Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (9): 183-194.DOI: 10.11686/cyxb2021464
Shi-long MA1,2(), Xiao-wei LI4, Xiang LI1,2, Shu-qiong XIE2,3, Yi-li LIU1,2, Jiao TANG2,3, Ming-feng JIANG1,2()
Received:
2021-12-13
Revised:
2022-03-14
Online:
2022-09-20
Published:
2022-08-12
Contact:
Ming-feng JIANG
Shi-long MA, Xiao-wei LI, Xiang LI, Shu-qiong XIE, Yi-li LIU, Jiao TANG, Ming-feng JIANG. Assessment of genetic structure of 3 Maiwa yak preserved populations based on genotyping-by-sequencing technology[J]. Acta Prataculturae Sinica, 2022, 31(9): 183-194.
群体 Population | 年龄 Age (year) | 样本量 Sample number | 公牛数 Bulls | 母牛数 Cows | 地理来源 Geographic origin | 海拔 Elevation (m) | 纬度 Latitude | 经度 Longitude |
---|---|---|---|---|---|---|---|---|
全黑群QH | 1~12 | 211 | 51 | 160 | 红原Hongyuan | 3566 | 32°33′ | 102°16′ |
弗洛群FL | 1~12 | 55 | 12 | 43 | 红原Hongyuan | 3572 | 32°35′ | 102°17′ |
粉嘴群FZ | 1~12 | 140 | 31 | 109 | 红原Hongyuan | 3598 | 32°37′ | 102°15′ |
共计Total | - | 406 | 94 | 312 | - | - | - | - |
Table 1 The sample information of 3 breeding populations
群体 Population | 年龄 Age (year) | 样本量 Sample number | 公牛数 Bulls | 母牛数 Cows | 地理来源 Geographic origin | 海拔 Elevation (m) | 纬度 Latitude | 经度 Longitude |
---|---|---|---|---|---|---|---|---|
全黑群QH | 1~12 | 211 | 51 | 160 | 红原Hongyuan | 3566 | 32°33′ | 102°16′ |
弗洛群FL | 1~12 | 55 | 12 | 43 | 红原Hongyuan | 3572 | 32°35′ | 102°17′ |
粉嘴群FZ | 1~12 | 140 | 31 | 109 | 红原Hongyuan | 3598 | 32°37′ | 102°15′ |
共计Total | - | 406 | 94 | 312 | - | - | - | - |
类型 Type | 原始碱基数 Raw bases (Mb) | 有效碱基数 Clean bases (Mb) | 有效率 Effective rate (%) | 碱基检测错误率 Error rate (%) |
---|---|---|---|---|
麦洼牦牛Maiwa yak | 279.211~2456.350 | 279.210~2456.340 | 99.990~100.000 | 0.040~0.060 |
共计Toal | 327.517 | 327.512 | - | - |
平均Mean | 806.690 | 806.680 | 99.990 | 0.044 |
Table 2 Summary of sequencing data of Maiwa yak
类型 Type | 原始碱基数 Raw bases (Mb) | 有效碱基数 Clean bases (Mb) | 有效率 Effective rate (%) | 碱基检测错误率 Error rate (%) |
---|---|---|---|---|
麦洼牦牛Maiwa yak | 279.211~2456.350 | 279.210~2456.340 | 99.990~100.000 | 0.040~0.060 |
共计Toal | 327.517 | 327.512 | - | - |
平均Mean | 806.690 | 806.680 | 99.990 | 0.044 |
类型 Type | Q20 (%) | GC (%) | 有效读长数Clean reads (Mb) | 有效读长数比对率Mapping rate (%) | 测序深度Average depth (×) | 覆盖度 Coverage (%) |
---|---|---|---|---|---|---|
麦洼牦牛Maiwa yak | 93.83~97.58 | 36.56~40.28 | 1.94~17.08 | 92.60~99.68 | 5.65~31.64 | 2.03~6.13 |
平均Mean | 95.73 | 38.88 | 5.60 | 98.75 | 14.33 | 3.46 |
Table 3 Quality assessment of sequencing
类型 Type | Q20 (%) | GC (%) | 有效读长数Clean reads (Mb) | 有效读长数比对率Mapping rate (%) | 测序深度Average depth (×) | 覆盖度 Coverage (%) |
---|---|---|---|---|---|---|
麦洼牦牛Maiwa yak | 93.83~97.58 | 36.56~40.28 | 1.94~17.08 | 92.60~99.68 | 5.65~31.64 | 2.03~6.13 |
平均Mean | 95.73 | 38.88 | 5.60 | 98.75 | 14.33 | 3.46 |
群体 Population | 观测杂合度Ho | 期望杂合度He | 核苷酸多样度π | 近交系数Fis |
