Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (8): 149-164.DOI: 10.11686/cyxb2024483
Wei TANG(
), Zi-guang LI, Qing-tian ZHAO, Juan SUN(
)
Received:2024-12-04
Revised:2025-01-09
Online:2025-08-20
Published:2025-06-16
Contact:
Juan SUN
Wei TANG, Zi-guang LI, Qing-tian ZHAO, Juan SUN. Effects of oat (Avena sativa) planting density on the growth and rhizosphere fungal community structure of Digitaria sanguinalis and Echinochloa crusgalli[J]. Acta Prataculturae Sinica, 2025, 34(8): 149-164.
物种 Species | 处理 Treatment | 株高Plant height (cm) | 茎粗Stem diameter (mm) | 分蘖数 Tiller | 生物量Biomass (g·plant-1) | |
|---|---|---|---|---|---|---|
| 地上Aboveground | 地下Belowground | |||||
燕麦 A. sativa | As1 | 93.6±1.2bc | 5.75±0.10a | 5.6±0.2a | 11.52±0.30a | 0.819±0.011a |
| As1 _Ec_Ds | 91.8±0.8c | 5.58±0.04a | 5.3±0.2a | 9.70±0.24b | 0.592±0.005b | |
| As2 | 95.6±1.5ab | 5.07±0.03b | 4.5±0.2b | 9.36±0.08b | 0.540±0.016c | |
| As2 _Ec_Ds | 94.4±1.2bc | 4.98±0.09bc | 4.2±0.2bc | 8.54±0.11c | 0.443±0.026d | |
| As3 | 98.2±1.2a | 4.79±0.09c | 3.8±0.1c | 7.94±0.11d | 0.357±0.005e | |
| As3 _Ec_Ds | 96.2±0.3ab | 4.52±0.14d | 3.7±0.1c | 7.63±0.24d | 0.336±0.011e | |
稗草 E. crusgalli | Ec | 114.5±1.7a | 5.41±0.20a | 23.0±1.2a | 40.37±1.99a | 3.298±0.308a |
| Ec_Ds | 105.8±3.3b | 5.25±0.18a | 14.0±0.7b | 22.26±0.99b | 1.973±0.098b | |
| As1_Ec_Ds | 52.8±2.8c | 3.29±0.17b | 5.8±0.3c | 4.98±0.25c | 0.252±0.005c | |
| As2_Ec_Ds | 41.8±0.6d | 1.86±0.04c | 2.5±0.3d | 1.06±0.07d | 0.048±0.003d | |
| As3_Ec_Ds | 36.8±2.7d | 1.65±0.09c | 1.9±0.1d | 0.43±0.02d | 0.020±0.002e | |
马唐 D. sanguinalis | Ds | 115.3±2.1a | 2.60±0.03a | 18.6±1.3a | 30.71±1.01a | 1.493±0.077a |
| Ec_Ds | 102.1±2.4b | 2.44±0.06a | 13.3±0.7b | 17.94±0.66b | 0.854±0.026b | |
| As1_Ec_Ds | 52.0±2.0c | 1.81±0.09b | 6.3±0.3c | 3.99±0.02c | 0.250±0.022c | |
| As2_Ec_Ds | 38.2±1.0d | 1.53±0.05c | 2.9±0.1d | 1.06±0.06d | 0.086±0.003d | |
| As3_Ec_Ds | 33.4±1.4d | 1.22±0.01d | 2.0±0.2d | 0.31±0.02e | 0.026±0.004e | |
Table 1 Effect of different planting treatments on growth traits of A. sativa, E. crusgalli and D. sanguinalis
物种 Species | 处理 Treatment | 株高Plant height (cm) | 茎粗Stem diameter (mm) | 分蘖数 Tiller | 生物量Biomass (g·plant-1) | |
|---|---|---|---|---|---|---|
| 地上Aboveground | 地下Belowground | |||||
燕麦 A. sativa | As1 | 93.6±1.2bc | 5.75±0.10a | 5.6±0.2a | 11.52±0.30a | 0.819±0.011a |
| As1 _Ec_Ds | 91.8±0.8c | 5.58±0.04a | 5.3±0.2a | 9.70±0.24b | 0.592±0.005b | |
| As2 | 95.6±1.5ab | 5.07±0.03b | 4.5±0.2b | 9.36±0.08b | 0.540±0.016c | |
| As2 _Ec_Ds | 94.4±1.2bc | 4.98±0.09bc | 4.2±0.2bc | 8.54±0.11c | 0.443±0.026d | |
| As3 | 98.2±1.2a | 4.79±0.09c | 3.8±0.1c | 7.94±0.11d | 0.357±0.005e | |
| As3 _Ec_Ds | 96.2±0.3ab | 4.52±0.14d | 3.7±0.1c | 7.63±0.24d | 0.336±0.011e | |
稗草 E. crusgalli | Ec | 114.5±1.7a | 5.41±0.20a | 23.0±1.2a | 40.37±1.99a | 3.298±0.308a |
| Ec_Ds | 105.8±3.3b | 5.25±0.18a | 14.0±0.7b | 22.26±0.99b | 1.973±0.098b | |
| As1_Ec_Ds | 52.8±2.8c | 3.29±0.17b | 5.8±0.3c | 4.98±0.25c | 0.252±0.005c | |
| As2_Ec_Ds | 41.8±0.6d | 1.86±0.04c | 2.5±0.3d | 1.06±0.07d | 0.048±0.003d | |
