草业学报 ›› 2024, Vol. 33 ›› Issue (9): 1-14.DOI: 10.11686/cyxb2023380
• 研究论文 •
收稿日期:
2023-10-11
修回日期:
2023-12-11
出版日期:
2024-09-20
发布日期:
2024-06-20
通讯作者:
代金霞
作者简介:
E-mail: daijx05@163.com基金资助:
Jia-ni YAO(), Shuang LIU, Jun-jie ZHANG, Ming-zhu HU, Jin-xia DAI()
Received:
2023-10-11
Revised:
2023-12-11
Online:
2024-09-20
Published:
2024-06-20
Contact:
Jin-xia DAI
摘要:
开展荒漠灌丛根际土壤酶活性和微生物代谢多样性研究,对于荒漠土壤的生态修复具有重要意义。运用可见分光光度法和Biolog微平板法,对宁夏白芨滩荒漠草原内柠条、沙冬青、毛刺和猫头刺4种典型的豆科灌丛不同发育期根际土壤酶活性及微生物代谢功能多样性进行了研究。结果表明:不同灌丛各发育期根际土壤的酶活性存在显著差异。从灌丛种类来看,沙冬青根际土壤脲酶活性均显著高于其他3种灌丛,毛刺根际土壤碱性磷酸酶活性均显著低于其他灌丛。从发育期来看,营养期沙冬青根际土壤脲酶和碱性磷酸酶活性显著高于其他时期,柠条根际土壤脲酶和蔗糖酶活性显著低于其他时期;盛花期柠条根际土壤脲酶和碱性磷酸酶活性、沙冬青根际土壤蔗糖酶活性、猫头刺根际土壤脲酶和脱氢酶活性显著高于其他时期;果实期沙冬青根际土壤脲酶和碱性磷酸酶活性最高,柠条根际土壤蔗糖酶和脱氢酶活性最高;毛刺的盛花期和果实期根际土壤中酶活性普遍较低。不同灌丛各发育期根际土壤微生物群落代谢多样性大多存在显著差异。4种灌丛根际土壤平均颜色变化率(average well color development, AWCD)均随培养时间的延长而逐渐增加,碳源利用类型主要为碳水化合物、氨基酸和羧酸。柠条营养期根际土壤中微生物分布较均匀,代谢活性强,生长旺盛。主成分分析(principal component analysis, PCA)显示,营养期沙冬青、毛刺和猫头刺根际土壤微生物的碳源利用模式相似;盛花期柠条、沙冬青和猫头刺根际土壤微生物的碳源利用模式相似;果实期柠条和沙冬青、毛刺和猫头刺根际土壤微生物的碳源利用模式相似。随着发育期的变化,土壤微生物碳源利用模式发生不同程度的变化。冗余分析(redundancy analysis, RDA)显示,酶活性和微生物代谢功能与土壤理化性质关系密切。脲酶与铵态氮(NH4+-N)正相关;碱性磷酸酶与土壤含水量(SWC)显著正相关;蔗糖酶与全氮(TN)、铵态氮(NH4+-N)、土壤有机质(SOM)和全磷(TP)正相关,且与TN显著正相关;TN、有效磷(AP)、TP、速效钾(AK)和亚硝态氮(NO2--N)显著影响脱氢酶活性。NH4+-N、NO2--N、TP、AP和NO3--N是影响微生物代谢多样性的主要理化因子。该研究结果对于了解宁夏荒漠根际土壤微环境以及微生物群落对环境响应特征具有积极意义。
姚佳妮, 刘爽, 张钧杰, 胡明珠, 代金霞. 宁夏荒漠草原典型灌丛根际土壤酶活性及微生物代谢多样性[J]. 草业学报, 2024, 33(9): 1-14.
Jia-ni YAO, Shuang LIU, Jun-jie ZHANG, Ming-zhu HU, Jin-xia DAI. Enzyme activity and microbial metabolic diversity in typical shrub rhizosphere soil in Ningxia desert steppe[J]. Acta Prataculturae Sinica, 2024, 33(9): 1-14.
