Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (1): 174-190.DOI: 10.11686/cyxb2024133
Chao MA1(), Xi-jing SUN1(), Ya-lan FENG2, Shuang ZHOU1, Ji-hao JU1, Yi WU1, Tian-ning WANG1, Bin-bin GUO1, Jun ZHANG1()
Received:
2024-04-18
Revised:
2024-06-05
Online:
2025-01-20
Published:
2024-11-04
Contact:
Jun ZHANG
About author:
First author contact:These authors contributed equally to this work.
Chao MA, Xi-jing SUN, Ya-lan FENG, Shuang ZHOU, Ji-hao JU, Yi WU, Tian-ning WANG, Bin-bin GUO, Jun ZHANG. Genome-wide identification of the GLK gene family in alfalfa and their transcript profiles under osmotic stress[J]. Acta Prataculturae Sinica, 2025, 34(1): 174-190.
基因Gene | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
---|---|---|
MsGLK10 | CAGATGAAGTCGGATGAGCCT | GGTGGTGCGGTAAGTTGGTC |
MsGLK17 | TACCACAGCAAGGGAAGCAG | GAATGGAACGGCGATGAACT |
MsGLK29 | GCAAGTGGAGGCAGAGAAGC | GGGTGGGATGGTTTGAGGA |
MsGLK33 | AAACCTGCCTCTTTACCGATTC | GTTGCTCTTTCTTGCCCTCC |
MsGLK36 | GCAAGTGGAGGCAGAGAAGC | GGGTGGGATGGTTTGAGGA |
MsGLK62 | CATCACTCATCCCTTTCACCTC | CCTGCCAATCATTTCGCTT |
MsGLK65 | AACACTTCCGCTGTCCCAT | TCTCATTGCCGTCGTCATTT |
MsGLK75 | CTTCATCACTCATCCCTTTCACC | GCAGGCACCGCTCTCTACTT |
MsGLK83 | ATATCCAGGGTCATAGTATTTTCCA | CGTTGTTTTCAGTTCTTCCTCTTG |
MsActin | ACTGGAATGGTGAAGGCTGG | TGACAATACCGTGCTCAATGG |
Table 1 Primers used for RT-qPCR
基因Gene | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
---|---|---|
MsGLK10 | CAGATGAAGTCGGATGAGCCT | GGTGGTGCGGTAAGTTGGTC |
MsGLK17 | TACCACAGCAAGGGAAGCAG | GAATGGAACGGCGATGAACT |
MsGLK29 | GCAAGTGGAGGCAGAGAAGC | GGGTGGGATGGTTTGAGGA |
MsGLK33 | AAACCTGCCTCTTTACCGATTC | GTTGCTCTTTCTTGCCCTCC |
MsGLK36 | GCAAGTGGAGGCAGAGAAGC | GGGTGGGATGGTTTGAGGA |
MsGLK62 | CATCACTCATCCCTTTCACCTC | CCTGCCAATCATTTCGCTT |
MsGLK65 | AACACTTCCGCTGTCCCAT | TCTCATTGCCGTCGTCATTT |
MsGLK75 | CTTCATCACTCATCCCTTTCACC | GCAGGCACCGCTCTCTACTT |
MsGLK83 | ATATCCAGGGTCATAGTATTTTCCA | CGTTGTTTTCAGTTCTTCCTCTTG |
MsActin | ACTGGAATGGTGAAGGCTGG | TGACAATACCGTGCTCAATGG |
基因名 Gene name | 基因登录号 Gene ID | PL (aa) | Mw (kDa) | pI | Sl | 基因名 Gene name | 基因登录号 Gene ID | PL (aa) | Mw (kDa) | pI | Sl |
---|---|---|---|---|---|---|---|---|---|---|---|
MsGLK1 | MS.gene005086.t1 | 388 | 43.19 | 4.73 | Nuc | MsGLK51 | MS.gene76602.t1 | 352 | 39.86 | 5.75 | Nuc |
MsGLK2 | MS.gene005866.t1 | 378 | 42.16 | 7.72 | Nuc | MsGLK52 | MS.gene55246.t1 | 352 | 40.14 | 5.54 | Nuc |
MsGLK3 | MS.gene041038.t1 | 281 | 32.18 | 8.66 | Nuc | MsGLK53 | MS.gene028039.t1 | 277 | 31.24 | 6.03 | Nuc |
MsGLK4 | MS.gene37289.t1 | 231 | 26.06 | 8.63 | Nuc | MsGLK54 | MS.gene045645.t1 | 353 | 40.08 | 5.75 | Nuc |
MsGLK5 | MS.gene60590.t1 | 379 | 42.20 | 7.18 | Nuc | MsGLK55 | MS.gene070117.t1 | 277 | 31.32 | 5.82 | Nuc |
MsGLK6 | MS.gene43963.t1 | 388 | 43.13 | 4.76 | Nuc | MsGLK56 | MS.gene032930.t1 | 352 | 39.83 | 5.75 | Nuc |
MsGLK7 | MS.gene001686.t1 | 378 | 42.16 | 7.73 | Nuc | MsGLK57 | MS.gene87987.t1 | 393 | 44.55 | 6.20 | Nuc |
MsGLK8 | MS.gene070698.t1 | 437 | 48.03 | 6.98 | Nuc | MsGLK58 | MS.gene85671.t1 | 308 | 34.34 | 9.37 | Nuc |
MsGLK9 | MS.gene026358.t1 | 201 | 23.51 | 8.81 | Nuc | MsGLK59 | MS.gene68923.t1 | 393 | 44.48 | 6.16 | Nuc |
MsGLK10 | MS.gene036427.t1 | 388 | 43.13 | 4.76 | Nuc | MsGLK60 | MS.gene042587.t1 | 393 | 44.45 | 6.07 | Nuc |
MsGLK11 | MS.gene21397.t1 | 297 | 33.01 | 6.43 | Nuc | MsGLK61 | MS.gene66964.t1 | 393 | 44.48 | 6.16 | Nuc |
MsGLK12 | MS.gene60862.t1 | 378 | 42.15 | 7.72 | Nuc | MsGLK62 | MS.gene018653.t1 | 489 | 53.80 | 5.42 | Nuc |