| As3_Ec_Ds | 36.8±2.7d | 1.65±0.09c | 1.9±0.1d | 0.43±0.02d | 0.020±0.002e | |
马唐 D. sanguinalis | Ds | 115.3±2.1a | 2.60±0.03a | 18.6±1.3a | 30.71±1.01a | 1.493±0.077a |
| Ec_Ds | 102.1±2.4b | 2.44±0.06a | 13.3±0.7b | 17.94±0.66b | 0.854±0.026b | |
| As1_Ec_Ds | 52.0±2.0c | 1.81±0.09b | 6.3±0.3c | 3.99±0.02c | 0.250±0.022c | |
| As2_Ec_Ds | 38.2±1.0d | 1.53±0.05c | 2.9±0.1d | 1.06±0.06d | 0.086±0.003d | |
| As3_Ec_Ds | 33.4±1.4d | 1.22±0.01d | 2.0±0.2d | 0.31±0.02e | 0.026±0.004e | |
Fig.1 Net photosynthetic rate (Pn) and stomatal conductance (Gs) of A. sativa, E. crusgalli and D. sanguinalis leaves under different planting treatments
杂草 Weed | 处理 Treatment | 速效磷AP (mg·kg-1) | NO3--N (mg·kg-1) | NH4+-N (mg·kg-1) | 全磷TP (g·kg-1) | 全碳TC (g·kg-1) | 全氮TN (g·kg-1) | pH |
|---|---|---|---|---|---|---|---|---|
稗草 E. crusgalli | Ec | 7.09±0.10a | 7.93±0.24a | 10.97±0.21b | 0.617±0.007a | 13.97±0.11a | 1.28±0.01ab | 6.52±0.06ab |
| Ec_Ds | 6.97±0.06a | 7.62±0.15a | 9.86±0.27c | 0.606±0.003a | 13.43±0.02b | 1.25±0.01b | 6.62±0.03a | |
| As1_Ec_Ds | 6.40±0.08b | 6.32±0.21b | 9.77±0.17c | 0.583±0.002b | 14.05±0.17a | 1.28±0.03ab | 6.33±0.03b | |
| As2_Ec_Ds | 6.03±0.05c | 5.49±0.04c | 10.32±0.17bc | 0.556±0.004c | 14.08±0.10a | 1.32±0.01a | 6.46±0.10ab | |
| As3_Ec_Ds | 5.89±0.08c | 4.45±0.09d | 12.05±0.43a | 0.560±0.003c | 13.88±0.09a | 1.32±0.01a | 6.66±0.05a | |
马唐 D. sanguinalis | Ds | 6.95±0.12a | 9.74±0.35a | 9.06±0.16c | 0.598±0.003a | 14.56±0.15a | 1.32±0.01a | 6.59±0.07b |
| Ec_Ds | 6.73±0.06a | 6.65±0.21b | 9.94±0.28b | 0.589±0.002a | 13.65±0.12b | 1.31±0.02a | 6.54±0.05bc | |
| As1_Ec_Ds | 6.49±0.04b | 6.05±0.09b | 10.04±0.11b | 0.565±0.002b | 14.42±0.09a | 1.31±0.01a | 6.37±0.03c | |
| As2_Ec_Ds | 6.18±0.05c | 5.30±0.16c | 11.36±0.25a | 0.568±0.004b | 13.94±0.09b | 1.27±0.02a | 6.53±0.03bc | |
| As3_Ec_Ds | 5.99±0.04c | 4.45±0.13d | 10.40±0.13b | 0.569±0.002b | 13.91±0.02b | 1.27±0.01a | 6.80±0.08a |
Table 2 Effect of different planting treatments on contents of soil available phosphorus, nitrate nitrogen, ammonium nitrogen, total phosphorus, total carbon, total nitrogen, and pH of E. crusgalli and D. sanguinalis
杂草 Weed | 处理 Treatment | 速效磷AP (mg·kg-1) | NO3--N (mg·kg-1) | NH4+-N (mg·kg-1) | 全磷TP (g·kg-1) | 全碳TC (g·kg-1) | 全氮TN (g·kg-1) | pH |
|---|---|---|---|---|---|---|---|---|
稗草 E. crusgalli | Ec | 7.09±0.10a | 7.93±0.24a | 10.97±0.21b | 0.617±0.007a | 13.97±0.11a | 1.28±0.01ab | 6.52±0.06ab |
| Ec_Ds | 6.97±0.06a | 7.62±0.15a | 9.86±0.27c | 0.606±0.003a | 13.43±0.02b | 1.25±0.01b | 6.62±0.03a | |
| As1_Ec_Ds | 6.40±0.08b | 6.32±0.21b | 9.77±0.17c | 0.583±0.002b | 14.05±0.17a | 1.28±0.03ab | 6.33±0.03b | |
| As2_Ec_Ds | 6.03±0.05c | 5.49±0.04c | 10.32±0.17bc | 0.556±0.004c | 14.08±0.10a | 1.32±0.01a | 6.46±0.10ab | |
| As3_Ec_Ds | 5.89±0.08c | 4.45±0.09d | 12.05±0.43a | 0.560±0.003c | 13.88±0.09a | 1.32±0.01a | 6.66±0.05a | |
马唐 D. sanguinalis | Ds | 6.95±0.12a | 9.74±0.35a | 9.06±0.16c | 0.598±0.003a | 14.56±0.15a | 1.32±0.01a | 6.59±0.07b |
| Ec_Ds | 6.73±0.06a | 6.65±0.21b | 9.94±0.28b | 0.589±0.002a | 13.65±0.12b | 1.31±0.02a | 6.54±0.05bc | |