样品 Samples | 酸碱度 pH | 有机质 Soil organic matter (g·kg-1) | 土壤含水量 Soil water content (%) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 亚硝态氮 Nitrite nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
NT1 | 8.52±0.10Aa | 7.70±0.01Aa | 7.49±1.85Aa | 0.66±0.02Aa | 0.41±0.01Aa | 17.40±0.01Aa | 57.65±1.00Aa | 5.08±0.08Aa | 65.30±0.02Aa | 9.19±0.10Aa | 166.77±1.12Aa |
NT2 | 8.65±0.16Aa | 7.68±0.05Ba | 1.53±0.41Bc | 0.54±0.01Ca | 0.34±0.01Ba | 17.12±0.20Aa | 28.86±0.03Ba | 3.71±0.09Cb | 4.86±0.01Cc | 4.29±0.10Ba | 150.78±1.14Ba |
NT3 | 8.10±0.04Bb | 7.65±0.04Ca | 0.77±0.06Ba | 0.55±0.03Ba | 0.36±0.10Ba | 17.21±0.06Aa | 10.25±0.14Cb | 4.55±0.06Ba | 23.55±0.02Ba | 4.53±0.08Ba | 130.73±1.14Ca |
SD1 | 8.35±0.08Aa | 3.42±0.01Bc | 4.63±0.41Bbc | 0.37±0.02Bc | 0.30±0.01Ac | 16.75±0.03Ac | 43.24±0.16Ab | 4.29±0.06Ac | 24.69±0.44Ac | 3.67±0.10Ab | 104.44±0.01Bc |
SD2 | 7.56±0.21Bb | 3.45±0.02Ac | 6.47±0.03Ab | 0.44±0.02Ab | 0.30±0.01Ab | 16.73±0.01Ab | 11.78±0.14Bd | 3.73±0.06Bb | 15.74±0.00Bb | 1.47±0.02Cc | 98.38±1.17Cc |
SD3 | 8.35±0.03Aa | 3.39±0.01Cc | 0.60±0.20Cab | 0.31±0.01Cc | 0.28±0.03Ac | 16.66±0.04Ab | 4.26±0.00Cc | 3.40±0.03Cb | 14.17±0.01Cb | 2.36±0.10Bc | 114.48±1.15Ac |
MC1 | 7.41±0.06Bc | 6.01±0.02Ab | 6.57±0.47Aab | 0.53±0.02Ab | 0.35±0.01Ab | 17.15±0.05Ab | 19.56±0.02Ad | 4.13±0.08Ac | 29.05±0.04Bb | 3.54±0.10Ab | 128.55±0.01Ab |
MC2 | 8.00±0.07Ab | 5.95±0.04Bb | 5.83±0.98Bb | 0.34±0.03Cc | 0.30±0.02Bb | 16.98±0.07Aab | 13.11±0.13Bc | 3.58±0.06Bb | 37.11±0.04Aa | 2.26±0.08Bb | 104.51±0.02Cb |
MC3 | 7.63±0.18Bc | 5.90±0.01Cb | 0.33±0.03Cbc | 0.35±0.03Bb | 0.33±0.01Ab | 16.66±0.04Bb | 4.26±0.01Cc | 2.25±0.01Cc | 9.58±0.01Cd | 2.50±0.02Bc | 118.49±1.13Bb |
MT1 | 7.84±0.14Ab | 2.99±0.01Cd | 3.57±0.32Bc | 0.34±0.02Ad | 0.32±0.01Ac | 16.33±0.03Ad | 26.05±0.02Bc | 4.74±0.10Ab | 28.89±0.03Ab | 3.81±0.02Bb | 98.35±1.16Bd |
MT2 | 7.59±0.07Ab | 3.15±0.02Ad | 8.63±0.33Aa | 0.39±0.07Abc | 0.32±0.01Aab | 16.21±0.02Bc | 27.06±0.44Ab | 4.43±0.08Ba | 0 | 4.36±0.02Aa | 104.48±0.01Ab |
MT3 | 7.79±0.02Ac | 3.08±0.01Bd | 0.24±0.00Cc | 0.31±0.04Ac | 0.27±0.01Bc | 16.39±0.09Ac | 13.23±0.00Ca | 3.51±0.01Cb | 10.23±0.04Bc | 2.85±0.02Cb | 92.38±0.00Cd |
表1 豆科灌丛不同发育期根际土壤理化性质
Table 1 Physical and chemical properties of rhizosphere soil in different development periods of legume shrub
样品 Samples | 酸碱度 pH | 有机质 Soil organic matter (g·kg-1) | 土壤含水量 Soil water content (%) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 亚硝态氮 Nitrite nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
NT1 | 8.52±0.10Aa | 7.70±0.01Aa | 7.49±1.85Aa | 0.66±0.02Aa | 0.41±0.01Aa | 17.40±0.01Aa | 57.65±1.00Aa | 5.08±0.08Aa | 65.30±0.02Aa | 9.19±0.10Aa | 166.77±1.12Aa |
NT2 | 8.65±0.16Aa | 7.68±0.05Ba | 1.53±0.41Bc | 0.54±0.01Ca | 0.34±0.01Ba | 17.12±0.20Aa | 28.86±0.03Ba | 3.71±0.09Cb | 4.86±0.01Cc | 4.29±0.10Ba | 150.78±1.14Ba |
NT3 | 8.10±0.04Bb | 7.65±0.04Ca | 0.77±0.06Ba | 0.55±0.03Ba | 0.36±0.10Ba | 17.21±0.06Aa | 10.25±0.14Cb | 4.55±0.06Ba | 23.55±0.02Ba | 4.53±0.08Ba | 130.73±1.14Ca |
SD1 | 8.35±0.08Aa | 3.42±0.01Bc | 4.63±0.41Bbc | 0.37±0.02Bc | 0.30±0.01Ac | 16.75±0.03Ac | 43.24±0.16Ab | 4.29±0.06Ac | 24.69±0.44Ac | 3.67±0.10Ab | 104.44±0.01Bc |
SD2 | 7.56±0.21Bb | 3.45±0.02Ac | 6.47±0.03Ab | 0.44±0.02Ab | 0.30±0.01Ab | 16.73±0.01Ab | 11.78±0.14Bd | 3.73±0.06Bb | 15.74±0.00Bb | 1.47±0.02Cc | 98.38±1.17Cc |
SD3 | 8.35±0.03Aa | 3.39±0.01Cc | 0.60±0.20Cab | 0.31±0.01Cc | 0.28±0.03Ac | 16.66±0.04Ab | 4.26±0.00Cc | 3.40±0.03Cb | 14.17±0.01Cb | 2.36±0.10Bc | 114.48±1.15Ac |
MC1 | 7.41±0.06Bc | 6.01±0.02Ab | 6.57±0.47Aab | 0.53±0.02Ab | 0.35±0.01Ab | 17.15±0.05Ab | 19.56±0.02Ad | 4.13±0.08Ac | 29.05±0.04Bb | 3.54±0.10Ab | 128.55±0.01Ab |