MsGLK13 | MS.gene055776.t1 | 423 | 46.76 | 5.86 | Nuc | MsGLK63 | MS.gene017974.t1 | 359 | 40.43 | 6.92 | Nuc |
MsGLK14 | MS.gene35408.t1 | 373 | 41.81 | 7.74 | Nuc | MsGLK64 | MS.gene017688.t1 | 301 | 32.94 | 6.56 | Nuc |
MsGLK15 | MS.gene35289.t1 | 257 | 28.82 | 8.91 | Nuc | MsGLK65 | MS.gene013905.t1 | 281 | 30.65 | 5.79 | Nuc |
MsGLK16 | MS.gene62480.t1 | 365 | 40.90 | 8.66 | Cyt | MsGLK66 | MS.gene99484.t1 | 350 | 39.92 | 5.48 | Nuc |
MsGLK17 | MS.gene003164.t1 | 860 | 94.37 | 8.47 | Chl | MsGLK67 | MS.gene84188.t1 | 238 | 26.82 | 9.64 | Nuc |
MsGLK18 | MS.gene003165.t1 | 330 | 36.16 | 6.19 | Nuc | MsGLK68 | MS.gene035191.t1 | 489 | 53.78 | 5.42 | Nuc |
MsGLK19 | MS.gene043457.t1 | 423 | 46.73 | 5.86 | Nuc | MsGLK69 | MS.gene52648.t1 | 351 | 39.53 | 6.70 | Nuc |
MsGLK20 | MS.gene84326.t1 | 373 | 41.81 | 7.74 | Nuc | MsGLK70 | MS.gene013966.t1 | 301 | 32.84 | 6.56 | Nuc |
MsGLK21 | MS.gene073152.t1 | 313 | 35.17 | 6.98 | Nuc | MsGLK71 | MS.gene068055.t1 | 283 | 30.79 | 5.94 | Nuc |
MsGLK22 | MS.gene066206.t1 | 375 | 41.71 | 8.37 | Nuc | MsGLK72 | MS.gene069022.t1 | 350 | 39.82 | 5.48 | Nuc |
MsGLK23 | MS.gene01976.t1 | 331 | 36.21 | 6.23 | Nuc | MsGLK73 | MS.gene77355.t1 | 256 | 28.91 | 9.60 | Nuc |
MsGLK24 | MS.gene01975.t1 | 382 | 41.62 | 8.62 | Chl | MsGLK74 | MS.gene024551.t1 | 439 | 48.79 | 5.11 | Nuc |
MsGLK25 | MS.gene028866.t1 | 423 | 46.73 | 5.86 | Nuc | MsGLK75 | MS.gene23439.t1 | 489 | 53.78 | 5.42 | Nuc |
MsGLK26 | MS.gene034456.t1 | 373 | 41.83 | 7.25 | Nuc | MsGLK76 | MS.gene04612.t1 | 359 | 40.43 | 6.92 | Nuc |
MsGLK27 | MS.gene040544.t1 | 581 | 63.91 | 5.80 | Nuc | MsGLK77 | MS.gene58831.t1 | 298 | 32.76 | 6.56 | Nuc |
MsGLK28 | MS.gene045711.t1 | 375 | 41.72 | 8.37 | Nuc | MsGLK78 | MS.gene77413.t1 | 350 | 39.94 | 5.56 | Nuc |
MsGLK29 | MS.gene048293.t1 | 314 | 34.41 | 6.60 | Nuc | MsGLK79 | MS.gene94669.t1 | 256 | 28.93 | 9.78 | Nuc |
MsGLK30 | MS.gene048294.t1 | 330 | 36.16 | 6.19 | Nuc | MsGLK80 | MS.gene050550.t1 | 439 | 48.79 | 5.11 | Nuc |
MsGLK31 | MS.gene31432.t1 | 423 | 46.69 | 5.86 | Nuc | MsGLK81 | MS.gene96951.t1 | 489 | 53.73 | 5.37 | Nuc |
MsGLK32 | MS.gene43040.t1 | 373 | 41.79 | 7.25 | Nuc | MsGLK82 | MS.gene41865.t1 | 283 | 30.79 | 5.94 | Nuc |
MsGLK33 | MS.gene94587.t1 | 315 | 35.25 | 7.30 | Nuc | MsGLK83 | MS.gene95656.t1 | 350 | 39.85 | 5.48 | Nuc |
MsGLK34 | MS.gene038958.t1 | 375 | 41.74 | 8.37 | Nuc | MsGLK84 | MS.gene95601.t1 | 238 | 26.83 | 9.64 | Nuc |
MsGLK35 | MS.gene02861.t1 | 330 | 36.17 | 6.24 | Nuc | MsGLK85 | MS.gene036866.t1 | 434 | 47.87 | 6.66 | Nuc |
MsGLK36 | MS.gene02867.t1 | 314 | 34.42 | 6.60 | Nuc | MsGLK86 | MS.gene61025.t1 | 352 | 39.45 | 6.50 | Nuc |
MsGLK37 | MS.gene002965.t1 | 238 | 26.64 | 8.87 | Nuc | MsGLK87 | MS.gene068940.t1 | 345 | 38.77 | 6.64 | Nuc |
MsGLK38 | MS.gene008318.t1 | 461 | 50.91 | 7.22 | Nuc | MsGLK88 | MS.gene060554.t1 | 434 | 47.88 | 6.66 | Nuc |
MsGLK39 | MS.gene019228.t1 | 383 | 42.69 | 7.20 | Chl | MsGLK89 | MS.gene42755.t1 | 345 | 38.77 | 6.64 | Nuc |
MsGLK40 | MS.gene061558.t1 | 426 | 47.13 | 7.99 | Nuc | MsGLK90 | MS.gene36713.t1 | 221 | 25.38 | 9.67 | Chl |
MsGLK41 | MS.gene057902.t1 | 394 | 43.82 | 9.10 | Nuc | MsGLK91 | MS.gene87427.t1 | 650 | 71.83 | 5.55 | Nuc |
MsGLK42 | MS.gene049714.t1 | 424 | 46.87 | 7.99 | Nuc | MsGLK92 | MS.gene36099.t1 | 346 | 38.76 | 6.64 | Nuc |
MsGLK43 | MS.gene05012.t1 | 425 | 47.00 | 7.99 | Nuc | MsGLK93 | MS.gene88392.t1 | 302 | 33.85 | 8.12 | Cyt |