| As1_Ec_Ds | 6.49±0.04b | 6.05±0.09b | 10.04±0.11b | 0.565±0.002b | 14.42±0.09a | 1.31±0.01a | 6.37±0.03c | |
| As2_Ec_Ds | 6.18±0.05c | 5.30±0.16c | 11.36±0.25a | 0.568±0.004b | 13.94±0.09b | 1.27±0.02a | 6.53±0.03bc | |
| As3_Ec_Ds | 5.99±0.04c | 4.45±0.13d | 10.40±0.13b | 0.569±0.002b | 13.91±0.02b | 1.27±0.01a | 6.80±0.08a |
Fig.4 Structural composition at the family level and the differences in the relative abundance of dominant families in the rhizosphere soil fungal communities of A. sativa, E. crusgalli and D. sanguinalis under different planting treatments
Fig.5 Redundancy analysis (RDA) and Spearman correlation analysis of fungal community structures at the family level in the rhizosphere soils of E. crusgalli and D. sanguinalis under different planting treatments
Fig.6 Differences in the relative abundance of fungi from different nutritional modes within soil fungal functional groups of E. crusgalli (A) and D. sanguinalis (B) under different planting treatments
| 1 | Horvath D P, Clay S A, Swanton C J, et al. Weed-induced crop yield loss: a new paradigm and new challenges. Trends in Plant Science, 2023, 28(5): 567-582. |
| 2 | Zhang L L, Xu F, Li J W, et al. Advances on the mechanisms of weed resistance to herbicides.Chinese Journal of Pesticide Science, 2024, 26(4): 703-715. |
| 张玲玲, 徐凡, 李嘉文, 等. 杂草对除草剂抗性机理研究进展. 农药学学报, 2024, 26(4): 703-715. | |
| 3 | Li X J. Main problems and management strategies of weeds in agricultural fields in China in recent years. Plant Protection, 2018, 44(5): 77-84. |
| 李香菊. 近年我国农田杂草防控中的突出问题与治理对策. 植物保护, 2018, 44(5): 77-84. | |
| 4 | MacLaren C, Storkey J, Menegat A, et al. An ecological future for weed science to sustain crop production and the environment. A review. Agronomy for Sustainable Development, 2020, 40(6): 24. |
| 5 | Xi N, Wu Y, Weiner J, et al. Does weed suppression by high crop density depend on crop spatial pattern and soil water availability? Basic and Applied Ecology, 2022, 61: 20-29. |
| 6 | Tang W, Li Z G, Guo H P, et al. Annual weeds suppression and oat forage yield responses to crop density management in an oat-cultivated grassland: a case study in Eastern China. Agronomy, 2024, 14(3): 583. |
| 7 | Olsen J M, Griepenrog H W, Nielsen J, et al. How important are crop spatial pattern and density for weed suppression by spring wheat? Weed Science, 2012, 60: 501-509. |
| 8 | Li C H, Sun D W, He C X, et al. Effects of planting density and row spacing on weed infestation and yield of buckwheat. Journal of Weed Science, 2018, 36(2): 19-24. |
| 李春花, 孙道旺, 何成兴, 等. 种植密度和行距对荞麦田杂草及荞麦产量的影响. 杂草学报, 2018, 36(2): 19-24. | |
| 9 | Colbach N, Munier-Jolay N, Dugou F, et al. The response of weed and crop species to shading. How to predict their morphology and plasticity from species traits and ecological indexes? European Journal of Agronomy, 2020, 121: 126158. |
| 10 | Trognitz F, Hackl E, Widhalm S, et al. The role of plant-microbiome interactions in weed establishment and control. FEMS Microbiology Ecology, 2016, 92(10): 1-15. |