---|---|---|---|---|
全黑群QH | 0.3029 | 0.3030 | 0.3030 | 0.0144 |
粉嘴群FZ | 0.3042 | 0.3025 | 0.3020 | 0.0152 |
弗洛群FL | 0.3044 | 0.3052 | 0.3009 | 0.0209 |
平均Mean | 0.3038 | 0.3036 | 0.3020 | 0.0168 |
Table 4 Genetic diversity parameters of three preserved populations of Maiwa yak
群体 Population | 观测杂合度Ho | 期望杂合度He | 核苷酸多样度π | 近交系数Fis |
---|---|---|---|---|
全黑群QH | 0.3029 | 0.3030 | 0.3030 | 0.0144 |
粉嘴群FZ | 0.3042 | 0.3025 | 0.3020 | 0.0152 |
弗洛群FL | 0.3044 | 0.3052 | 0.3009 | 0.0209 |
平均Mean | 0.3038 | 0.3036 | 0.3020 | 0.0168 |
群体Population | 粉嘴群FZ | 弗洛群FL | 全黑群QH |
---|---|---|---|
粉嘴群FZ | - | 0.02760 | 0.03580 |
弗洛群FL | 0.02726 | - | 0.02540 |
全黑群QH | 0.03513 | 0.02504 | - |
Table 5 Genetic differentiation index (below diagonal) and genetic distance (above diagonal) among three populations of Maiwa yak
群体Population | 粉嘴群FZ | 弗洛群FL | 全黑群QH |
---|---|---|---|
粉嘴群FZ | - | 0.02760 | 0.03580 |
弗洛群FL | 0.02726 | - | 0.02540 |
全黑群QH | 0.03513 | 0.02504 | - |
KEGG通路KEGG pathway | 分类号ID | 基因名Gene name |
---|---|---|
催产素信号通路Oxytocin signaling pathway | bom04921 | GNAQ; MAP2K5; PPP3CC; MEF2C; KCNJ3; ROCK2; ITPR2; CACNB4 |
缝隙连接Gap junction | bom04540 | GNAQ; MAP2K5; PRKG1; PDGFRB; ITPR2 |
雌激素信号通路Estrogen signaling pathway | bom04915 | ITPR1; GNAQ; OPRM1; KCNJ3; ITPR2 |
钙信号通路Calcium signaling pathway | bom04020 | GNAQ; ADORA2B; GNA14; PTAFR; PPP3CC; PDGFRB; ITPR2 |
cGMP-PKG信号通路cGMP-PKG signaling pathway | bom04022 | GNAQ; PRKG1; KCNMA1; MEF2C; ROCK2; ITPR2 |
血管平滑肌收缩Vascular smooth muscle contraction | bom04270 | GNAQ; ADORA2B; PRKG1; KCNMA1; ROCK2; ITPR2 |
逆行神经的信号Retrograde endocannabinoid signaling | bom04723 | ITPR1; GNAQ; GABRA1; KCNJ3; ITPR2 |
果糖和甘露糖代谢Fructose and mannose metabolism | bom00051 | ENOSF1; SORD; MPI |
肾素分泌Renin secretion | bom04924 | GNAQ; KCNMA1; PPP3CC; ITPR2 |
内分泌等因素调节钙的重吸收Endocrine and other factor-regulated calcium reabsorption | bom04961 | GNAQ; CLTC; CALB1 |
唾液分泌Salivary secretion | bom04970 | GNAQ; PRKG1; KCNMA1; ITPR2 |
胰腺分泌Pancreatic secretion | bom04972 | GNAQ; SLC4A4; KCNMA1; ITPR2 |
Rap1信号通路Rap1 signaling pathway | bom04015 | ADORA2B; KIT; VEGFC; NGF; PDGFRB |
谷氨酸突触Glutamatergic synapse | bom04724 | GNAQ; PPP3CC; KCNJ3; ITPR2 |
卵母细胞减数分裂Oocyte meiosis | bom04114 | ANAPC10; YWHAQ; PPP3CC; ITPR2 |
甲状腺激素的合成Thyroid hormone synthesis | bom04918 | GNAQ; PAX8; ITPR2 |
MAPK信号通路MAPK signaling pathway | bom04010 | NGF; PPP3CC; MEF2C; PDGFRB; CACNB4 |
血小板激活Platelet activation | bom04611 | GNAQ; PRKG1; ROCK2; ITPR2 |
多巴胺能神经突触Dopaminergic synapse | bom04728 | GNAQ; PPP3CC; KCNJ3; ITPR2 |
胆汁分泌Bile secretion | bom04976 | NCEH1; SLC5A1 |
促性腺激素信号通路GnRH signaling pathway | bom04912 | GNAQ; ITPR2 |
节律导引Circadian entrainment | bom04713 | GNAQ; PRKG1; KCNJ3 |
炎症介质调节TRP通道Inflammatory mediator regulation of TRP channels | bom04750 | GNAQ; NGF; ITPR2 |
Ras信号通路Ras signaling pathway | bom04014 | KIT; VEGFC; NGF; PDGFRB |