MsGLK44 | MS.gene26549.t1 | 420 | 47.03 | 8.17 | Nuc | MsGLK94 | MS.gene056957.t1 | 363 | 40.53 | 9.07 | Nuc |
MsGLK45 | MS.gene006790.t1 | 340 | 37.99 | 5.97 | Nuc | MsGLK95 | MS.gene056956.t1 | 434 | 47.87 | 6.66 | Nuc |
MsGLK46 | MS.gene031499.t1 | 340 | 38.06 | 5.97 | Nuc | MsGLK96 | MS.gene038713.t1 | 434 | 47.87 | 6.66 | Nuc |
MsGLK47 | MS.gene96791.t1 | 340 | 37.99 | 5.97 | Nuc | MsGLK97 | MS.gene066880.t1 | 346 | 38.90 | 6.68 | Nuc |
MsGLK48 | MS.gene56537.t1 | 339 | 37.89 | 5.97 | Nuc | MsGLK98 | MS.gene00817.t1 | 238 | 26.61 | 8.87 | Nuc |
MsGLK49 | MS.gene54226.t1 | 387 | 43.44 | 7.27 | Nuc | MsGLK99 | MS.gene02381.t1 | 238 | 26.66 | 8.87 | Nuc |
MsGLK50 | MS.gene72865.t1 | 277 | 31.26 | 5.95 | Nuc | MsGLK100 | MS.gene072393.t1 | 351 | 39.62 | 6.73 | Nuc |
Table 2 Basic information analysis of GLK gene family of alfalfa
基因名 Gene name | 基因登录号 Gene ID | PL (aa) | Mw (kDa) | pI | Sl | 基因名 Gene name | 基因登录号 Gene ID | PL (aa) | Mw (kDa) | pI | Sl |
---|---|---|---|---|---|---|---|---|---|---|---|
MsGLK1 | MS.gene005086.t1 | 388 | 43.19 | 4.73 | Nuc | MsGLK51 | MS.gene76602.t1 | 352 | 39.86 | 5.75 | Nuc |
MsGLK2 | MS.gene005866.t1 | 378 | 42.16 | 7.72 | Nuc | MsGLK52 | MS.gene55246.t1 | 352 | 40.14 | 5.54 | Nuc |
MsGLK3 | MS.gene041038.t1 | 281 | 32.18 | 8.66 | Nuc | MsGLK53 | MS.gene028039.t1 | 277 | 31.24 | 6.03 | Nuc |
MsGLK4 | MS.gene37289.t1 | 231 | 26.06 | 8.63 | Nuc | MsGLK54 | MS.gene045645.t1 | 353 | 40.08 | 5.75 | Nuc |
MsGLK5 | MS.gene60590.t1 | 379 | 42.20 | 7.18 | Nuc | MsGLK55 | MS.gene070117.t1 | 277 | 31.32 | 5.82 | Nuc |
MsGLK6 | MS.gene43963.t1 | 388 | 43.13 | 4.76 | Nuc | MsGLK56 | MS.gene032930.t1 | 352 | 39.83 | 5.75 | Nuc |
MsGLK7 | MS.gene001686.t1 | 378 | 42.16 | 7.73 | Nuc | MsGLK57 | MS.gene87987.t1 | 393 | 44.55 | 6.20 | Nuc |
MsGLK8 | MS.gene070698.t1 | 437 | 48.03 | 6.98 | Nuc | MsGLK58 | MS.gene85671.t1 | 308 | 34.34 | 9.37 | Nuc |
MsGLK9 | MS.gene026358.t1 | 201 | 23.51 | 8.81 | Nuc | MsGLK59 | MS.gene68923.t1 | 393 | 44.48 | 6.16 | Nuc |
MsGLK10 | MS.gene036427.t1 | 388 | 43.13 | 4.76 | Nuc | MsGLK60 | MS.gene042587.t1 | 393 | 44.45 | 6.07 | Nuc |
MsGLK11 | MS.gene21397.t1 | 297 | 33.01 | 6.43 | Nuc | MsGLK61 | MS.gene66964.t1 | 393 | 44.48 | 6.16 | Nuc |
MsGLK12 | MS.gene60862.t1 | 378 | 42.15 | 7.72 | Nuc | MsGLK62 | MS.gene018653.t1 | 489 | 53.80 | 5.42 | Nuc |
MsGLK13 | MS.gene055776.t1 | 423 | 46.76 | 5.86 | Nuc | MsGLK63 | MS.gene017974.t1 | 359 | 40.43 | 6.92 | Nuc |
MsGLK14 | MS.gene35408.t1 | 373 | 41.81 | 7.74 | Nuc | MsGLK64 | MS.gene017688.t1 | 301 | 32.94 | 6.56 | Nuc |
MsGLK15 | MS.gene35289.t1 | 257 | 28.82 | 8.91 | Nuc | MsGLK65 | MS.gene013905.t1 | 281 | 30.65 | 5.79 | Nuc |
MsGLK16 | MS.gene62480.t1 | 365 | 40.90 | 8.66 | Cyt | MsGLK66 | MS.gene99484.t1 | 350 | 39.92 | 5.48 | Nuc |
MsGLK17 | MS.gene003164.t1 | 860 | 94.37 | 8.47 | Chl | MsGLK67 | MS.gene84188.t1 | 238 | 26.82 | 9.64 | Nuc |
MsGLK18 | MS.gene003165.t1 | 330 | 36.16 | 6.19 | Nuc | MsGLK68 | MS.gene035191.t1 | 489 | 53.78 | 5.42 | Nuc |
MsGLK19 | MS.gene043457.t1 | 423 | 46.73 | 5.86 | Nuc | MsGLK69 | MS.gene52648.t1 | 351 | 39.53 | 6.70 | Nuc |
MsGLK20 | MS.gene84326.t1 | 373 | 41.81 | 7.74 | Nuc | MsGLK70 | MS.gene013966.t1 | 301 | 32.84 | 6.56 | Nuc |
MsGLK21 | MS.gene073152.t1 | 313 | 35.17 | 6.98 | Nuc | MsGLK71 | MS.gene068055.t1 | 283 | 30.79 | 5.94 | Nuc |
MsGLK22 | MS.gene066206.t1 | 375 | 41.71 | 8.37 | Nuc | MsGLK72 | MS.gene069022.t1 | 350 | 39.82 | 5.48 | Nuc |