| 11 | Sun F, Zhao C C, He Q J, et al. Effects of fertilization and diversity of weed species on the soil microbial community. Acta Ecologica Sinica, 2015, 35(18): 6023-6031. |
| 孙锋, 赵灿灿, 何琼杰, 等. 施肥和杂草多样性对土壤微生物群落的影响. 生态学报, 2015, 35(18): 6023-6031. | |
| 12 | Li B C, Geng G, Li T, et al. Dynamics of soil properties and microbial communities by crop rotation length: unveiling the key factors for enhanced sugar yield. Plant and Soil, 2024, 501: 377-391. |
| 13 | Monteiro L C P, Diaz-Gallo C A, Matos C D C, et al. Rhizosphere microbial community changes due to weed-weed competition. European Journal of Soil Biology, 2024, 120: 103594. |
| 14 | Ghorbani R, Wilcoxon S, Koocheki A, et al. Soil management for sustainable crop disease control: a review. Environmental Chemistry Letters, 2008, 6: 149-162. |
| 15 | Jing J Y, Cong W F, Bezemer T M. Legacies at work: plant-soil-microbiome interactions underpinning agricultural sustainability. Trends in Plant Science, 2022, 27(8): 781-792. |
| 16 | Zhao Y X, Yang H M. Effects of crop pattern, tillage practice and water and fertilizer management on weeds and their control mechanisms. Acta Prataculturae Sinica, 2015, 24(8): 199-210. |
| 赵玉信, 杨惠敏.作物格局、土壤耕作和水肥管理对农田杂草发生的影响及其调控机制. 草业学报, 2015, 24(8): 199-210. | |
| 17 | Menalled U D, Bybee-Finley K A, Smith R G, et al. Soil-mediated effects on weed-crop competition: elucidating the role of annual and perennial intercrop diversity legacies. Agronomy, 2020, 10(9): 1373. |
| 18 | Hou L Y, Zhu Z Y, Yang J, et al. Current status, problems and potentials of forage oat in China. Journal of Southwest Minzu University (Natural Science Edition), 2019, 45(3): 248-253. |
| 侯龙鱼, 朱泽义, 杨杰, 等. 我国饲草用燕麦现状、问题和潜力. 西南民族大学学报(自然科学版), 2019, 45(3): 248-253. | |
| 19 | Liu X M, Li J, Xu X, et al. Competitive effects of mung bean (Vigna radiata L.) on the growth of three dominant weeds in summer maize fields. Chinese Journal of Ecology, 2021, 40(5): 1324-1330. |
| 刘小民, 李杰, 许贤, 等. 绿豆与夏玉米田3种优势杂草的竞争效应. 生态学杂志, 2021, 40(5): 1324-1330. | |
| 20 | Yang C, Tang W, Sun J Q, et al. Weeds in the alfalfa field decrease rhizosphere microbial diversity and association networks in the North China Plain. Frontiers in Microbiology, 2022, 13: 840774. |
| 21 | Zhang L H, Song L P, Xu G, et al. Seasonal dynamics of rhizosphere soil microbial abundances and enzyme activities under different vegetation types in the coastal zone, Shandong, China. Clean-Soil Air Water, 2014, 42(8): 1115-1120. |
| 22 | Tang W, Guo H P, Baskin C C, et al. Effect of light intensity on morphology, photosynthesis and carbon metabolism of alfalfa (Medicago sativa) seedlings. Plants, 2022, 11(13): 3-18. |
| 23 | Bao S D. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press, 2000. |
| 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
| 24 | Li C H, Zhang Y J, Huang J L, et al. Effects of different sowing methods and planting densities of buckwheat on weed occurrence and buckwheat yield. Journal of Weed Science, 2019, 37(3): 36-41. |
| 李春花, 张艳军, 黄金亮, 等. 荞麦不同播种方式和种植密度对田间杂草及荞麦产量的影响. 杂草学报, 2019, 37(3): 36-41. | |
| 25 | Weiner J. Weed suppression by cereals: Beyond ‘competitive ability’. Weed Research, 2023, 63(3): 133-138. |