MC2 | 8.00±0.07Ab | 5.95±0.04Bb | 5.83±0.98Bb | 0.34±0.03Cc | 0.30±0.02Bb | 16.98±0.07Aab | 13.11±0.13Bc | 3.58±0.06Bb | 37.11±0.04Aa | 2.26±0.08Bb | 104.51±0.02Cb |
MC3 | 7.63±0.18Bc | 5.90±0.01Cb | 0.33±0.03Cbc | 0.35±0.03Bb | 0.33±0.01Ab | 16.66±0.04Bb | 4.26±0.01Cc | 2.25±0.01Cc | 9.58±0.01Cd | 2.50±0.02Bc | 118.49±1.13Bb |
MT1 | 7.84±0.14Ab | 2.99±0.01Cd | 3.57±0.32Bc | 0.34±0.02Ad | 0.32±0.01Ac | 16.33±0.03Ad | 26.05±0.02Bc | 4.74±0.10Ab | 28.89±0.03Ab | 3.81±0.02Bb | 98.35±1.16Bd |
MT2 | 7.59±0.07Ab | 3.15±0.02Ad | 8.63±0.33Aa | 0.39±0.07Abc | 0.32±0.01Aab | 16.21±0.02Bc | 27.06±0.44Ab | 4.43±0.08Ba | 0 | 4.36±0.02Aa | 104.48±0.01Ab |
MT3 | 7.79±0.02Ac | 3.08±0.01Bd | 0.24±0.00Cc | 0.31±0.04Ac | 0.27±0.01Bc | 16.39±0.09Ac | 13.23±0.00Ca | 3.51±0.01Cb | 10.23±0.04Bc | 2.85±0.02Cb | 92.38±0.00Cd |
土壤酶活性 Soil enzyme activity | 因素 Factor | 平方和 Quadratic sum | 自由度 Degrees of freedom | 均方 Mean square | F | P |
---|---|---|---|---|---|---|
土壤脲酶Soil-urease (S-UE) | 灌丛类型Shrub type | 625850.454 | 3 | 208616.818 | 385.773 | <0.001 |
发育期Development period | 49600.647 | 2 | 24800.324 | 45.861 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 421004.550 | 6 | 70167.425 | 129.753 | <0.001 | |
土壤碱性磷酸酶Soil-alkaline phosphatase (S-AKP) | 灌丛类型Shrub type | 70502929.860 | 3 | 23500976.620 | 1148.418 | <0.001 |
发育期Development period | 2665366.774 | 2 | 1332683.387 | 65.124 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 22046446.330 | 6 | 3674407.722 | 179.557 | <0.001 | |
土壤蔗糖酶Soil-sucrase (S-SC) | 灌丛类型Shrub type | 76694.584 | 3 | 25564.861 | 253.634 | <0.001 |
发育期Development period | 8186.687 | 2 | 4093.343 | 40.611 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 92174.605 | 6 | 15362.434 | 152.414 | <0.001 | |
土壤脱氢酶Soil-dehydrogenase (S-DHA) | 灌丛类型Shrub type | 67.317 | 3 | 22.439 | 412.674 | <0.001 |
发育期Development period | 9.743 | 2 | 4.872 | 89.595 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 126.875 | 6 | 21.146 | 388.888 | <0.001 |
表2 豆科灌丛不同发育期根际土壤酶活性的双因素方差分析
Table 2 Two-factor variance analysis of soil enzyme activity in rhizosphere of legume shrub at different development periods
土壤酶活性 Soil enzyme activity | 因素 Factor | 平方和 Quadratic sum | 自由度 Degrees of freedom | 均方 Mean square | F | P |
---|---|---|---|---|---|---|
土壤脲酶Soil-urease (S-UE) | 灌丛类型Shrub type | 625850.454 | 3 | 208616.818 | 385.773 | <0.001 |
发育期Development period | 49600.647 | 2 | 24800.324 | 45.861 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 421004.550 | 6 | 70167.425 | 129.753 | <0.001 | |
土壤碱性磷酸酶Soil-alkaline phosphatase (S-AKP) | 灌丛类型Shrub type | 70502929.860 | 3 | 23500976.620 | 1148.418 | <0.001 |
发育期Development period | 2665366.774 | 2 | 1332683.387 | 65.124 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 22046446.330 | 6 | 3674407.722 | 179.557 | <0.001 | |
土壤蔗糖酶Soil-sucrase (S-SC) | 灌丛类型Shrub type | 76694.584 | 3 | 25564.861 | 253.634 | <0.001 |
发育期Development period | 8186.687 | 2 | 4093.343 | 40.611 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 92174.605 | 6 | 15362.434 | 152.414 | <0.001 | |
土壤脱氢酶Soil-dehydrogenase (S-DHA) | 灌丛类型Shrub type | 67.317 | 3 | 22.439 | 412.674 | <0.001 |
发育期Development period | 9.743 | 2 | 4.872 | 89.595 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 126.875 | 6 | 21.146 | 388.888 | <0.001 |
图1 豆科灌丛不同发育期根际土壤脲酶、碱性磷酸酶、蔗糖酶和脱氢酶活性不同大写字母表示同一灌丛不同发育期之间差异显著(P<0.05),不同小写字母表示不同灌丛相同发育期之间差异显著(P<0.05)。Different capital letters indicated significant difference among different development periods of the same shrub (P<0.05), and different lowercase letters indicate significant differences among different shrubs at the same development period (P<0.05).下同The same below.