MsGLK23 | MS.gene01976.t1 | 331 | 36.21 | 6.23 | Nuc | MsGLK73 | MS.gene77355.t1 | 256 | 28.91 | 9.60 | Nuc |
MsGLK24 | MS.gene01975.t1 | 382 | 41.62 | 8.62 | Chl | MsGLK74 | MS.gene024551.t1 | 439 | 48.79 | 5.11 | Nuc |
MsGLK25 | MS.gene028866.t1 | 423 | 46.73 | 5.86 | Nuc | MsGLK75 | MS.gene23439.t1 | 489 | 53.78 | 5.42 | Nuc |
MsGLK26 | MS.gene034456.t1 | 373 | 41.83 | 7.25 | Nuc | MsGLK76 | MS.gene04612.t1 | 359 | 40.43 | 6.92 | Nuc |
MsGLK27 | MS.gene040544.t1 | 581 | 63.91 | 5.80 | Nuc | MsGLK77 | MS.gene58831.t1 | 298 | 32.76 | 6.56 | Nuc |
MsGLK28 | MS.gene045711.t1 | 375 | 41.72 | 8.37 | Nuc | MsGLK78 | MS.gene77413.t1 | 350 | 39.94 | 5.56 | Nuc |
MsGLK29 | MS.gene048293.t1 | 314 | 34.41 | 6.60 | Nuc | MsGLK79 | MS.gene94669.t1 | 256 | 28.93 | 9.78 | Nuc |
MsGLK30 | MS.gene048294.t1 | 330 | 36.16 | 6.19 | Nuc | MsGLK80 | MS.gene050550.t1 | 439 | 48.79 | 5.11 | Nuc |
MsGLK31 | MS.gene31432.t1 | 423 | 46.69 | 5.86 | Nuc | MsGLK81 | MS.gene96951.t1 | 489 | 53.73 | 5.37 | Nuc |
MsGLK32 | MS.gene43040.t1 | 373 | 41.79 | 7.25 | Nuc | MsGLK82 | MS.gene41865.t1 | 283 | 30.79 | 5.94 | Nuc |
MsGLK33 | MS.gene94587.t1 | 315 | 35.25 | 7.30 | Nuc | MsGLK83 | MS.gene95656.t1 | 350 | 39.85 | 5.48 | Nuc |
MsGLK34 | MS.gene038958.t1 | 375 | 41.74 | 8.37 | Nuc | MsGLK84 | MS.gene95601.t1 | 238 | 26.83 | 9.64 | Nuc |
MsGLK35 | MS.gene02861.t1 | 330 | 36.17 | 6.24 | Nuc | MsGLK85 | MS.gene036866.t1 | 434 | 47.87 | 6.66 | Nuc |
MsGLK36 | MS.gene02867.t1 | 314 | 34.42 | 6.60 | Nuc | MsGLK86 | MS.gene61025.t1 | 352 | 39.45 | 6.50 | Nuc |
MsGLK37 | MS.gene002965.t1 | 238 | 26.64 | 8.87 | Nuc | MsGLK87 | MS.gene068940.t1 | 345 | 38.77 | 6.64 | Nuc |
MsGLK38 | MS.gene008318.t1 | 461 | 50.91 | 7.22 | Nuc | MsGLK88 | MS.gene060554.t1 | 434 | 47.88 | 6.66 | Nuc |
MsGLK39 | MS.gene019228.t1 | 383 | 42.69 | 7.20 | Chl | MsGLK89 | MS.gene42755.t1 | 345 | 38.77 | 6.64 | Nuc |
MsGLK40 | MS.gene061558.t1 | 426 | 47.13 | 7.99 | Nuc | MsGLK90 | MS.gene36713.t1 | 221 | 25.38 | 9.67 | Chl |
MsGLK41 | MS.gene057902.t1 | 394 | 43.82 | 9.10 | Nuc | MsGLK91 | MS.gene87427.t1 | 650 | 71.83 | 5.55 | Nuc |
MsGLK42 | MS.gene049714.t1 | 424 | 46.87 | 7.99 | Nuc | MsGLK92 | MS.gene36099.t1 | 346 | 38.76 | 6.64 | Nuc |
MsGLK43 | MS.gene05012.t1 | 425 | 47.00 | 7.99 | Nuc | MsGLK93 | MS.gene88392.t1 | 302 | 33.85 | 8.12 | Cyt |
MsGLK44 | MS.gene26549.t1 | 420 | 47.03 | 8.17 | Nuc | MsGLK94 | MS.gene056957.t1 | 363 | 40.53 | 9.07 | Nuc |
MsGLK45 | MS.gene006790.t1 | 340 | 37.99 | 5.97 | Nuc | MsGLK95 | MS.gene056956.t1 | 434 | 47.87 | 6.66 | Nuc |
MsGLK46 | MS.gene031499.t1 | 340 | 38.06 | 5.97 | Nuc | MsGLK96 | MS.gene038713.t1 | 434 | 47.87 | 6.66 | Nuc |
MsGLK47 | MS.gene96791.t1 | 340 | 37.99 | 5.97 | Nuc | MsGLK97 | MS.gene066880.t1 | 346 | 38.90 | 6.68 | Nuc |
MsGLK48 | MS.gene56537.t1 | 339 | 37.89 | 5.97 | Nuc | MsGLK98 | MS.gene00817.t1 | 238 | 26.61 | 8.87 | Nuc |
MsGLK49 | MS.gene54226.t1 | 387 | 43.44 | 7.27 | Nuc | MsGLK99 | MS.gene02381.t1 | 238 | 26.66 | 8.87 | Nuc |
MsGLK50 | MS.gene72865.t1 | 277 | 31.26 | 5.95 | Nuc | MsGLK100 | MS.gene072393.t1 | 351 | 39.62 | 6.73 | Nuc |
1 | Zaikina E A, Rumyantsev S D, Sarvarova E R, et al. Transcription factor genes involved in plant response to abiotic stress factors. Ecological Genetics, 2019, 17(3): 47-58. |
2 | Joshi R, Wani S H, Singh B, et al. Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science, 2016, 7: 1029. |