磷脂酰肌醇信号系统Phosphatidylinositol signaling system | bom04070 | PI4KA; ITPK1; ITPR2 |
Table 6 KEGG pathway of differential expression genes
KEGG通路KEGG pathway | 分类号ID | 基因名Gene name |
---|---|---|
催产素信号通路Oxytocin signaling pathway | bom04921 | GNAQ; MAP2K5; PPP3CC; MEF2C; KCNJ3; ROCK2; ITPR2; CACNB4 |
缝隙连接Gap junction | bom04540 | GNAQ; MAP2K5; PRKG1; PDGFRB; ITPR2 |
雌激素信号通路Estrogen signaling pathway | bom04915 | ITPR1; GNAQ; OPRM1; KCNJ3; ITPR2 |
钙信号通路Calcium signaling pathway | bom04020 | GNAQ; ADORA2B; GNA14; PTAFR; PPP3CC; PDGFRB; ITPR2 |
cGMP-PKG信号通路cGMP-PKG signaling pathway | bom04022 | GNAQ; PRKG1; KCNMA1; MEF2C; ROCK2; ITPR2 |
血管平滑肌收缩Vascular smooth muscle contraction | bom04270 | GNAQ; ADORA2B; PRKG1; KCNMA1; ROCK2; ITPR2 |
逆行神经的信号Retrograde endocannabinoid signaling | bom04723 | ITPR1; GNAQ; GABRA1; KCNJ3; ITPR2 |
果糖和甘露糖代谢Fructose and mannose metabolism | bom00051 | ENOSF1; SORD; MPI |
肾素分泌Renin secretion | bom04924 | GNAQ; KCNMA1; PPP3CC; ITPR2 |
内分泌等因素调节钙的重吸收Endocrine and other factor-regulated calcium reabsorption | bom04961 | GNAQ; CLTC; CALB1 |
唾液分泌Salivary secretion | bom04970 | GNAQ; PRKG1; KCNMA1; ITPR2 |
胰腺分泌Pancreatic secretion | bom04972 | GNAQ; SLC4A4; KCNMA1; ITPR2 |
Rap1信号通路Rap1 signaling pathway | bom04015 | ADORA2B; KIT; VEGFC; NGF; PDGFRB |
谷氨酸突触Glutamatergic synapse | bom04724 | GNAQ; PPP3CC; KCNJ3; ITPR2 |
卵母细胞减数分裂Oocyte meiosis | bom04114 | ANAPC10; YWHAQ; PPP3CC; ITPR2 |
甲状腺激素的合成Thyroid hormone synthesis | bom04918 | GNAQ; PAX8; ITPR2 |
MAPK信号通路MAPK signaling pathway | bom04010 | NGF; PPP3CC; MEF2C; PDGFRB; CACNB4 |
血小板激活Platelet activation | bom04611 | GNAQ; PRKG1; ROCK2; ITPR2 |
多巴胺能神经突触Dopaminergic synapse | bom04728 | GNAQ; PPP3CC; KCNJ3; ITPR2 |
胆汁分泌Bile secretion | bom04976 | NCEH1; SLC5A1 |
促性腺激素信号通路GnRH signaling pathway | bom04912 | GNAQ; ITPR2 |
节律导引Circadian entrainment | bom04713 | GNAQ; PRKG1; KCNJ3 |
炎症介质调节TRP通道Inflammatory mediator regulation of TRP channels | bom04750 | GNAQ; NGF; ITPR2 |
Ras信号通路Ras signaling pathway | bom04014 | KIT; VEGFC; NGF; PDGFRB |
磷脂酰肌醇信号系统Phosphatidylinositol signaling system | bom04070 | PI4KA; ITPK1; ITPR2 |
1 | Zhang Y J, Wang F. Investigation and analysis report on yak market and industry in China. Agricultural Products Market, 2021(23): 54-55. |
张越杰, 王芳. 我国牦牛市场与产业调查分析报告. 农产品市场, 2021(23): 54-55. | |
2 | Cai B L. Maiwa yak. China Yak, 1981(1): 33-36. |
蔡伯凌. 麦洼牦牛. 中国牦牛, 1981(1): 33-36. | |
3 | Zhou F L, Liu X X, He X Q, et al. Preliminary study on breeding of Maiwa yak. Journal of Grassland and Forage Science, 2021(4): 73-75, 79. |
周凡莉, 刘晓霞, 何小强, 等. 麦洼牦牛选育初探. 草学, 2021(4): 73-75, 79. | |
4 | Yin Z. Strengthening the functions of livestock farms, promoting the development of yak industry. Prataculture & Animal Husbandry, 2011(12): 61-62. |
银忠. 强化种畜场职能, 促进牦牛业发展. 草业与畜牧, 2011(12): 61-62. | |