Fig.1 Enzyme activity in rhizosphere soil of legume shrub at different development periods of urease, alkaline phosphatase, sucrase and dehydrogenase
图2 豆科灌丛不同发育期根际土壤微生物群落的平均颜色变化率NT: 柠条Caragana spp.; SD: 沙冬青A. mongolicus; MC: 毛刺C. tibetica; MT: 猫头刺O. aciphylla. 1~3分别代表营养期、盛花期和果实期。下同。1-3 represent the nutritional period, flowering period and fruit period, respectively. The same below.
Fig.2 Average well color development of rhizosphere soil microbial community in legume shrub at different development periods
项目 Item | 因素 Factor | 平方和 Quadratic sum | 自由度 Degrees of freedom | 均方 Mean square | F | P |
---|---|---|---|---|---|---|
平均颜色变化率Average well color development (AWCD) | 灌丛类型Shrub type | 0.552 | 3 | 0.184 | 120.896 | <0.001 |
发育期Development period | 2.129 | 2 | 1.065 | 699.280 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 0.754 | 6 | 0.126 | 82.569 | <0.001 |
表3 豆科灌丛不同发育期根际土壤微生物AWCD值的双因素方差分析
Table 3 Two-factor variance analysis of rhizosphere soil microbial average well color development (AWCD) in legume shrub at different development periods
项目 Item | 因素 Factor | 平方和 Quadratic sum | 自由度 Degrees of freedom | 均方 Mean square | F | P |
---|---|---|---|---|---|---|
平均颜色变化率Average well color development (AWCD) | 灌丛类型Shrub type | 0.552 | 3 | 0.184 | 120.896 | <0.001 |
发育期Development period | 2.129 | 2 | 1.065 | 699.280 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 0.754 | 6 | 0.126 | 82.569 | <0.001 |
样品 Samples | 平均颜色变化率 Average well color development (AWCD) | 香农指数 Shannon index | 辛普森指数 Simpson index | 麦金塔指数 Mclntosh index |
---|---|---|---|---|
NT1 | 1.312±0.008Aa | 3.293±0.003Aa | 0.960±0.000Aa | 8.094±0.044Aa |
NT2 | 0.242±0.025Cb | 2.179±0.244Bb | 0.909±0.010Bab | 2.649±0.141Cb |
NT3 | 0.840±0.024Ba | 3.116±0.007Aa | 0.948±0.001Aa | 5.803±0.213Ba |
SD1 | 0.849±0.031Ab | 3.010±0.037Ab | 0.943±0.002Ab | 6.243±0.119Ab |
SD2 | 0.225±0.013Cb | 2.461±0.142Bab | 0.885±0.019Bb | 2.343±0.157Cb |
SD3 | 0.589±0.007Bb | 2.814±0.046Ab | 0.925±0.007Ab | 4.738±0.008Bb |
MC1 | 0.660±0.013Ac | 2.992±0.049Ab | 0.946±0.002Ab | 4.791±0.075Ac |
MC2 | 0.444±0.016Ba | 2.959±0.037Aa | 0.938±0.000Ba | 3.427±0.127Ba |
MC3 | 0.301±0.020Cd | 2.784±0.173Ab | 0.923±0.002Cb | 2.586±0.167Cd |
MT1 | 0.835±0.049Ab | 3.052±0.025Ab | 0.948±0.002Ab | 5.897±0.239Ab |
MT2 | 0.393±0.018Ba | 2.710±0.096Ba | 0.916±0.005Bab | 3.413±0.197Ba |
MT3 | 0.410±0.010Bc | 2.745±0.021Bb | 0.929±0.005Bb | 3.378±0.038Bc |
表4 豆科灌丛不同发育期根际土壤微生物多样性指数
Table 4 Rhizosphere soil microbial diversity index of legume shrub at different development periods
样品 Samples | 平均颜色变化率 Average well color development (AWCD) | 香农指数 Shannon index | 辛普森指数 Simpson index | 麦金塔指数 Mclntosh index |
---|---|---|---|---|
NT1 | 1.312±0.008Aa | 3.293±0.003Aa | 0.960±0.000Aa | 8.094±0.044Aa |
NT2 | 0.242±0.025Cb | 2.179±0.244Bb | 0.909±0.010Bab | 2.649±0.141Cb |
NT3 | 0.840±0.024Ba | 3.116±0.007Aa | 0.948±0.001Aa | 5.803±0.213Ba |
SD1 | 0.849±0.031Ab | 3.010±0.037Ab | 0.943±0.002Ab | 6.243±0.119Ab |
SD2 | 0.225±0.013Cb | 2.461±0.142Bab | 0.885±0.019Bb | 2.343±0.157Cb |
SD3 | 0.589±0.007Bb | 2.814±0.046Ab | 0.925±0.007Ab | 4.738±0.008Bb |
MC1 | 0.660±0.013Ac | 2.992±0.049Ab | 0.946±0.002Ab | 4.791±0.075Ac |
MC2 | 0.444±0.016Ba | 2.959±0.037Aa | 0.938±0.000Ba | 3.427±0.127Ba |