3 | Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000, 290(5499): 2105-2110. |
4 | Yasumura Y, Moylan E C, Langdale J A. A conserved transcription factor mediates nuclear control of organelle biogenesis in anciently diverged land plants. The Plant Cell, 2005, 17(7): 1894-1907. |
5 | Rossini L, Cribb L, Martin D J, et al. The maize Golden2 gene defines a novel class of transcriptional regulators in plants. The Plant Cell, 2001, 13(5): 1231-1244. |
6 | Tachibana R, Abe S, Marugami M, et al. BPG4 regulates chloroplast development and homeostasis by suppressing GLK transcription factors and involving light and brassinosteroid signaling. Nature Communications, 2024, 15(1): 370. |
7 | Waters M T, Wang P, Korkaric M, et al. GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. The Plant Cell, 2009, 21(4): 1109-1128. |
8 | Cackett L, Luginbuehl L H, Schreier T B, et al. Chloroplast development in green plant tissues: The interplay between light, hormone, and transcriptional regulation. New Phytologist, 2022, 233(5): 2000-2016. |
9 | Wang P, Fouracre J, Kelly S, et al. Evolution of GOLDEN2-LIKE gene function in C3 and C4 plants. Planta, 2013, 237(2):481-495. |
10 | Liu X Y, Chen X, Cao J J, et al. GOLDEN 2-LIKE transcription factors regulate chlorophyll biosynthesis and flavonoid accumulation in response to UV-B in tea plants. Horticultural Plant Journal, 2023, 9(5): 1055-1066. |
11 | Tu X Y, Ren S B, Shen W, et al. Limited conservation in cross-species comparison of GLK transcription factor binding suggested wide-spread cistrome divergence. Nature Communications, 2022, 13(1): 7632. |
12 | Powell A L, Nguyen C V, Hill T, et al. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science, 2012, 336(6089): 1711-1715. |
13 | Li H, Li Y X, Deng H, et al. Tomato UV-B receptor SlUVR8 mediates plant acclimation to UV-B radiation and enhances fruit chloroplast development via regulating SlGLK2. Scientific Reports, 2018, 8(1): 6097. |
14 | Zubo Y O, Blakley I C, Franco-Zorrilla J M, et al. Coordination of chloroplast development through the action of the GNC and GLK transcription factor families. Plant Physiology, 2018, 178(1): 130-147. |
15 | Kim S, Choi H, Yi T, et al. Pleiotropic properties of GOLDEN2-LIKE transcription factors for crop improvement. Applied Biological Chemistry, 2023, 66(1): 1-14. |
16 | Singh J, Savitch L, Subramaniam G, et al. The GLK1 ‘regulon’ encodes disease defense related proteins and confers resistance to Fusarium graminearum in Arabidopsis. Biochemical and Biophysical Research Communications, 2007, 359(2): 234-238. |
17 | Han X Y, Li P X, Zou L J, et al. GOLDEN 2-LIKE transcription factors coordinate the tolerance to cucumber mosaic virus in Arabidopsis. Biochemical and Biophysical Research Communications, 2016, 477(4): 626-632. |
18 | Ali N, Chen H, Zhang C, et al. Ectopic expression of AhGLK1b (GOLDEN2-like transcription factor) in Arabidopsis confers dual resistance to fungal and bacterial pathogens. Genes, 2020, 11(3): 343. |
19 | Townsend P D, Dixon C H, Slootweg E J, et al. The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor. Journal of Biological Chemistry, 2018, 293(9): 3218-3233. |
20 | Liu J N, Mehari T G, Xu Y C, et al. GhGLK1 a key candidate gene from GARP family enhances cold and drought stress tolerance in cotton. Frontiers in Plant Science, 2021, 12: 759312. |
21 | Liu X, Li L M, Li M J, et al. AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Scientific Reports, 2018, 8(1): 2250. |