5 | Li S L, Luo G R, Xiao M, et al. Comparing the production performance between Maiwa yaks with different coat colors. Prataculture & Animal Husbandry, 2014(3): 30-32. |
李世林, 罗光荣, 肖敏, 等. 不同特征麦洼牦牛生产性能分析. 草业与畜牧, 2014(3): 30-32. | |
6 | Li Z, He S M, Wu J B, et al. Correlation analysis between body sizes and meat production performance of yak under standardized production condition. Contemporary Animal Husbandry, 2020, 2: 13-17. |
李铸, 何世明, 吴锦波, 等. 标准化生产牦牛体尺与产肉性能相关性分析. 当代畜牧, 2020, 2: 13-17. | |
7 | Luo H, Zhao F F, Sun L, et al. Screening the polymorphic tri-nucleotide repeat microsatellites from the genome of Maiwa yak and their genetic diversity analysis. China Animal Husbandry and Veterinary Medicine, 2017, 44(5): 1438-1445. |
罗辉, 赵芳芳, 孙磊, 等. 麦洼牦牛基因组三碱基重复微卫星的挖掘及其遗传多态性分析. 中国畜牧兽医, 2017, 44(5): 1438-1445. | |
8 | Zhu Y B, Pingcuo Z D, Luosang D Z, et al. Population genetic diversity assessment of local yak and semi-wild yak in Gaize county based on MHC genetic markers. Modern Agricultural Science and Technology, 2019(21): 209-211. |
朱彦宾, 平措占堆, 洛桑顿珠, 等. 基于MHC遗传标记的改则县本地牦牛与半野血牦牛群体遗传多样性评估. 现代农业科技, 2019(21): 209-211. | |
9 | Mao Y J, Chang H, Yang Z P, et al. Population genetic analysis of yak blood protein locus in Qinghai Plateau. Chinese Journal of Animal Science, 2008(5): 8-10. |
毛永江, 常洪, 杨章平, 等. 青海高原牦牛血液蛋白基因座群体遗传学分析. 中国畜牧杂志, 2008(5): 8-10. | |
10 | Ji Q M, Tang Y T, Zhang C F, et al. Genetic diversity and evolution relationship of Tibet yaks inferred from mtDNA cytb. Acta Veterinaria et Zootechnica Sinica, 2012, 43(11): 1723-1732. |
姬秋梅, 唐懿挺, 张成福, 等. 西藏牦牛mtDNA cytb基因的序列多态性及其系统进化分析. 畜牧兽医学报, 2012, 43(11): 1723-1732. | |
11 | Shi F, Chai Z X, Luo X L, et al. Polymorphic frequency of genetic variation in Maiwa yak by RAPD. Animal Husbandry and Veterinary Medicine, 2015, 47(2): 5-10. |
师方, 柴志欣, 罗晓林, 等. 麦洼牦牛的随机扩增多态性DNA遗传多样性分析. 畜牧与兽医, 2015, 47(2): 5-10. | |
12 | Wang X D, Guo X, Wu X Y, et al. Genetic diversity and phylogenetic analysis of mtDNA Cytb gene and D-loop region in yak of Qinghai Plateau. Genomics and Applied Biology, 2021, 40(1): 9-17. |
王兴东, 郭宪, 吴晓云, 等. 青海高原牦牛mtDNA Cytb基因和D-loop区遗传多样性及系统进化分析. 基因组学与应用生物学, 2021, 40(1): 9-17. | |
13 | Ji H, Guan J Q, Wang H, et al. Genetic structure and diversity of Yading yak and Larima yak populations. Acta Prataculturae Sinica, 2021, 30(5): 134-145. |
纪会, 官久强, 王会, 等. 亚丁牦牛和拉日马牦牛遗传多样性及遗传结构分析. 草业学报, 2021, 30(5): 134-145. | |
14 | Zhu F, Cui Q Q, Hou Z C. SNP discovery and genotyping using genotyping-by-sequencing in Pekin ducks. Scientific Reports, 2016, 6(1): 1-5. |
15 | Xue X J, Du X Y, Gai Y, et al. Application progress of SNPs in plants based on GBS sequencing. Jiangsu Agricultural Sciences, 2020, 48(13): 62-68. |
薛晓杰, 杜晓云, 盖艺, 等. 基于GBS测序开发SNP在植物上的应用进展. 江苏农业科学, 2020, 48(13): 62-68. | |