MC3 | 0.301±0.020Cd | 2.784±0.173Ab | 0.923±0.002Cb | 2.586±0.167Cd |
MT1 | 0.835±0.049Ab | 3.052±0.025Ab | 0.948±0.002Ab | 5.897±0.239Ab |
MT2 | 0.393±0.018Ba | 2.710±0.096Ba | 0.916±0.005Bab | 3.413±0.197Ba |
MT3 | 0.410±0.010Bc | 2.745±0.021Bb | 0.929±0.005Bb | 3.378±0.038Bc |
图3 豆科灌丛不同发育期根际土壤微生物群落的碳源利用率(A)和碳源类型(B)红色表示对应样本中AWCD值较高的碳源;蓝色表示AWCD值较低的碳源;横向表示为样品信息;右侧纵向表示不同碳源。Red indicates the carbon source with high AWCD value in the corresponding sample, while blue indicates the carbon source with low AWCD value. The horizontal representation is sample information, and the right vertical representation is different carbon sources.
Fig.3 Carbon source utilization (A) and types (B) of rhizosphere soil microbial communities in legume shrub at different development periods
图4 豆科灌丛不同发育期根际土壤微生物群落代谢功能主成分分析
Fig.4 Principal component analysis of metabolic function of rhizosphere soil microbial community in legume shrub at different development periods
图5 根际土壤酶活性(A)及微生物群落代谢功能(B)和土壤理化性质的相关性分析土壤酶活性指标用蓝色箭头连线表示,微生物代谢功能指标用黑色箭头连线表示,环境因子用红色箭头连线表示。Soil enzyme activity index are represented by blue arrow lines, microbial metabolic function index are represented by black arrow lines, and environmental factors are represented by red arrow lines. SOM: 土壤有机质Soil organic matter; SWC: 土壤含水量Soil water content; TN: 全氮Total nitrogen; TP: 全磷Total phosphorus; TK: 全钾Total potassium; NO3--N: 硝态氮Nitrate nitrogen; NH4+-N: 铵态氮Ammonium nitrogen; NO2--N: 亚硝态氮Nitrite nitrogen; AP: 有效磷Available phosphorus; AK: 速效钾Available potassium. S-UE: 土壤脲酶Soil-urease; S-AKP: 土壤碱性磷酸酶Soil-alkaline phosphatase; S-SC: 土壤蔗糖酶Soil-sucrase; S-DHA: 土壤脱氢酶Soil-dehydrogenase.
Fig.5 Correlation analysis of rhizosphere soil enzyme activity (A) and microbial metabolic function (B) with soil physicochemistry
1 | Alsharif W, Saad M M, Hirt H. Desert microbes for boosting sustainable agriculture in extreme environments. Frontiers in Microbiology, 2020, 11: 1666. |
2 | Li T, Zhang W, Liu G X, et al. Advances in the study of microbial ecology in desert soil. Journal of Desert Research, 2018, 38(2): 329-338. |
李婷, 张威, 刘光琇, 等. 荒漠土壤微生物群落结构特征研究进展. 中国沙漠, 2018, 38(2): 329-338. | |
3 | Liu Z, Wang C, Yang X, et al. The relationship and influencing factors between endangered plant Tetraena mongolica and soil microorganisms in West Ordos desert ecosystem, Northern China. Plants, 2023, 12(5): 1048. |
4 | Xiao C P, Yang L M, Zhang L X, et al. Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng. Journal of Ginseng Research, 2016, 40(1): 28-37. |
5 | Shang L, Wan L, Zhou X, et al. Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in Leymus chinensis steppe in Inner Mongolia, China. PLoS One, 2020, 15(10): e0240559. |
6 | Yin T G, Li Y Z. Research progress on factors affecting soil enzyme activity and its determination methods. Mineral Exploration, 2019, 10(6): 1523-1528. |
殷陶刚, 李玉泽. 土壤酶活性影响因素及测定方法的研究进展. 矿产勘查, 2019, 10(6): 1523-1528. | |
7 | Zhang C, Zhou X, Wang X, et al. Elaeagnus angustifolia can improve salt-alkali soil and the health level of soil: Emphasizing the driving role of core microbial communities. Journal of Environmental Management, 2022, 305: 114401. |
8 | Ma J, Qin J, Ma H, et al. Soil characteristic changes and quality evaluation of degraded desert steppe in arid windy sandy areas. PeerJ, 2022, 10: e13100. |