| 26 | Roberts C D, Yost M A, Robins J G, et al. Oat companion seeding rate, herbicide, and irrigation effects on alfalfa stand establishment. Agronomy Journal, 2023, 115: 273-285. |
| 27 | Datta A, Ullah H, Tursun N, et al. Managing weeds using crop competition in soybean [Glycine max (L.)]. Crop Protection, 2017, 95: 60-68. |
| 28 | Fiorucci A S, Fankhauser C. Plant strategies for enhancing access to sunlight. Current Biology, 2017, 27(17): 931-940. |
| 29 | Sultan S E, Matesanz S. An ideal weed: plasticity and invasiveness in Polygonum cespitosum. Annals of the New York Academy of Science, 2015, 1360(1): 101-119. |
| 30 | Newberger D R, Minas I S, Manter D K, et al. Shifts of the soil microbiome composition induced by plant-plant interactions under increasing cover crop densities and diversities. Scientific Reports, 2023, 13: 17150. |
| 31 | Pérez-Jaramillo J E, Mendes R, Raijmakers J M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology, 2016, 90: 635-644. |
| 32 | De Matos C D C, Pacheco M L C, Diaz G S A, et al. Changes in soil microbial communities modulate interactions between maize and weeds. Plant and Soil, 2019, 440: 249-264. |
| 33 | Sweeney C J, De Vries F T, Van Donnen B E, et al. Root traits explain rhizosphere fungal community composition among temperate grassland plant species. New Phytologist, 2021, 229: 1492-1507. |
| 34 | Zhao W, Yin Y L, Li S X, et al. Changes in soil fungal community composition and functional groups during the succession of alpine grassland. Plant and Soil, 2023, 484: 201-216. |
| 35 | Hugoni M, Luis P, Guyonnet J, et al. Plant host habitat and root exudates shape fungal diversity. Mycorrhiza, 2018, 28: 451-463. |
| 36 | Telagathoti A, Probst M, Peintner U. Habitat, snow-cover and soil pH, affect the distribution and diversity of Mortierellaceae species and their associations to bacteria. Frontiers in Microbiology, 2021, 12: 669784. |
| 37 | Guo N, Li L, Cui J Q, et al. Effects of Funneliformis mosseae on the fungal community in and soil properties of a continuously cropped soybean system. Applied Soil Ecology, 2021, 164: 103930. |
| 38 | Du T T, Qu X D, Wang Y B, et al. Rhizosphere Mortierella strain of alfalfa exerted weed growth inhibition by inducing expression of plant hormone-related genes. Frontiers in Microbiology, 2024, 15: 1385992. |
| 39 | Hou S D, Zhang G P, Zhao W, et al. High oxygen shocking reduces postharvest disease and maintains satisfying quality in fresh goji berries during cold storage by affecting fungi community composition. Foods, 2023, 12(13): 2548. |
| 40 | Sandoval-Denis M, Gené J, Sutton D A, et al. Redefining Microascus, Scopulariopsis and allied genera. Persoonia, 2016, 36: 1-36. |
| 41 | Liu B, Dai Y, Cheng X, et al. Straw mulch improves soil carbon and nitrogen cycle by mediating microbial community structure and function in the maize field. Frontiers in Microbiology, 2023, 14: 1217966. |
| 42 | Xiao C Q, Fang Y J, Chi R. Phosphate solubilization in vitro by isolated Aspergillus niger and Aspergillus carbonarius. Research on Chemical Intermediates, 2015, 41: 2867-2878. |
