resistance of wheat. Journal of Agronomy and Crop Science, 2013, 199(1): 12-22. |
| 31 | Wu Y, Geng S D, Shi C J, et al. Effects of DA-6 on growth and leaf nitrogen metabolism of Dendranthema morifolium cv ‘chuju’ seedlings. Journal of Nuclear Agricultural Sciences, 2014, 28(12): 2283-2289. |
| 吴燕, 耿书德, 史长江, 等. DA-6对滁菊幼苗生长及叶片氮代谢的影响. 核农学报, 2014, 28(12): 2283-2289. | |
| 32 | Liu Q, Huo R, Lin L, et al. Effects of different rootstocks on cadmium accumulation of grafted Cyphomandra betacea seedlings. International Journal of Environmental Analytical Chemistry, 2019, 99(12): 1-8. |
| 33 | Yu C, Yang Y, Li X, et al. Effects of plant growth regulators on remediation efficiency of Solanum nigrum L. in serious cadmium polluted soil. Subtropical Resource and Environment, 2019, 14(3): 1-5. |
| 34 | Dong Y, Liang L, Lin L, et al. Effects of diethyl aminoethyl hexanoate (DA-6) on the growth and cadmium accumulation of tomato seedlings. Environmental Progress & Sustainable Energy, 2021, 40(4): e13627. |
| 35 | Li Z, Peng D, Zhang X, et al. Na+ induces the tolerance to water stress in white clover associated with osmotic adjustment and aquaporins-mediated water transport and balance in root and leaf. Environmental and Experimental Botany, 2017, 144(1): 11-24. |
| 36 | Niu X M, Bressan R, Hasegawa P, et al. Ion homeostasis in NaCl stress environments. Plant Physiology, 1995, 109(3): 735-742. |
| 37 | Vaculik M, Pavlovic A, Lux A. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath’s cell chloroplasts ultrastructure in maize. Ecotoxicology and Environmental Safety, 2015, 120(1): 66-73. |
| 38 | Gupta B, Huang B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 2014(1): 701596. |
| 39 | Li M, Zhang J, Li Y J, et al. Research progress on the physiology and salt tolerance genes of plants. Jiangsu Agricultural Sciences, 2012, 40(10): 45-49. |
| 李敏, 张健, 李玉娟, 等. 植物耐盐生理及耐盐基因的研究进展. 江苏农业科学, 2012, 40(10): 45-49. | |
| 40 | Zhao F B, Wang L Q, Ji G H. Effects of NaCl stress on plant biology indicators and MDA content of 3 submerged plants. Environmental Pollution & Control, 2012, 34(10): 40-44. |
| 赵风斌, 王丽卿, 季高华. 盐胁迫对3种沉水植物生物学指标及叶片中丙二醛含量的影响. 环境污染与防治, 2012, 34(10): 40-44. | |
| 41 | Sathiyaraj G, Srinivasan S, Kim Y J, et al. Acclimation of hydrogen peroxide enhances salts tolerance by activating defense-related proteins in Panax ginseng C.A. Meyer. Molecular Biology Reports, 2014, 41(6): 3761-3771. |
| 42 | Parvin S, Lee O R, Sathiyaraj R, et al. Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene, 2014, 537(1): 70-78. |
| 43 | Cao Y Q, Cheng B Z, Li Z. Effects of the seed soaking with DA-6 on germination characteristics and stress tolerance of white clover under salt stress. Acta Agrestia Sinica, 2023, 31(1): 140-147. |
| 曹亦芹, 程碧真, 李州. 胺鲜酯(DA-6)浸种对盐胁迫下白三叶种子萌发及抗盐性的影响. 草地学报, 2023, 31(1): 140-147. | |
| 44 | Li W, Guo J J, Li H Y. Effects of H2O2 on the growth of kale seedlings under salt stress. Jiangsu Agricultural Sciences, 2017, 45(22): 149-152. |
| 李伟, 郭君洁, 李鸿雁. H2O2对盐胁迫下羽衣甘蓝幼苗生长的影响. 江苏农业科学, 2017, 45(22): 149-152. | |
| 45 | Liu A R. Effect of salt stress on the growth and the antioxidant enzyme activity of Thellungiella halophila. Bulletin of Botanical Research, 2006, 26(2): 216-221. |
| 46 | Wang Q, Xu W, Ren C, et al. Physiological and biochemical mechanisms of exogenous melatonin regulation of saline-alkali tolerance in oats. Agronomy, 2023, 13(5): 1327. |
| 47 | Wu Q, He S. Effects of DA-6 and EDTA on enhancing the remediation of Pb contaminated soil and physiological characteristics of Lolium perenne. Journal of Soil and Water Conservation, 2013, 27(6): 67-72. |