16 | Zhu F. Construction of GBS platform for Peking ducks and genome wide association analysis of some economic traits. Beijing: China Agricultural University, 2018. |
朱峰. 北京鸭GBS平台构建及部分经济性状全基因组关联分析. 北京: 中国农业大学, 2018. | |
17 | Gao X G, Bao X B, Gao M L. Analysis of genetic diversity of Chinese mitten crab (Eriocheir sinensis) with genotyping-by-sequencing technology. Journal of Anhui Agricultural Sciences, 2017, 45(36): 80-82. |
高祥刚, 鲍相渤, 高美玲. 基于GBS技术的中华绒螯蟹的遗传特征分析. 安徽农业科学, 2017, 45(36): 80-82. | |
18 | Dong S W, Wang T J, Liu H M, et al. Analysis of genomic SNP characteristics of sika deer, deer and their hybrid progenies based on GBS technology. Acta Veterinaria et Zootechnica Sinica, 2019, 50(12): 2422-2430. |
董世武, 王天骄, 刘华淼, 等. 基于GBS技术对梅花鹿、马鹿及其杂交后代基因组SNP特征的分析. 畜牧兽医学报, 2019, 50(12): 2422-2430. | |
19 | Zhang D, Zhang X, Li F, et al. Whole-genome resequencing identified candidate genes associated with the number of ribs in Hu sheep. Genomics, 2021, 113(4): 2077-2084. |
20 | Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25(16): 2078-2079. |
21 | Liu Y, Yi F, Yang G, et al. Geographic population genetic structure and diversity of Sophora moorcroftiana based on genotyping-by-sequencing (GBS). PeerJ, 2020, 8: e9609. |
22 | Ren Y, Macphillamy C, To T H, et al. Adaptive selection signatures in river buffalo with emphasis on immune and major histocompatibility complex genes. Genomics, 2021, 113(6): 3599-3609. |
23 | Zhang C, Dong S S, Xu J Y, et al. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics, 2019, 35(10): 1786-1788. |
24 | Deniskova T, Dotsev A, Petrov S, et al. Genomic assessment and phenotypic characteristics of F2 resource sheep population. Agricultural Science Euro-North-East, 2019, 20(5): 498-507. |
25 | Zhao F F. Mining and screening verifying the microsatellites from the genome of yak. Mianyang: Southwest University of Science and Technology, 2015. |
赵芳芳. 牦牛基因组微卫星挖掘与筛选验证. 绵阳: 西南科技大学, 2015. | |
26 | Hou M D, Wang H, Chai Z X, et al. The polymorphisms of yak RETN gene and its associations with growth traits. Genomics and Applied Biology, 2020, 39(10): 4432-4440. |
侯孟典, 王会, 柴志欣, 等. 牦牛RETN基因遗传多态性与生长性状相关性分析. 基因组学与应用生物学, 2020, 39(10): 4432-4440. | |
27 | Chai Z X, Wang Y, Zhong J C, et al. Association of MC4R gene polymorphism with growth traits in Maiwa yak. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(9): 1-6. |
柴志欣, 王永, 钟金城, 等. 麦洼牦牛MC4R基因多态性及与生长性状的相关分析. 西北农业学报, 2013, 22(9): 1-6. | |
28 | Li R, Li C, Chen H, et al. Genome-wide scan of selection signatures in Dehong humped cattle for heat tolerance and disease resistance. Animal Genetics, 2020, 51(2): 292-299. |
29 | Porto N L R, Sonstegard T S, Liu G E, et al. Genomic divergence of zebu and taurine cattle identified through high-density SNP genotyping. BMC Genomics, 2013, 14(1): 1-12. |
30 | Li J, Liu J, Campanile G, et al. Novel insights into the genetic basis of buffalo reproductive performance. BMC Genomics, 2018, 19(1): 1-11. |