22 | Liu F, Xu Y X, Han G M, et al. Molecular evolution and genetic variation of G2-like transcription factor genes in maize. PLoS One, 2016, 11(8): e0161763. |
23 | Li T T. Expression analysis of PPO, GLK1 and NADH in lotus and identification of its interaction domain. Yangling: Northwest A & F University, 2021. |
李婷婷. 莲藕PPO与GLK1、NADH的表达分析及互作结构域确定. 杨凌: 西北农林科技大学, 2021. | |
24 | Ahmad R, Liu Y T, Wang T J, et al. GOLDEN2-LIKE transcription factors regulate WRKY40 expression in response to abscisic acid. Plant Physiology, 2019, 179(4): 1844-1860. |
25 | Chen L, He F, Long R C, et al. A global alfalfa diversity panel reveals genomic selection signatures in Chinese varieties and genomic associations with root development. Journal of Integrative Plant Biology, 2021, 63(11): 1937-1951. |
26 | Huang X F, Shi P L, Yu C Q, et al. A review of abiotic stress resistance of forages. Acta Agrestia Sinica, 2023, 31(5): 1293-1301. |
黄小芳, 石培礼, 余成群, 等. 非生物胁迫下牧草抗逆性研究进展. 草地学报, 2023, 31(5): 1293-1301. | |
27 | Jia Y K, Gao H H, Feng J C, et al. Genome-wide identification and expression analysis of G2-like transcription factors family gene in wheat. Acta Agronomica Sinica, 2023, 49(5): 1410-1425. |
贾玉库, 高宏欢, 冯健超, 等. 小麦G2-like转录因子家族基因鉴定与表达模式分析. 作物学报, 2023, 49(5): 1410-1425. | |
28 | Wang Z Y, Zhao S, Liu J F, et al. Genome-wide identification of tomato Golden 2-like transcription factors and abiotic stress related members screening. BMC Plant Biology, 2022, 22(1): 82. |
29 | Chen H F, Qin L, Tian J G, et al. Identification and evolutionary analysis of the GOLDEN 2-LIKE gene family in foxtail millet. Tropical Plant Biology, 2022, 15: 301-318. |
30 | Alam I, Manghwar H, Zhang H Y, et al. Identification of GOLDEN2-like transcription factor genes in soybeans and their role in regulating plant development and metal ion stresses. Frontiers in Plant Science, 2022, 13: 1052659. |
31 | Qin M Y, Zhang B H, Gu G, et al. Genome-wide analysis of the G2-like transcription factor genes and their expression in different senescence stages of tobacco (Nicotiana tabacum L.). Frontiers in Genetics, 2021, 31(12): 626352. |
32 | Zhao Z L, Shuang J R, Li Z G, et al. Identification of the Golden-2-like transcription factors gene family in Gossypium hirsutum. PeerJ, 2021, 9: e12484. |
33 | Chen C J, Chen H, Zhang Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. |
34 | Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. |
35 | O’Rourke J A, Fu F L, Bucciarelli B, et al. The Medicago sativa gene index 1.2: A web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies. BMC Genomics, 2015, 16(1): 502. |
36 | Liu H, Li X Y, Zi Y F, et al. Characterization of the heat shock transcription factor family in Medicago sativa L. and its potential roles in response to abiotic stresses. International Journal of Molecular Sciences, 2023, 24(16): 12683. |
37 | Kang C H, Jung W Y, Kang Y H, et al. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death and Differentiation, 2006, 13(1): 84-95. |
38 | Wu R H, Guo L, Guo Y Y, et al. The G2-Like gene family in Populus trichocarpa: Identification, evolution and expression profiles. BMC Genomic Data, 2023, 24(1): 37. |
39 | Meng X X, Liang Z K, Dai X R, et al. Predicting transcriptional responses to cold stress across plant species. PNAS, 2021, 118(10): e2026330118. |