| 43 | Liao L R, Wang X T, Wang J, et al. Nitrogen fertilization increases fungal diversity and abundance of saprotrophs while reducing nitrogen fixation potential in a semiarid grassland. Plant and Soil, 2021, 465: 515-532. |
| 44 | Sun Q, Zhang P Y, Zhao Z X, et al. Continuous wheat/soybean cropping influences soybean yield and rhizosphere microbial community structure and function. Agronomy, 2023, 13: 28. |
| 45 | Tayyab M, Fallah N, Zhang C, et al. Sugarcane cultivar-dependent changes in assemblage of soil rhizosphere fungal communities in subtropical ecosystem. Environmental Science and Pollution Research, 2022, 29: 20795-20807. |
| 46 | Ning Q, Chen L, Jia Z, et al. Multiple long-term observations reveal a strategy for soil pH-dependent fertilization and fungal communities in support of agricultural production. Agriculture, Ecosystems and Environment, 2020, 293: 106837. |
| 47 | Bezemer T M, Jing J, Bakx-Schotman J M T, et al. Plant competition alters the temporal dynamics of plant-soil feedbacks. Journal of Ecology, 2018, 106(6): 2287-2300. |
| 48 | Wang Z Q, Zhang Z B, Li Q H, et al. Response characteristics of fungal communities in Allium chinense rhizosphere soil under different mulching treatments. Southwest China Journal of Agricultural Sciences, 2024, 37(2): 258-267. |
| 王正强, 张政兵, 李清昊, 等.不同覆膜处理下藠头根际土壤真菌群落的响应特征.西南农业学报, 2024, 37(2): 258-267. | |
| 49 | Xie Y, Yan Y Y, Tian X W, et al. Effects of facility cultivation on soil fungal community structure and function in Ningxia. Acta Ecologica Sinica, 2024, 44(18): 8383-8396. |
| 谢祎, 闫元元, 田兴武, 等. 宁夏设施栽培对土壤真菌群落结构和功能的影响. 生态学报, 2024, 44(18): 8383-8396. | |
| 50 | Rim S O, Roy M, Jeon J, et al. Diversity and communities of fungal endophytes from four Pinus species in Korea. Forests, 2021, 12(3): 302. |
| [1] | Tian-ci KONG, Xue-qing MA, Chen-bang HE, Tai-yan FAN, Guang-xin LU, He-xing QI. Effects of fungal diseases of silage maize on microbial diversity of silage fermentation [J]. Acta Prataculturae Sinica, 2025, 34(7): 95-106. |
| [2] | Shuang YAN, Fei XIA, Wei WEI, Jing-long WANG, Hao-yang WU, Lin-ling RAN, Yun-yin XUE, Hao SHI, Shai-kun ZHENG, Jun-qiang WANG, Jun-dong HE. Differences along an erosion gradient in alpine meadow plant community diversity and factors influencing diversity [J]. Acta Prataculturae Sinica, 2025, 34(6): 1-13. |
| [3] | Ruo-xuan LI, Sheng-zhi-can LI, Yi-tong CHEN, Yu-hao SUN, Pei-zhi YANG, Yan-nong CUI, Ming-xiu LONG, Shu-bin HE. Effects of different planting ratios of broomcorn millet (Panicum miliaceum) on ammonia-oxidizing and denitrifying microorganisms in rhizosphere soil of alfalfa (Medicago sativa) [J]. Acta Prataculturae Sinica, 2025, 34(6): 110-121. |
| [4] | Shun-hua LUO, Xin-yu LIU, Bao-ping MENG, Xuan-li CHEN, Ren-jie HU, Hong-yan YU, Xian-ying WANG, Bo ZHANG, Yu QIN. A study of functional group diversity and productivity of alpine grassland in Qilian Mountain National Park [J]. Acta Prataculturae Sinica, 2025, 34(6): 14-26. |
