草业学报 ›› 2021, Vol. 30 ›› Issue (12): 71-80.DOI: 10.11686/cyxb2020461
孙红1(), 郑玉龙1, 林炎丽2, 陈超1, 杨富裕2()
收稿日期:
2020-10-14
修回日期:
2021-02-09
出版日期:
2021-11-11
发布日期:
2021-11-11
通讯作者:
杨富裕
作者简介:
Corresponding author. E-mail: yfycau@163.com基金资助:
Hong SUN1(), Yu-long ZHENG1, Yan-li LIN2, Chao CHEN1, Fu-yu YANG2()
Received:
2020-10-14
Revised:
2021-02-09
Online:
2021-11-11
Published:
2021-11-11
Contact:
Fu-yu YANG
摘要:
为探讨添加磷、生物炭和接种丛枝菌根真菌对柳枝稷镉(Cd)耐性的作用,采用盆栽法研究土壤Cd浓度为20 mg·kg-1时,不同处理[对照(CK)、4.5%生物炭(biochar,B)、60 mg·kg-1磷(phosphorus,P60)、4.5%生物炭+60 mg·kg-1磷(B+P60)]结合丛枝菌根真菌(AMF)对柳枝稷生长状况、矿质离子(P、Se)和Cd含量、土壤pH值、速效磷和酸性磷酸酶活性及土壤不同形态Cd含量的影响。结果表明:磷添加可显著提高柳枝稷根系侵染率,P60处理下根系侵染率达到了56.9%。与CK相比,B、P60、B+P60处理对柳枝稷植株高度、叶片SPAD值、生物量无显著影响,各处理结合AMF的植株高度、叶片SPAD值、生物量均显著升高,但接菌后各处理间差异不显著。除了P60处理下地上部Se和Cd含量及B+P60处理下地上部Cd含量高于CK外, B、P60、B+P60处理下P、Se、Cd与CK无显著差异;接种AMF后CK和B处理下地上部Se和Cd含量均高于未接菌处理,且B+AM处理地上部Cd含量显著高于其他处理;但接菌后P60处理地上部Se和Cd含量均低于未接菌处理。此外,无论是否接种AMF,B和B+P60处理根系Cd含量均显著高于CK和P60,土壤速效磷含量高于CK,土壤酸性提取态Cd含量低于CK和P60。接种AMF后CK、B和B+P60处理的土壤残渣态Cd含量高于CK和对应未接菌处理,但接菌P60处理的土壤残渣态Cd含量低于未接菌处理。由此可见,B或B+P60处理提高了根系Cd和土壤速效磷含量,降低了土壤酸性提取态Cd含量;二者结合AMF提高了柳枝稷生物量和地上部Se和Cd含量及土壤残渣态Cd含量。因此,AMF结合生物炭或生物炭/磷添加提高了柳枝稷生物量、Cd吸收量,降低了土壤中重金属的生物活性,可以在重度Cd污染土壤中应用。
孙红, 郑玉龙, 林炎丽, 陈超, 杨富裕. 生物炭、磷及AMF对Cd胁迫下柳枝稷生长及土壤性质的影响[J]. 草业学报, 2021, 30(12): 71-80.
Hong SUN, Yu-long ZHENG, Yan-li LIN, Chao CHEN, Fu-yu YANG. Effects of biochar, phosphorus addition and AMF inoculation on switchgrass growth and soil properties under Cd stress[J]. Acta Prataculturae Sinica, 2021, 30(12): 71-80.