40 | Xiong B, Gong Y, Li Q, et al. Genome-wide analysis of the GLK gene family and the expression under different growth stages and dark stress in sweet orange (Citrus sinensis). Horticulturae, 2022, 8(11): 1076. |
41 | Zhang X Y, Zhao L J, Li Y J, et al. Expression of AtPUB18 after salt stress treatment and analysis of its promoter from Arabidopsis thaliana. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(1): 54-59. |
张新宇, 赵兰杰, 李艳军, 等. 盐胁迫对拟南芥AtPUB18基因的诱导表达及其启动子分析. 西北植物学报, 2014, 34(1): 54-59. | |
42 | Panchy N, Lehti-Shiu M, Shiu S H. Evolution of gene duplication in plants. Plant Physiology, 2016, 171(4): 2294-2316. |
43 | Cannon S B, Mitra A, Baumgarten A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology, 2004, 4: 10. |
44 | Birchler J A, Yang H. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. The Plant Cell, 2022, 34(7): 2466-2474. |
45 | Ram H, Sahadevan S, Gale N, et al. An integrated analysis of cell-type specific gene expression reveals genes regulated by REVOLUTA and KANADI1 in the Arabidopsis shoot apical meristem. PLoS Genetics, 2020, 16(4): e1008661. |
46 | Kiba T, Inaba J, Kudo T, et al. Repression of nitrogen starvation responses by members of the Arabidopsis GARP-type transcription factor NIGT1/HRS1 subfamily. The Plant Cell, 2018, 30(4): 925-945. |
47 | Li Q, Zhou L Y, Li Y H, et al. Plant NIGT1/HRS1/HHO transcription factors: Key regulators with multiple roles in plant growth, development, and stress responses. International Journal of Molecular Sciences, 2021, 22(16): 8685. |
48 | Zhao X Y, Yang J J, Li X Z, et al. Identification and expression analysis of GARP superfamily genes in response to nitrogen and phosphorus stress in Spirodela polyrhiza. BMC Plant Biology, 2022, 22(1): 308. |
49 | Rose A, Meier I, Wienand U. The tomato I-box binding factor LeMYBI is a member of a novel class of myb-like proteins. The Plant Journal, 1999, 20(6): 641-652. |
50 | Rogozin I B, Carmel L, Csuros M, et al. Origin and evolution of spliceosomal introns. Biology Direct, 2012, 7: 11. |
51 | Yang L L, Zhang X Y, Wang L Y, et al. Lineage-specific amplification and epigenetic regulation of LTR-retrotransposons contribute to the structure, evolution, and function of Fabaceae species. BMC Genomics, 2023, 24(1): 423. |
52 | Fitter D W, Martin D J, Copley M J, et al. GLK gene pairs regulate chloroplast development in diverse plant species. The Plant Journal, 2010, 31(6): 713-727. |
53 | Tamai H, Iwabuchi M, Meshi T. Arabidopsis GARP transcriptional activators interact with the pro-rich activation domain shared by G-Box-Binding bZIP factors. Plant and Cell Physiology, 2002, 43(1): 99-107. |
54 | Lee S C, Kim S H, Kim S R. Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D. Journal of Integrative Plant Biology, 2013, 56: 115-121. |
55 | Wang J L, Du C X, Zhou H K, et al. Exogenic ABA and plant abiotic stress resistance mechanism. Journal of Anhui Agricultural Sciences, 2019, 47(13): 12-15. |
王金丽, 杜晨曦, 周华坤, 等. 外源ABA与植物非生物胁迫抗逆机制. 安徽农业科学, 2019, 47(13): 12-15. | |
56 | Yoshida T, Fernie A R, Shinozaki K, et al. Long-distance stress and developmental signals associated with abscisic acid signaling in environmental responses. The Plant Journal: For Cell and Molecular Biology, 2021, 105(2): 477-488. |
[1] | Long-yi HE, Meng-meng TAN, Hai-tao CHE, Hong-ying ZHANG, Yu-xin ZHU, Yan-ni ZHANG. Cloning and analysis of drought tolerance function of the LpDREB9 in Lilium pumilum [J]. Acta Prataculturae Sinica, 2025, 34(1): 161-173. |