| [1] | Xin-yue ZHOU, Li-ping WANG, Qing-xue JIANG, Xiao-ran MA, Deng-xia YI, Xue-min WANG. Isolation of the low-temperature induced proteinMsLTI65 from alfalfa and its response to different stresses [J]. Acta Prataculturae Sinica, 2025, 34(5): 89-104. |
| [2] | Ting MA, Fen-qi CHEN, Yong WANG, Xue HA, Ya-jun LI, Hui-ling MA. Differentially expressed genes and related pathways in root systems of Astragalus cicer under NaCl stress [J]. Acta Prataculturae Sinica, 2025, 34(4): 104-123. |
| [3] | Tian-rong LUO, Jian-zhi MA, Ming-yang DU, Jie-cuo DUO, Hui-yan XIONG, Rui-jun DUAN. Identification and expression analysis of LACS gene family members in Medicago sativa [J]. Acta Prataculturae Sinica, 2025, 34(4): 124-136. |
| [4] | Tuo-xuan DONG, Xun-feng CHEN, Da-hai MEI, Yong-sha GUO, Xu-hong WEI, Qiu-yan SONG. Inhibition and control effect of nano-iron and copper on Ascochyta medicaginicola and spring black stem disease [J]. Acta Prataculturae Sinica, 2025, 34(4): 201-211. |
| [5] | Wen-qi CAI, Shu-xia LI, Xiao-tong WANG, Wen-xue SONG, Xu-xia MA, Xiao-mei MA, Xiao-hong LI, Xin-yao DAI. Effects of interaction between exogenous melatonin and ethylene on the growth and physiological characteristics of Medicago sativa seedlings under salt stress [J]. Acta Prataculturae Sinica, 2025, 34(1): 80-93. |
| [6] | Wen-wen QI, Hong-yuan MA, Ya-xiao LI, Yan DU, Meng-dan SUN, Hai-tao WU. Progress in research on breeding methods to produce new, high-quality forage varieties [J]. Acta Prataculturae Sinica, 2024, 33(6): 187-202. |
| [7] | Ying TAN, Hao YIN. Effects of root application of an arbuscular mycorrhizal fungus and melatonin on the growth, photosynthetic characteristics, and antioxidant system of Medicago sativa under salt stresss [J]. Acta Prataculturae Sinica, 2024, 33(6): 64-75. |
| [8] | Abudilimu YUERENSA·, Wei ZHAO, Xiao-wei WANG, Yan HUANG, Ai-qin ZHNAG. Ovule development before and after fertilization and seed formation dynamics of Medicago sativa cv. Xinmu No.4 [J]. Acta Prataculturae Sinica, 2024, 33(12): 111-121. |
| [9] | Ze-bin LI, Yong-zheng QIU, Yan-jie LIU, Jin-qiu YU, Bai-ji WANG, Qian-ning LIU, Yue WANG, Guo-wen CUI. Identification of the BZR gene family in alfalfa and analysis of its transcriptional responses to abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(11): 106-122. |
| [10] | Yu-xin WANG, Jia-li TAO, Hui-sen ZHU, Tao XU, Yi-fei ZHANG, Hui-fang CEN. Heterologous expression of miR397-5p from Medicago sativa cv. ‘Pianguan’ improves the drought tolerance of tobacco [J]. Acta Prataculturae Sinica, 2024, 33(11): 123-134. |
| [11] | Xin-yue ZHOU, Qing-xue JIANG, Hui-li JIA, Lin MA, Lu FAN, Xue-min WANG. Cloning and salt-tolerance functional analysis of alfalfa MsBBX20 gene [J]. Acta Prataculturae Sinica, 2024, 33(10): 55-73. |
| [12] | Xu-qin BAI, Chun-yun JIA, Wen-shuan LI, Ya-min LI, Chang-feng LIU, Xiu-yun HAN, Mei-han CHU, Zong-qiang GONG, Xiao-jun LI. An investigation of foliar spraying of selenium fertilizer for selenium enrichment and cadmium reduction in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(1): 50-60. |
| [13] | Chao-nan LI, Lei WANG, Ji-qiang ZHOU, Chang-xing ZHAO, Xiao-rong XIE, Jin-rong LIU. Effect of microplastics on the growth and physiological characteristics of alfalfa (Medicago sativa) [J]. Acta Prataculturae Sinica, 2023, 32(5): 138-146. |
| [14] | Zheng TIAN, Zheng-yu YANG, Zhong-jie LU, Ben LUO, Mao ZHANG, Rui DONG. Acid-aluminum adaptability and tolerance evaluation of 44 alfalfa cultivars [J]. Acta Prataculturae Sinica, 2023, 32(3): 142-151. |
| [15] | Jiang DU, Zhen-nan MA, Chen-yan WANG, Li ZHANG, De-fu WANG, Yan-bing NIU. Identification and analysis of alfalfa virus disease based on sRNA deep sequencing technology [J]. Acta Prataculturae Sinica, 2023, 32(12): 115-125. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||