指标Parameters | B | P60 | AMF | B+P60 | B+AM | P60+AM | B+P60+AM |
---|---|---|---|---|---|---|---|
侵染率Root colonization | NS | * | — | NS | — | — | — |
SPAD | NS | NS | *** | NS | NS | NS | NS |
地上部生物量 Shoot biomass | NS | NS | *** | NS | NS | NS | NS |
根系生物量 Root biomass | * | NS | *** | NS | NS | NS | NS |
地上部P含量 Shoot P concentration | * | ** | NS | NS | ** | NS | NS |
地上部Se含量 Shoot Se concentration | NS | NS | *** | NS | ** | *** | NS |
地上部Cd含量 Root Cd concentration | *** | * | *** | NS | *** | *** | ** |
根系P含量 Root P concentration | *** | NS | *** | NS | ** | NS | ** |
根系Se含量 Root Se concentration | * | NS | NS | NS | NS | NS | NS |
根系Cd含量 Root Cd concentration | *** | NS | NS | NS | NS | NS | NS |
pH | NS | NS | NS | NS | NS | * | NS |
土壤速效磷 Available P concentration | *** | *** | NS | NS | NS | NS | NS |
土壤酸性磷酸酶活性 Soil acid phosphatase activity | NS | * | NS | NS | NS | NS | NS |
酸性提取态Cd Acid-extractable Cd | *** | * | NS | NS | NS | NS | NS |
还原态Cd Reducible-Cd | NS | *** | NS | *** | ** | NS | ** |
氧化态Cd Oxidizable-Cd | NS | * | NS | NS | NS | NS | NS |
残渣态Cd Residual-Cd | NS | NS | ** | *** | *** | ** | *** |
表1 生物炭、磷及AMF处理对测定指标的影响
Table 1 Effect of biochar, phosphorus addition and AMF inoculation on parameters tested
指标Parameters | B | P60 | AMF | B+P60 | B+AM | P60+AM | B+P60+AM |
---|---|---|---|---|---|---|---|
侵染率Root colonization | NS | * | — | NS | — | — | — |
SPAD | NS | NS | *** | NS | NS | NS | NS |
地上部生物量 Shoot biomass | NS | NS | *** | NS | NS | NS | NS |
根系生物量 Root biomass | * | NS | *** | NS | NS | NS | NS |
地上部P含量 Shoot P concentration | * | ** | NS | NS | ** | NS | NS |
地上部Se含量 Shoot Se concentration | NS | NS | *** | NS | ** | *** | NS |
地上部Cd含量 Root Cd concentration | *** | * | *** | NS | *** | *** | ** |
根系P含量 Root P concentration | *** | NS | *** | NS | ** | NS | ** |
根系Se含量 Root Se concentration | * | NS | NS | NS | NS | NS | NS |
根系Cd含量 Root Cd concentration | *** | NS | NS | NS | NS | NS | NS |
pH | NS | NS | NS | NS | NS | * | NS |
土壤速效磷 Available P concentration | *** | *** | NS | NS | NS | NS | NS |
土壤酸性磷酸酶活性 Soil acid phosphatase activity | NS | * | NS | NS | NS | NS | NS |
酸性提取态Cd Acid-extractable Cd | *** | * | NS | NS | NS | NS | NS |
还原态Cd Reducible-Cd | NS | *** | NS | *** | ** | NS | ** |
氧化态Cd Oxidizable-Cd | NS | * | NS | NS | NS | NS | NS |
残渣态Cd Residual-Cd | NS | NS | ** | *** | *** | ** | *** |
处理 Treatment | 接菌处理 Inoculation | 侵染率 Root colonization (%) | 相对叶绿素含量 SPAD | 生物量Biomass (g·pot-1) | |
---|---|---|---|---|---|
地上部Shoot | 根系Root | ||||
CK | NM | - | 22.7±0.8cd | 1.02±0.22c | 0.42±0.09b |
AM | 44.2±2.4b | 25.9±1.0b | 2.13±0.43a | 0.93±0.33a | |
B | NM | - | 24.1±1.5bc | 0.10±0.01d | 0.12±0.00b |
AM | 47.9±3.7ab | 30.0±0.5a | 1.51±0.19b | 0.85±0.19a | |
P60 | NM | - | 23.5±0.9cd | 0.63±0.18cd | 0.31±0.06b |
AM | 56.9±5.4a | 25.1±1.5b | 1.98±0.05ab | 1.06±0.08a | |
B+P60 | NM | — | 22.8±0.7d | 0.86±0.04c | 0.42±0.02b |
AM | 54.3±3.9ab | 26.3±1.6bc | 1.58±0.35ab | 0.96±0.11a |
表2 不同处理下柳枝稷侵染率、SPAD值和生物量
Table 2 The root colonization, SPAD value and biomass under biochar, phosphorus addition and AMF inoculation treatments (mean±SD, n=3)
处理 Treatment | 接菌处理 Inoculation | 侵染率 Root colonization (%) | 相对叶绿素含量 SPAD | 生物量Biomass (g·pot-1) | |
---|---|---|---|---|---|
地上部Shoot | 根系Root | ||||
CK | NM | - | 22.7±0.8cd | 1.02±0.22c | 0.42±0.09b |
AM | 44.2±2.4b | 25.9±1.0b | 2.13±0.43a | 0.93±0.33a | |
B | NM | - | 24.1±1.5bc | 0.10±0.01d | 0.12±0.00b |
AM | 47.9±3.7ab | 30.0±0.5a | 1.51±0.19b | 0.85±0.19a | |
P60 | NM | - | 23.5±0.9cd | 0.63±0.18cd | 0.31±0.06b |
AM | 56.9±5.4a | 25.1±1.5b | 1.98±0.05ab | 1.06±0.08a | |
B+P60 | NM | — | 22.8±0.7d | 0.86±0.04c | 0.42±0.02b |
AM | 54.3±3.9ab | 26.3±1.6bc | 1.58±0.35ab | 0.96±0.11a |
图2 不同处理下柳枝稷地上部和根系P, Se和Cd含量不同字母表示各处理间差异显著(P<0.05),下同。The different letters indicate the significant differences among the treatments (P<0.05), the same below.