[2] | Zheng-yan LI, Zhi-ming XU, Yan LI, Yang LI. Effects of short-term continuous cropping of alfalfa on the growth and soil microenvironment of subsequent sorghum-sudan grass hybrid crops in the Jianghuai area [J]. Acta Prataculturae Sinica, 2024, 33(9): 155-168. |
[3] | Xiao-tong WANG, Xiao-hong LI, Xu-xia MA, Wen-qi CAI, Xue-li FENG, Shu-xia LI. Identification and analysis of members of the FBA gene family in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(9): 81-93. |
[4] | Ying-ying ZHANG, Dan-dan HU, Chun-hui MA, Qian-bing ZHANG. Leaf structure and photosynthetic properties of alfalfa in response to bacteria and phosphorus addition [J]. Acta Prataculturae Sinica, 2024, 33(8): 133-144. |
[5] | Wei LI, Han WANG, Chang-qing WANG, Yu-xin PAN, Jian-rong HOU, Wen-juan KANG, Su-qin SHANG, Shang-li SHI. Responses to temperature of population parameters of the pest mite Sancassania alfalfa fed on alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(8): 181-189. |
[6] | Zheng WANG, Wei CHANG, Jun-cheng LI, Lian-tai SU, Li GAO, Peng ZHOU, Yuan AN. Effects of alfalfa green manure on the yield, nitrogen absorption, and nitrogen translocation of feed maize [J]. Acta Prataculturae Sinica, 2024, 33(8): 63-73. |
[7] | Yi WU, Ya-lan FENG, Tian-ning WANG, Ji-hao JU, Hui-shu XIAO, Chao MA, Jun ZHANG. Genome-wide identification and expression analysis of the Hsp70 gene family in wheat and its ancestral species [J]. Acta Prataculturae Sinica, 2024, 33(7): 53-67. |
[8] | Zhen-huan ZHANG, Li-rong YAO, Jun-cheng WANG, Er-jing SI, Hong ZHANG, Ke YANG, Xiao-le MA, Ya-xiong MENG, Hua-jun WANG, Bao-chun LI. Identification of AKR gene family members in Halogeton glomeratus and salt tolerance analysis of the root salt stress response gene HgAKR42639 [J]. Acta Prataculturae Sinica, 2024, 33(7): 68-83. |
[9] | Jin-zhu GAO, Dong-hao ZHAO, Le GAO, Xi-hao SU, Xue-qing HE. Effects of cerium nitrate and abscisic acid treatment on alfalfa seed germination and seedling physiological characteristics [J]. Acta Prataculturae Sinica, 2024, 33(6): 175-186. |
[10] | Min WANG, Li LI, Rong JIA, Ai-ke BAO. Evaluation of physiological characteristics and cold resistance of 10 alfalfa varieties under low temperature stress [J]. Acta Prataculturae Sinica, 2024, 33(6): 76-88. |
[11] | Hai-ming KONG, Jia-xing SONG, Jing YANG, Qian LI, Pei-zhi YANG, Yu-man CAO. Identification and transcript profiling of the CAMTA gene family under abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(5): 143-154. |
[12] | Sheng-ran HE, Xiao-jing LIU, Ya-jiao ZHAO, Xue WANG, Jing WANG. Effects of alfalfa/sweet sorghum intercropping on rhizosphere soil characteristics and microbial community characteristics [J]. Acta Prataculturae Sinica, 2024, 33(5): 92-105. |
[13] | Hao LIU, Xian-yang LI, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification of the alfalfa SAUR gene family and its expression pattern under abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(4): 135-153. |
[14] | Xian-yang LI, Hao LIU, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification and expression pattern of the WRKY transcription factor family in Medicago sativa [J]. Acta Prataculturae Sinica, 2024, 33(4): 154-170. |
[15] | Yan LI, Fu-long MA, Lu HAN, Hai-zhen WANG. Productivity and adaptability of ‘WL’ alfalfa varieties with different fall dormancy in the extremely arid region of Southern Xinjiang [J]. Acta Prataculturae Sinica, 2024, 33(3): 139-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||