1 |
Liu G S, Li X X, Qi D M, et al. Evaluation and utilization of Leymus chinensis germplasm resources. Chinese Science Bulletin, 2016, 61(2): 271-281.
|
|
刘公社, 李晓霞, 齐冬梅, 等. 羊草种质资源的评价与利用. 科学通报, 2016, 61(2): 271-281.
|
2 |
Dong X B, Hao M D, Jiang M, et al. Effect of trace element fertilizer on yield and quality of Leymus chinensis. Acta Agriculturae Boreali-Occidentalis Sinica, 2015, 24(1): 137-143.
|
|
董晓兵, 郝明德, 姜梅, 等. 微肥对羊草干草产量及品质的影响. 西北农业学报, 2015, 24(1): 137-143.
|
3 |
Liu H, Li Y, Li S. Cu and Na contents regulate N uptake of Leymus chinensis growing in soda saline-alkali soil. PLoS One, 2020, 15(12): e0243172.
|
4 |
Kang Y, Wang Y H, Li J, et al. Functional identification of zinc transporter LcZNE1 in Leymus chinensis. Chinese Journal of Grassland, 2021, 43(11): 1-9.
|
|
亢燕, 王耀辉, 李俊, 等. 羊草锌转运蛋白LcZNE1功能的鉴定. 中国草地学报, 2021, 43(11): 1-9.
|
5 |
Krishna T P A, Maharajan T, Roch G V, et al. Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Frontiers in Plant Science, 2020, 11: 662.
|
6 |
Hänsch R, Mendel R R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 2009, 12(3): 259-266.
|
7 |
Riaz N, Guerinot M L. All together now: Regulation of the iron deficiency response. Journal of Experimental Botany, 2021, 72(6): 2045-2055.
|
8 |
Milner M J, Seamon J, Craft E, et al. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany, 2013, 64(1): 369-381.
|
9 |
Grotz N, Fox T, Connolly E, et al. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(12): 7220-7224.
|
10 |
Papierniak A, Kozak K, Kendziorek M, et al. Contribution of NtZIP1-Like to the regulation of Zn homeostasis. Frontiers in Plant Science, 2018, 9: 185.
|
11 |
López-Millán A, Ellis D R, Grusak M A. Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Molecular Biology, 2004, 54(4): 583-596.
|
12 |
Gong F, Qi T, Hu Y, et al. Genome-wide investigation and functional verification of the ZIP family transporters in wild emmer wheat. International Journal of Molecular Sciences, 2022, 23: 2866.
|
13 |
Pedas P, Schjoerring J K, Husted S. Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots. Plant Physiology and Biochemistry, 2009, 47(5): 377-383.
|
14 |
Alagarasan G, Dubey M, Aswathy K S, et al. Genome wide identification of orthologous ZIP genes associated with zinc and iron translocation in Setaria italica. Frontiers in Plant Science, 2017, 8: 775.
|
15 |
Huang S, Sasaki A, Yamaji N, et al. The ZIP transporter family member OsZIP9 contributes to root zinc uptake in rice under zinc-limited conditions. Plant Physiology, 2020, 183(3): 1224-1234.
|
16 |
Liu X S, Feng S J, Zhang B Q, et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biology, 2019, 19: 283.
|
17 |
Li S, Zhou X, Huang Y, et al. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biology, 2013, 13: 114.
|
18 |
Moreau S, Thomson R M, Kaiser B N, et al. GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. Journal of Biological Chemistry, 2002, 277(7): 4738-4746.
|
19 |
Astudillo C, Fernandez A C, Blair M W, et al. The Phaseolus vulgaris ZIP gene family: Identification, characterization, mapping, and gene expression. Frontiers in Plant Science, 2013, 4: 286.
|
20 |
Gainza-Cortes F, Perez-Diaz R, Perez-Castro R, et al. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L. BMC Plant Biology, 2012, 12: 111.
|
21 |
Xing F, Fu X Z, Wang N Q, et al. Physiological changes and expression characteristics of ZIP family genes under zinc deficiency in navel orange (Citrus sinensis). Journal of Integrative Agriculture, 2016, 15(4): 803-811.
|
22 |
Yang J, Zhang T, Mao H, et al. A Leymus chinensis histidine-rich Ca2+-binding protein binds Ca2+/Zn2+ and suppresses abscisic acid signaling in Arabidopsis. Journal of Plant Physiology, 2020, 252: 153209.
|
23 |
Nakagawa T, Kurose T, Hino T, et al. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience & Bioengineering, 2007, 104(1): 34-41.
|
24 |
Sparkes I A, Runions J, Kearns A, et al. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols, 2006, 1(4): 2019-2025.
|
25 |
Yu G, Cheng Q, Xie Z, et al. An efficient protocol for perennial ryegrass mesophyll protoplast isolation and transformation, and its application on interaction study between LpNOL and LpNYC1. Plant Methods, 2017, 13: 46.
|
26 |
Zhao S B, Li Y G, Zhao B, et al. Identification and expression analyses of MtMTP3, a zinc transporter of CDF family in Medicago truncatula. Journal of Huazhong Agricultural University, 2018, 37(3): 52-60.
|
|
赵圣博, 李友国, 赵斌, 等. 蒺藜苜蓿中CDF家族锌转运体MtMTP3的鉴定和表达调控分析. 华中农业大学学报, 2018, 37(3): 52-60.
|
27 |
Guerinot M L. The ZIP family of metal transporters. Biochimica et Biophysica Acta-Biomembranes, 2000, 1465(1/2): 190-198.
|
28 |
Gaitan-Solis E, Taylor N J, Siritunga D, et al. Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning. Frontiers in Plant Science, 2015, 6: 492.
|
29 |
Narayanan N, Beyene G, Chauhan R D, et al. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nature Biotechnology, 2019, 37(2): 144-151.
|