9 | Zhang B H, Hong J P, Zhang Q, et al. Contrast in soil microbial metabolic functional diversity to fertilization and crop rotation under rhizosphere and non-rhizosphere in the coal gangue landfill reclamation area of Loess Hills. PLoS One, 2020, 15(3): e0229341. |
10 | Song C. Radiating benefit of windbreak and sand fixation and ecological protection compensation of desert ecosystem nature reserve——a case study on the Baijitan Nature Reserve, Ningxia. Beijing: Beijing Forestry University, 2021. |
宋超. 荒漠生态系统类型自然保护区防风固沙效益和生态保护补偿研究——以宁夏灵武白芨滩国家级自然保护区为例. 北京: 北京林业大学, 2021. | |
11 | Tian S, Han W W, Han K, et al. Present situation and countermeasures of sand control in Mu Us Sandy Land——a case study of Baijitan National Nature Reserve in Lingwu, Ningxia. Modern Business Trade Industry, 2014, 26(14): 186-187. |
田帅, 韩雯雯, 韩凯, 等. 毛乌素沙地防沙治沙现状及对策——以宁夏灵武白芨滩国家级自然保护区为例. 现代商贸工业, 2014, 26(14): 186-187. | |
12 | Zhou Z, Yu M, Ding G, et al. Diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants. PLoS One, 2020, 15(12): e0241057. |
13 | Lu R K. Soil agrochemical analysis methods. Beijing: Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 农业科技出版社, 2000. | |
14 | Guan S Y. Soil enzyme and its research methods. Beijing: Agricultural Press, 1986. |
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. | |
15 | Tian P Y, Shen C, Zhao H, et al. Enzyme activities and microbial communities in rhizospheres of plants in salinized soil in North Yinchuan, China. Acta Pedologica Sinica, 2020, 57(1): 217-226. |
田平雅, 沈聪, 赵辉, 等. 银北盐碱区植物根际土壤酶活性及微生物群落特征. 土壤学报, 2020, 57(1): 217-226. | |
16 | Wang W X, Luo M, Pan C D. Microorganisms and its biological activity in rhizospheric soil around desert plants at the lower reaches of Tarim River, Xinjiang, China. Journal of Desert Research, 2010, 30(3): 571-576. |
王卫霞, 罗明, 潘存德. 塔里木河下游几种荒漠植物根际土壤微生物及其活性. 中国沙漠, 2010, 30(3): 571-576. | |
17 | Li Q L, Xiao Z, Ren M B, et al. Variation of bacterial community structure in Gardenia jasminoides rhizosphere at different growth stages. Chinese Journal of Soil Science, 2021, 52(2): 346-354. |
李巧玲, 肖忠, 任明波, 等. 栀子不同生育期根际土壤细菌群落结构的动态变化. 土壤通报, 2021, 52(2): 346-354. | |
18 | Xie T P, Zhang J, Liu N, et al. Changes in rhizosphere soil enzymatic activities and microbial communities across growth stages of Angelica sinensis. Chinese Journal of Soil Science, 2023, 54(1): 138-150. |
谢田朋, 张建, 柳娜, 等. 当归不同生长时期根际土壤酶活性及微生物群落结构变化. 土壤通报, 2023, 54(1): 138-150. | |
19 | Yang Z, Li X Y, Yuan Y, et al. Characteristics and influence factors of soil urease in a typical monsoon evergreen broad-leaved forest in southern Yunnan. Forest Resources Management, 2023(4): 71-79. |
杨值, 李小英, 袁勇, 等. 滇南典型季风常绿阔叶林土壤脲酶特征及其影响因子. 林业资源管理, 2023(4): 71-79. | |
20 | Liao Y X, Shu Y G, Wang C M, et al. Change characteristics of soil microbial phosphorus, alkaline phosphatase and phytase under different vegetation types in karst area. Journal of Southern Agriculture, 2023, 54(6): 1762-1770. |
廖远行, 舒英格, 王昌敏, 等. 喀斯特地区不同植被类型土壤微生物量磷、碱性磷酸酶及植酸酶的变化特征. 南方农业学报, 2023, 54(6): 1762-1770. | |
21 | Zheng W Y, Wang Y X, Wang Y J, et al. Relationship between rhizosphere soil enzyme activity of different tree species and soil physical-chemical properties and microbial quantity in rocky desertification control area. Journal of Northeast Forestry University, 2021, 49(1): 96-100. |