Fig.2 P, Se and Cd concentration of switchgrass under biochar and phosphorus treatment, regardless of AMF inoculation (mean±SD, n=3)
图3 不同处理下土壤pH, 速效磷含量和酸性磷酸酶活性
Fig.3 The soil pH, available phosphorus concentration and acid phosphatase activity under different treatment, regardless of AMF inoculation (mean±SD, n=3)
处理 Treatment | 接菌处理 Inoculation | 酸性提取态 Acid-extractable Cd | 还原态 Reducible-Cd | 氧化态 Oxidizable-Cd | 残渣态 Residual-Cd |
---|---|---|---|---|---|
CK | NM | 11.7±0.9a | 2.1±0.1d | 0.06±0.01ab | 10.1±1.6bc |
AM | 10.3±0.3ab | 2.3±0.3d | 0.05±0.00b | 16.1±0.8a | |
B | NM | 8.3±0.4c | 3.1±0.1bc | 0.05±0.01b | 8.4±1.2c |
AM | 9.0±0.2bc | 3.3±0.4b | 0.06±0.00ab | 12.8±0.6b | |
P60 | NM | 9.3±0.5b | 4.3±0.3a | 0.07±0.01a | 15.0±0.8ab |
AM | 10.6±0.9a | 3.4±0.2b | 0.07±0.01ab | 7.7±0.5c | |
B+P60 | NM | 7.9±0.1c | 2.5±0.3c | 0.06±0.00ab | 8.5±1.2c |
AM | 8.4±0.2c | 3.8±0.2ab | 0.06±0.00ab | 16.1±1.1ab |
表3 不同处理下土壤酸性提取态、还原态、氧化态和残渣态Cd含量
Table 3 The concentrations of acid-extractable Cd, reducible-Cd, oxidizable-Cd and residual-Cd in the soil under different treatments (mg·kg-1, mean±SD, n= 3)
处理 Treatment | 接菌处理 Inoculation | 酸性提取态 Acid-extractable Cd | 还原态 Reducible-Cd | 氧化态 Oxidizable-Cd | 残渣态 Residual-Cd |
---|---|---|---|---|---|
CK | NM | 11.7±0.9a | 2.1±0.1d | 0.06±0.01ab | 10.1±1.6bc |
AM | 10.3±0.3ab | 2.3±0.3d | 0.05±0.00b | 16.1±0.8a | |
B | NM | 8.3±0.4c | 3.1±0.1bc | 0.05±0.01b | 8.4±1.2c |
AM | 9.0±0.2bc | 3.3±0.4b | 0.06±0.00ab | 12.8±0.6b | |
P60 | NM | 9.3±0.5b | 4.3±0.3a | 0.07±0.01a | 15.0±0.8ab |
AM | 10.6±0.9a | 3.4±0.2b | 0.07±0.01ab | 7.7±0.5c | |
B+P60 | NM | 7.9±0.1c | 2.5±0.3c | 0.06±0.00ab | 8.5±1.2c |
AM | 8.4±0.2c | 3.8±0.2ab | 0.06±0.00ab | 16.1±1.1ab |
1 | Ministry of Environmental Protection of the People’s Republic of China, Ministry of Land and Resources of the People’s Republic of China. Bulletin of national survey on soil pollution. Environmental Education, 2014, 20(6): 8-10. |
环境保护部, 国土资源部. 全国土壤污染状况调查公报. 环境教育, 2014, 20(6): 8-10. | |
2 | Huang Y, Wang L Y, Wang W J, et al. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. The Science of the Total Environment, 2019, 651: 3034-3042. |
3 | Hatata M M, Abdel-Aal E A. Oxidative stress and antioxidant defense mechanisms in response to cadmium treatments. American-Eurasian Journal of Agricultural and Environmental Science, 2008, 4(6): 655-669. |
4 | Maksymiec W, Wojcik M, Krupa Z. Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere, 2007, 66(3): 421-427. |
5 | Huang Q C, Wei Y H, Li X F. Review on the toxicological effect and the mechanism of cadmium to human health. Journal of Anhui Agriculture Science, 2007, 35(9): 2528-2531. |
黄秋婵, 韦友欢, 黎晓峰. 镉对人体健康的危害效应及其机理研究进展. 安徽农业科学, 2007, 35(9): 2528-2531. | |