31 | Yi K L, Zhou X, Shi D S. Effects of nerve growth factor on the development of parthenogenetic and in vitro fertilized bovine early embryo. Chinese Journal of Veterinary Science, 2008(5): 588-591. |
易康乐, 周虚, 石德顺. NGF对牛体外受精和孤雌激活早期胚胎发育的影响. 中国兽医学报, 2008(5): 588-591. | |
32 | Li Z. Study on the biological function of Gnaq and Gnas genes in sheep. Taiyuan: Shanxi Agricultural University, 2017. |
李振. 绵羊Gnaq和Gnas基因生物学功能研究. 太原: 山西农业大学, 2017. | |
33 | Zielak-Steciwko A E, Browne J A, Mcgettigan P A, et al. Expression of microRNAs and their target genes and pathways associated with ovarian follicle development in cattle. Physiological Genomics, 2014, 46(19): 735-745. |
34 | Zhan Z Y. Genetic variation and analysis of their effects and tissue expression regular pattern of MEF2C gene in yellow cattle. Xianyang: Northwest A & F University, 2014. |
展召阳. 黄牛MEF2C基因遗传变异及其效应分析和组织表达规律研究. 咸阳: 西北农林科技大学, 2014. | |
35 | Pelosi M, Marampon F, Zani B M, et al. ROCK2 and its alternatively spliced isoform ROCK2m positively control the maturation of the myogenic program. Molecular and Cellular Biology, 2007, 27(17): 6163-6176. |
36 | Yee M, Cohen E D, Domm W, et al. Neonatal hyperoxia depletes pulmonary vein cardiomyocytes in adult mice via mitochondrial oxidation. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2018, 314(5): 846-859. |
37 | Cheruiyot E K, Haile M M, Cocks B G, et al. New loci and neuronal pathways for resilience to heat stress in cattle. Scientific Reports, 2021, 11(1): 1-16. |
38 | Jiang E Z, Zhang Y F, Guo Y Y, et al. Progress in the research of the effect of the KIT gene on the formation of white coat in mammals. Animal Husbandry and Veterinary Medicine, 2019, 51(11): 147-150. |
姜恩泽, 张宇飞, 郭跃跃, 等. KIT基因影响哺乳动物白色被毛形成的研究进展. 畜牧与兽医, 2019, 51(11): 147-150. |
[1] | Xue-feng REN, Ya-bo DENG, Guo-zhang ZANG, Yi-qi ZHENG. A SSR marker analysis of genetic diversity and population genetic structure of bermudagrass in Henan Province [J]. Acta Prataculturae Sinica, 2022, 31(3): 60-70. |
[2] | Xiao-fan YIN, Na WEI, Shu-wen ZHENG, Wen-xian LIU. Genome-wide development and utilization of LTR retrotransposon-based IRAP markers in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(1): 131-144. |
[3] | Jin LI, Shi-yong CHEN, Xu ZHAO, Hao-qi TIAN, Zhi-hua CHEN, Qing-ping ZHOU. Analysis of genetic structure and fingerprinting in oat varieties based on SCoT markers [J]. Acta Prataculturae Sinica, 2021, 30(7): 72-81. |
[4] | Hui JI, Jiu-qiang GUAN, Hui WANG, Jian-xu ZHOU, Nong-ga A, Zong-wei HE, Zhen-xiang FAN, Long-kang QIU, Shi-xiao CAO, Tian-wu AN, Qin BAI, Jin-cheng ZHONG, Xiao-lin LUO. Genetic structure and diversity of Yading yak and Larima yak populations [J]. Acta Prataculturae Sinica, 2021, 30(5): 134-145. |