郑武扬, 王艳霞, 王月江, 等. 石漠化治理区不同优势树种根际土壤酶活性与土壤理化性质和微生物数量的关系. 东北林业大学学报, 2021, 49(1): 96-100. | |
22 | Liu L, Ma M C, Jiang X, et al. Effect of Rhizobia and PGPR co-inoculant on soybean characteristics and soil enzyme activities. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 644-654. |
刘丽, 马鸣超, 姜昕, 等. 根瘤菌与促生菌双接种对大豆生长和土壤酶活的影响. 植物营养与肥料学报, 2015, 21(3): 644-654. | |
23 | Li J B, Xie T, Zhu H, et al. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma, 2021, 404: 115376. |
24 | Li S Y, Sun J, Wang Y, et al. Characteristics of soil enzyme activities in different degraded gradient grasslands on the Tibetan Plateau. Pratacultural Science, 2020, 37(12): 2389-2402. |
李邵宇, 孙建, 王毅, 等. 青藏高原不同退化梯度草地土壤酶活性特征. 草业科学, 2020, 37(12): 2389-2402. | |
25 | Liu R F, Li X P, Li S J, et al. Research on relationship between soil invertase, catalase and soil nutrient in the area of Shangluo. Agricultural Research in the Arid Areas, 2011, 29(5): 182-185. |
刘瑞丰, 李新平, 李素俭, 等. 商洛地区土壤蔗糖酶及过氧化氢酶与土壤养分的关系研究. 干旱地区农业研究, 2011, 29(5): 182-185. | |
26 | Liang T Y. Spatial and temporal distribution pattern and functional prediction of soil microorganisms in the rhizosphere of Ulmus pumila var. sabulosa within the Otindag sandy land. Hohhot: Inner Mongolia Agricultural University, 2019. |
梁田雨. 浑善达克沙地榆根际土壤微生物时空分布格局及功能预测. 呼和浩特: 内蒙古农业大学, 2019. | |
27 | Zhu M L, Gong L, Zhang L L. Soil enzyme activities and their relationships to environmental factors in a typical oasis in the upper reaches of the Tarim River. Environmental Science, 2015, 36(7): 2678-2685. |
朱美玲, 贡璐, 张龙龙. 塔里木河上游典型绿洲土壤酶活性与环境因子相关分析. 环境科学, 2015, 36(7): 2678-2685. | |
28 | Xie X F, Pu L J, Wang Q Q, et al. Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China. Science of the Total Environment, 2017, 607/608: 1419-1427. |
29 | Hu K, Wang L B. Application of BIOLOG microplate technique to the study of soil microbial ecology. Chinese Journal of Soil Science, 2007, 38(4): 819-821. |
胡可, 王利宾. BIOLOG微平板技术在土壤微生态研究中的应用. 土壤通报, 2007, 38(4): 819-821. | |
30 | Wu Z Y, Lin W X, Chen Z F, et al. Characteristics of soil microbial community under different vegetation types in Wuyishan National Nature Reserve, East China. Chinese Journal of Applied Ecology, 2013, 24(8): 2301-2309. |
吴则焰, 林文雄, 陈志芳, 等. 武夷山国家自然保护区不同植被类型土壤微生物群落特征.应用生态学报, 2013, 24(8): 2301-2309. | |
31 | Zhao H, Zhou Y C, Ren Q F. Evolution of soil microbial community structure and functional diversity in Pinus massoniana plantations with age of stand. Acta Pedologica Sinica, 2020, 57(1): 227-238. |
赵辉, 周运超, 任启飞. 不同林龄马尾松人工林土壤微生物群落结构和功能多样性演变. 土壤学报, 2020, 57(1): 227-238. | |
32 | Liu W, Qiu K, Xie Y, et al. Years of sand fixation with Caragana korshinskii drive the enrichment of its rhizosphere functional microbes by accumulating soil N. PeerJ, 2022, 10: e14271. |
33 | Lu S B, Zhang Y J, Chen C R, et al. Analysis of functional differences between soil bacterial communities in three different types of forest soils based on biolog fingerprint. Acta Pedologica Sinica, 2013, 50(3): 618-623. |
鲁顺保, 张艳杰, 陈成榕, 等. 基于BIOLOG指纹解析三种不同森林类型土壤细菌群落功能差异. 土壤学报, 2013, 50(3): 618-623. | |