6 | Chen W F, Zhang W M, Meng J. Biochar and agro-ecological environment: Review and prospect. Journal of Agro-Environment Science, 2014, 33(5): 821-828. |
陈温福, 张伟明, 孟军. 生物炭与农业环境研究回顾与展望. 农业环境科学学报, 2014, 33(5): 821-828. | |
7 | Kwak J H, Islam M S, Wang S, et al. Biochar properties and lead (Ⅱ) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere, 2019, 231: 393-404. |
8 | Zhang C, Yu Z G, Zeng G M, et al. Phase transformation of crystalline iron oxides and their adsorption abilities for Pb and Cd. Chemical Engineering Journal, 2016, 284: 247-259. |
9 | Zhang M, Shan S D, Chen Y G, et al. Biochar reduces cadmium accumulation in rice grains in a tungsten mining area-field experiment: Effects of biochar type and dosage, rice variety, and pollution level. Environmental Geochemistry and Health, 2019, 41(1): 43-52. |
10 | Hossain M K, Strezov V, Chan K Y, et al. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere, 2010, 78(9): 1167-1171. |
11 | Zeng G M, Wu H P, Liang J, et al. Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil. RSC Advances, 2015, 5(44): 34541-34548. |
12 | Zwetsloot M J, Lehmann J, Bauerle T, et al. Phosphorus availability from bone char in a P-fixing soil influenced by root- mycorrhizae-biochar interactions. Plant and Soil, 2016, 408(1/2): 95-105. |
13 | Bai Y C, Deng B Y, Shi H L, et al. The effect of modified rice husk charcoal and modified zeolite on the phosphorus efficiency in red soil. Soil and Fertilizer Sciences in China, 2020(2): 31-39. |
白玉超, 邓宝元, 史海莉, 等. 改性稻壳炭和改性沸石对红壤磷有效性的影响. 中国土壤与肥料, 2020(2): 31-39. | |
14 | Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 2014, 99: 19-33. |
15 | Liu M H, Zhao Z J, Chen L, et al. Influences of arbuscular mycorrhizae, phosphorus fertiliser and biochar on alfalfa growth, nutrient status and cadmium uptake. Ecotoxicology and Environmental Safety, 2020, 196: 110537. |
16 | Xiao Y, Liu M H, Chen L, et al. Growth and elemental uptake of Trifolium repens in response to biochar addition, arbuscular mycorrhizal fungi and phosphorus fertilizer applications in low-Cd-polluted soils. Environmental Pollution, 2020, 260: 113761. |
17 | Huang Y, Guo X, Hu X Y. Effects of biochar on bioavailability of two elements in phosphorus and cadmium-enriched soil and accumulation of cadmium in crops. Environmental Science, 2020, 41(6): 2861-2868. |
黄洋, 郭晓, 胡学玉. 生物质炭对磷镉富集土壤中两种元素生物有效性及作物镉积累的影响. 环境科学, 2020, 41(6): 2861-2868. | |
18 | Chen B D, Zhu Y G, Duan J, et al. Effects of the arbuscular mycorrhizal fungus Glomus mosseae, on growth and metal uptake by four plant species in copper mine tailings. Environmental Pollution, 2007, 147(2): 374-380. |
19 | Zhang X, Chen B D, Ohtomo R. Mycorrhizal effects on growth, P uptake and Cd tolerance of the host plant vary among different AM fungal species. Soil Science and Plant Nutrition, 2015, 61(2): 359-368. |