[5] | Zheng-yu YANG, Zhong-jie LU, Mao ZHANG, Rui DONG. A digital image analysis of seed phenotypic traits of 132 Lespedeza accessions [J]. Acta Prataculturae Sinica, 2021, 30(11): 87-97. |
[6] | Cong-cong LI, Ya-xing ZHOU, Qiang GU, Ming-xin YANG, Chuan-lu ZHU, Zi-yuan PENG, Kai XUE, Xin-quan ZHAO, Yan-fen WANG, Bao-ming JI, Jing ZHANG. The species diversity and community assembly of arbuscular mycorrhizal fungi in typical alpine grassland in Sanjiangyuan region [J]. Acta Prataculturae Sinica, 2021, 30(1): 46-58. |
[7] | LEI Xiong, YOU Ming-hong, BAI Shi-qie, CHEN Li-li, DENG Pei-hua, XIONG Yi, XIONG Yan-li, YU Qing-qing, MA Xiao, YANG Jian, ZHANG Chang-bing. Genetic diversity analysis and multivariate evaluation of agronomic traits of 50 oat germplasm lines in northwest Sichuan [J]. Acta Prataculturae Sinica, 2020, 29(7): 131-142. |
[8] | DING Yong-fu, WANG Ji-liang, CHEN Fen-qi, ZHUANG Ze-long, BAI Ming-xing, LU Yan-tian, JIN Bing-bing, PENG Yun-ling. Correlation between SSR diversity and ear traits of maize inbred lines [J]. Acta Prataculturae Sinica, 2020, 29(7): 143-153. |
[9] | WANG Jian-li, MA Li-chao, SHEN Zhong-bao, LIU Jie-lin, ZHU Rui-fen, HAN Wei-bo, ZHONG Peng, DI Gui-li, HAN Gui-qing, GUO Chang-hong. An evaluation of agronomic traits and genetic diversity among 51 oat germplasm accessions [J]. Acta Prataculturae Sinica, 2019, 28(2): 133-141. |
[10] | ZHANG Yan-jun, GOU Zuo-wang, WANG Xing-rong, LI Yue, QI Xu-sheng. An analysis of genetic diversity and linked agronomic traits of Heshangtou wheat in northwest China [J]. Acta Prataculturae Sinica, 2019, 28(2): 142-155. |
[11] | GONG Wen-long, WANG Zan, ZHAO Gui-qin, MA Lin, WEI Bao, GONG Pan, LIU Xi-qiang. Development of EST-SSR molecular markers and analysis of genetic diversity of erect milk vetch (Astragalus adsurgens) [J]. Acta Prataculturae Sinica, 2019, 28(11): 147-158. |
[12] | ZHU Yong-qun, PENG Dan-dan, LIN Chao-wen, NIE Gang, XU Wen-zhi, HUANG Lin-kai, LUO Fu-xiang, PENG Jian-hua, ZHANG Xin-quan. Development of SSR markers based on transcriptome sequence and analysis of genetic diversity in Sorghum sudanense [J]. Acta Prataculturae Sinica, 2018, 27(5): 178-189. |
[13] | YANG Yan-ting, HOU Xiang-yang, WEI Zhen-wu, QIAO Zhi-hong, CHANG Chun, REN Wei-bo, WU Zi-nian. Screening and genetic diversity analysis of chloroplast non-coding regions in Leymus chinensis [J]. Acta Prataculturae Sinica, 2018, 27(10): 147-157. |
[14] | LIU Li, WANG Gui-zhen, ZHOU Yan-shan, CHU Bin, MA Su-jie, JI Cheng-peng, TIAN Yong-liang, HUA Li-min. Small-scale genetic structural analysis of plateau zokor (Eospalax baileyi) [J]. Acta Prataculturae Sinica, 2018, 27(1): 123-130. |
[15] | TU Ming-Yue, LI Jie, HE Ya-Li, LI Xing, LI Jun, YUAN Xiao-Jun. Genetic diversity analysis of Kentucky Bluegrass cultivars by RAPDs [J]. Acta Prataculturae Sinica, 2017, 26(7): 71-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||