34 | Wang J, Li G, Xiu W M, et al. Responses of soil microbial functional diversity to nitrogen and water input in Stipa baicalensis steppe, Inner Mongolia, Northern China. Acta Prataculturae Sinica, 2014, 23(4): 343-350. |
王杰, 李刚, 修伟明, 等. 贝加尔针茅草原土壤微生物功能多样性对氮素和水分添加的响应. 草业学报, 2014, 23(4): 343-350. | |
35 | Wang D, Yi W B, Li H, et al. Effects of intercropping and nitrogen application on soil microbial metabolic functional diversity in maize cropping soil. Chinese Journal of Applied Ecology, 2022, 33(3): 793-800. |
王顶, 伊文博, 李欢, 等. 玉米间作和施氮对土壤微生物代谢功能多样性的影响. 应用生态学报, 2022, 33(3): 793-800. | |
36 | Gu S, Guo X, Cai Y, et al. Residue management alters microbial diversity and activity without affecting their community composition in black soil, Northeast China. PeerJ, 2018, 6(3): e5754. |
37 | Yin H B, Xie L H, Huang Q Y, et al. Soil microbial metabolic diversity and its influencing factors in Wudalianchi volcanic groups. Soils and Crops, 2022, 11(4): 458-469. |
阴红彬, 谢立红, 黄庆阳, 等. 五大连池火山群土壤微生物群落代谢多样性及影响因素研究. 土壤与作物, 2022, 11(4): 458-469. | |
38 | Dai Y T, Hou X Y, Yan Z J, et al. Rhizosphere microbial functional diversity affected by vegetation restoration in the Hobq Sand Land, Inner Mongolia, China. Acta Prataculturae Sinica, 2016, 25(10): 56-65. |
戴雅婷, 侯向阳, 闫志坚, 等. 库布齐沙地两种植被恢复类型根际土壤微生物群落功能多样性研究. 草业学报, 2016, 25(10): 56-65. | |
39 | Sun X, Han D X, Liu Y, et al. Responses of soil physicochemical properties and soil microorganism characteristics regarding as carbon metabolism in original Korean pine forest. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(5): 18-26. |
孙雪, 韩冬雪, 刘岩, 等. 原始红松林土壤理化及微生物碳代谢特征对生长季动态的响应. 南京林业大学学报(自然科学版), 2017, 41(5): 18-26. |
[1] | 李思媛, 孙宗玖, 于冰洁, 周晨烨, 周磊, 郑丽, 刘慧霞, 冶华薇. 封育对伊犁绢蒿荒漠草地土壤碳氮磷、酶活性及其化学计量特征的影响[J]. 草业学报, 2024, 33(7): 25-40. |
[2] | 黄琳曦, 陈倩, 张先言, 闫顺, 杨云, 辛培尧, 汪琼. 两种乔木凋落叶浸提液处理对地毯草土壤酶活性及其化学计量比的影响[J]. 草业学报, 2024, 33(4): 35-46. |
[3] | 段鹏, 韦鎔宜, 王芳萍, 姚步青, 赵之重, 胡碧霞, 宋词, 杨萍, 王婷. 不同养分添加对黄河源区退化高寒湿地土壤微生物碳源利用的影响[J]. 草业学报, 2024, 33(2): 138-153. |
[4] | 张东, 侯晨, 马文明, 王长庭, 邓增卓玛, 张婷. 高寒草地不同灌丛化梯度下土壤酶活性研究[J]. 草业学报, 2023, 32(9): 79-92. |
[5] | 马嵩科, 霍克, 张冬霞, 张静, 张俊豪, 柴雪茹, 王贺正. 玉米秸秆还田配施氮肥对豫西旱地小麦土壤酶活性和氮肥利用效率的影响[J]. 草业学报, 2023, 32(6): 120-133. |
[6] | 王志婷, 刘廷玺, 童新, 段利民, 李东方, 刘小勇. 半干旱草甸草地不同处理下植被特征与土壤酶活性的变化[J]. 草业学报, 2023, 32(3): 41-55. |
[7] | 苏荣霞, 马彦平, 王红梅, 赵亚楠, 李志丽. 荒漠草原不同间距灌丛引入对土壤细菌碳源利用和胞外酶活性的影响[J]. 草业学报, 2023, 32(11): 93-105. |
[8] | 马文明, 刘超文, 周青平, 邓增卓玛, 唐思洪, 迪力亚尔·莫合塔尔null, 侯晨. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J]. 草业学报, 2022, 31(1): 57-68. |
[9] | 程分生, 尤龙辉, 余锦林, 徐惠昌, 游惠明, 聂森, 李建民, 叶功富. 冷季型绿肥对锥栗园土壤生化性质及微生物群落的影响[J]. 草业学报, 2021, 30(11): 62-75. |
[10] | 周诗晶, 罗佳宁, 刘仲淼, 董超, 秦燕, 吴淑娟, 甘红军, 谢菲, 庄光辉, 伏兵哲, 牛得草. 箭筈豌豆种植密度对土壤微生物养分代谢的影响[J]. 草业学报, 2021, 30(10): 63-72. |
[11] | 宗文贞, 郭家昊, 贾云龙, 郑永兴, 杨旭, 胡芳弟, 王静. 单宁在植物-土壤氮循环中作用的研究进展[J]. 草业学报, 2020, 29(7): 174-183. |
[12] | 冯军, 石超, 门胜男, Hafiz Athar Hussain, 柯剑鸿, Linna Cholidah, 陈锦芬, 郭欣, 武海燕, 冉泰霖, 向信华, 王龙昌. 不同降雨下旱地油菜节水节肥技术对土壤养分及酶活性的调控效应[J]. 草业学报, 2020, 29(4): 51-62. |
[13] | 张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中, 雷康宁. 留膜留茬免耕栽培对旱作玉米田土壤养分、微生物数量及酶活性的影响[J]. 草业学报, 2020, 29(2): 123-133. |
[14] | 李争艳, 徐智明, 师尚礼, 贺春贵. 江淮地区不同轮茬作物对苜蓿产量及根际土壤质量的影响[J]. 草业学报, 2019, 28(8): 28-39. |
[15] | 李国旗, 赵盼盼, 邵文山, 靳长青. 围封条件下荒漠草原两种植物群落土壤理化性状与酶活性的研究[J]. 草业学报, 2019, 28(7): 49-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||