20 | González-Chávez M C, Carrillogonzález R, Wright S F, et al. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 2004, 130(3): 317-323. |
21 | Wu S L, Zhang X, Sun Y, et al. Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM-EDS, TEM-EDS and XAFS. Environmental Science and Technology, 2015, 49(24): 14036-14047. |
22 | Nayuki K, Chen B D, Ohtomo R, et al. Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence. Microbes and Environments, 2014, 29(1): 60-66. |
23 | Yao Q, Yang R H, Long L K, et al. Phosphate application enhances the resistance of arbuscular mycorrhizae in clover plants to cadmium via, polyphosphate accumulation in fungal hyphae. Environmental Experimental Botany, 2014, 108(1): 63-70. |
24 | Sun H, Fu J T, Yang F Y. Effect of arbuscular mycorrhizal fungi on switchgrass growth and mineral nutrition in cadmium-contaminated soil. Polish Journal of Environmental Studies, 2020, 29(2): 1-9. |
25 | Mora M D L L, Pinilla L, Rosas A, et al. Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant and Soil, 2008, 303(1/2): 139-149. |
26 | Durán P, Acuña J J, Armada E, et al. Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress. Journal of Soil Science and Plant Nutrition, 2016, 16(1): 211-225. |
27 | Liu L, Li J W, Yue F X, et al. Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere, 2018, 194: 495-503. |
28 | Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technology, 2011, 102(3): 3488-3497. |
29 | Olsen S R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington: United States Department of Agriculture, 1954. |
30 | Su Y P, Lin C, Zhang F S, et al. Effect of arbascular mycorrhiza fungi (Glomus mosseae, Glomus versiformea, Gigaspora margarita and Gigaspora rosea) on phosphatase activities and soil organic phosphate content in clover rhizosphere. Soil, 2003(4): 334-338, 343. |
苏友波, 林春, 张福锁, 等. 不同AM菌根菌分泌的磷酸酶对根际土壤有机磷的影响. 土壤, 2003(4): 334-338, 343. | |
31 | Tokalioğlu S, Kartal S. Relationship between vegetable metal and soil extractable metal contents by the BCR sequential extraction procedure: Chemometrical interpretation of the data. International Journal of Environmental Analytical Chemistry, 2003, 83(11): 935-952. |
32 | Sarwar N, Saifullah, Malhi S S, et al. Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 2010, 90(6): 925-937. |
33 | Jiang Q Y, Tan S Y, Zhuo F, et al. Effect of Funneliformis mosseae, on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum. Applied Soil Ecology, 2016, 98: 112-120. |
34 | Chen B D, Liu Y, Shen H, et al. Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.). Mycorrhiza, 2004, 14(6): 347-354. |
35 | Liu L Z, Gong Z Q, Zhang Y L, et al. Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi. Ecotoxicology, 2014, 23(10): 1979-1986. |