| [5] | Ying-hao ZHANG, Chu-bo LIU, Kun ZHOU, Jia-cun GUO, Shi-peng LIU, Luan-zi SUN. Effects of jujube tree on the growth of alfalfa and orchardgrass in different positions within an orchard [J]. Acta Prataculturae Sinica, 2025, 34(6): 203-212. |
| [6] | Xue-ping LI, Shi-yang XU, Jian-jun LI, Yong-hong QI. Bacterial diversity and community structural changes in rhizosphere soil of naked barley disturbed by root rot [J]. Acta Prataculturae Sinica, 2025, 34(5): 118-129. |
| [7] | Xiao-hui DONG, Shang-li SHI, Guo-li YIN, San-dong CHEN, Hai-qiang GONG, Lin-bo LIU. Diversity of endophytic bacterial and fungal communities in different maize organs [J]. Acta Prataculturae Sinica, 2025, 34(5): 130-145. |
| [8] | Shou-xing WANG, Hua-kun ZHOU, Li-peng OU, Cheng-xian LI, Yan-he WANG, Xiao-chun NING, Qiang GU, Dai-jun WEI, Ming-xin YANG. Vegetation and soil microbial diversity and their relationships with soil factors in different grassland types of the three river headwaters region [J]. Acta Prataculturae Sinica, 2025, 34(4): 16-26. |
| [9] | Xin-zhu CHEN, Ping-dong LIN, Wen YUE, Ya-ni YANG, Shui-ling QIU, Xiang-li ZHENG. Effects of various additives on the quality and microbial diversity of broad bean straw silage [J]. Acta Prataculturae Sinica, 2025, 34(4): 164-174. |
| [10] | Jiang-ping MA, Yi-yin ZHANG, Teng-fei WANG, Bin WANG, Jian LAN. Interspecific relationship and forage productivity effects in mixed sowings of Sorghum bicolor and Dolichos lablab [J]. Acta Prataculturae Sinica, 2025, 34(3): 111-122. |
| [11] | An-jing JIANG, Yi-qiang DONG, Shi-jie ZHOU, Ting-ting NIE, Yue WU, Ze-yu LIU, Xing-yun SHAN, Ya-xin LEI, Kai WU, Sha-zhou AN. Distribution characteristics of grassland plant diversity along the altitudinal gradient and its driving factors: A case study of the eastern section of the northern slope of the Tianshan Mountains [J]. Acta Prataculturae Sinica, 2025, 34(3): 29-40. |
| [12] | Shu-qi LIU, Dong CUI, Wen-xin LIU, Hai-jun YANG, Yan-cheng YANG, Zhi-cheng JIANG, Jiang-chao YAN, Jiang-hui LIU. Effects of short-term nitrogen addition, watering, and mowing on plant community characteristics and soil physicochemical properties in Sophora alopecuroides degraded grassland [J]. Acta Prataculturae Sinica, 2025, 34(3): 41-55. |
| [13] | Xin GONG, Xin-ru HUO, Wen LI, Yan-dong YANG, Chao LIU, Wei-chun QIN, Yan SHEN, Guo-hui WANG, Hong-bin MA. Vegetation community characteristics and spatial differentiation in mountain grassland in Luoshan, Ningxia [J]. Acta Prataculturae Sinica, 2025, 34(2): 1-15. |
| [14] | Na LYU, Ji-xi GAO, Zheng-hai LI, Chun-he YOU, Xiao-man LIU, Biao ZHANG, Yu MO, Sa-ning ZHU, Yang PENG, Xue YANG. Effects of fertilizer application during mid-growing season on vegetation community biomass and species diversity in meadow grasslands [J]. Acta Prataculturae Sinica, 2025, 34(2): 109-122. |
| [15] | Wen-hu WANG, Shi-lin WANG, Guo-ling LIANG, Wen LI, Wen-xia CAO. Effects of slope categories of differing aspect and position on plant community diversity in alpine shrubland in the Qilian Mountains [J]. Acta Prataculturae Sinica, 2025, 34(1): 17-28. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||