36 | Gao S, DeLuca T H, Cleveland C C. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Science of the Total Environment, 2019, 654: 463-472. |
37 | Hu J L, Wu F Y, Wu S C, et al. Biochar and Glomus caledonium influence Cd accumulation of upland kangkong (Ipomoea aquatica Forsk.) intercropped with alfred stonecrop (Sedum alfredii Hance). Scientific Reports, 2014, 4: 4671. |
38 | Li H B, Zhong Y, Zhang H N, et al. Mechanism for the application of biochar in remediation of heavy metal contaminated farmland and its research advances. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 173-185. |
李鸿博, 钟怡, 张昊楠, 等. 生物炭修复重金属污染农田土壤的机制及应用研究进展. 农业工程学报, 2020, 36(13): 173-185. | |
39 | Song Y C, Feng G, Li X L. Effect of vam fungi on phosphatase activity in the rhizosphere of clover. Chinese Journal of Applied and Environmental Biology, 2000, 6(2): 171-175. |
宋勇春, 冯固, 李晓林. 泡囊丛枝菌根对红三叶草根际土壤磷酸酶活性的影响. 应用与环境生物学报, 2000, 6(2): 171-175. | |
40 | Nannipieri P G L, Landi L, Renella G. Role of phosphatase enzymes in soil//Bünemann E K, Oberson A, Frossard E. Phosphorus in action. Heidelberg: Springer, 2011: 215-244. |
41 | Chen B C, Lai H Y, Juang K W. Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Ecotoxicology and Environmental Safety, 2012, 80(1): 393-400. |
[1] | 李聪聪, 周亚星, 谷强, 杨明新, 朱传鲁, 彭子原, 薛凯, 赵新全, 王艳芬, 纪宝明, 张静. 三江源区典型高寒草地丛枝菌根真菌多样性及构建机制[J]. 草业学报, 2021, 30(1): 46-58. |
[2] | 邢易梅, 蕫理, 战力峰, 才华, 杨圣秋, 孙娜. 混合接种摩西球囊霉和根瘤菌对紫花苜蓿耐碱能力的影响[J]. 草业学报, 2020, 29(9): 136-145. |
[3] | 贾红梅, 方千, 张秫华, 严铸云, 柳敏. AM真菌对丹参生长及根际土壤酶活性的影响[J]. 草业学报, 2020, 29(6): 83-92. |
[4] | 赵昕, 吴子龙, 张浩, 杨旭钊, 韩超, 高杰. 峰峰矿区煤矸石山周边植物丛枝菌根真菌的侵染及Cd含量研究[J]. 草业学报, 2020, 29(5): 78-87. |
[5] | 王英逵, 杨玉荣, 王德利. 盐碱胁迫下AMF对羊草的离子吸收和分配作用[J]. 草业学报, 2020, 29(12): 95-104. |
[6] | 高亚敏, 罗慧琴, 姚拓, 张建贵, 李海云, 杨琰珊, 兰晓君. 高寒退化草地委陵菜根围丛枝菌根菌(AMF)分离鉴定及促生效应[J]. 草业学报, 2020, 29(1): 145-154. |
[7] | 李文彬, 宁楚涵, 李伟, 李峰, 郭绍霞. 菲和芘胁迫下AMF和PGPR对高羊茅生理生态的响应[J]. 草业学报, 2019, 28(8): 84-94. |
[8] | 田春丽, 李斌, 刘芳, 赵颖, 刘世亮, 介晓磊, 胡华锋. 硒、锌元素配施对紫花苜蓿产量、植株体内硒锌积累和氨基酸含量的影响[J]. 草业学报, 2019, 28(3): 142-153. |
[9] | 朱娟娟, 喻春明, 陈继康, 王延周, 陈平, 熊和平. 外源硒对饲用苎麻草产量和营养价值的影响[J]. 草业学报, 2019, 28(10): 144-155. |
[10] | 李继伟, 悦飞雪, 王艳芳, 张亚梅, 倪瑞景, 王发园, 付国占, 刘领. 施用生物炭和AM真菌对镉胁迫下玉米生长和生理生化指标的影响[J]. 草业学报, 2018, 27(5): 120-129. |
[11] | 亓琳, 杨莹博, 张博, 赵威, 王晓凌, 刘玉华. 丛枝菌根真菌强化高粱幼苗修复锶污染土壤的研究[J]. 草业学报, 2018, 27(12): 103-112. |
[12] | 李文彬, 宁楚涵, 徐孟, 刘润进, 郭绍霞. 丛枝菌根真菌和高羊茅对压实土壤的改良效应[J]. 草业学报, 2018, 27(11): 131-141. |
[13] | 刘兆娜, 郭绍霞, 李伟. AM真菌对百合生长和生理特性的影响[J]. 草业学报, 2017, 26(11): 85-93. |
[14] | 何树斌, 郭理想, 李菁, 王燚, 刘泽民, 程宇阳, 呼天明, 龙明秀. 丛枝菌根真菌与豆科植物共生体研究进展[J]. 草业学报, 2017, 26(1): 187-194. |
[15] | 张义飞,毕琪,杨允菲,张忠辉,胡长群,杨雨春,赵珊珊,王相刚. 松嫩平原盐碱化羊草群落中AM真菌物种资源及侵染率研究[J]. 草业学报, 2015, 24(9): 80-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||