草业学报 ›› 2025, Vol. 34 ›› Issue (2): 67-80.DOI: 10.11686/cyxb2024101
张宁1,2,3(), 王金牛1,2(), 罗栋梁4, 张林5, 徐波6, 吴彦1
收稿日期:
2024-03-26
修回日期:
2024-05-16
出版日期:
2025-02-20
发布日期:
2024-11-27
通讯作者:
王金牛
作者简介:
E-mail: wangjn@cib.ac.cn基金资助:
Ning ZHANG1,2,3(), Jin-niu WANG1,2(), Dong-liang LUO4, Lin ZHANG5, Bo XU6, Yan WU1
Received:
2024-03-26
Revised:
2024-05-16
Online:
2025-02-20
Published:
2024-11-27
Contact:
Jin-niu WANG
摘要:
植物生物量在个体器官的分配表征了同化产物的形成及驱动机制,且不同器官间的协同生长受外界环境及植株内部因素的共同调控。季节性雪被在生长季较短的高寒生态系统中作为调控植物生长的关键环境因子之一。本研究通过分析青藏高原东缘岷江源区高寒草甸4种优势晚花植物(线叶龙胆、条叶垂头菊、高山韭和六叶龙胆)不同器官(根、茎、叶和花)生物量分配随雪被厚度的变化,探讨了不同物种在异质性雪被下的生物量权衡及生长策略。结果表明:1)雪被厚度显著影响物种株高及各器官生物量分配,条叶垂头菊在不同雪被厚度下均生长受限,偏向于地下生物量的积累(α=0.286,α=0.216,P<0.05),中雪厚度下生物量积累未能完全达到繁殖阈值,造成种群数量减少;较厚的雪被使得高山韭的花生物量、株高和总生物量增加(P<0.05),而地上-地下生物量积累均为异速生长关系(α=0.208,α=0.262,P<0.05)。随着雪被厚度的增加,繁殖器官绝对投资增大,繁殖分配减小,具有大小依赖性。2)基于性状响应模型分析得出,不同雪被厚度下生态位的变化主要体现在茎叶的资源获取能力与花的繁殖作用。条叶垂头菊、高山韭和六叶龙胆的生态位主要与地上生物量分配、地下生物量分配及地下-地上生物量分配比显著相关;雪被厚度提高了可利用资源,高山韭繁殖阈值增加,线叶龙胆繁殖阈值降低,而六叶龙胆繁殖阈值则较稳定,说明繁殖阈值的变化受多因素调控,具有物种特异性。3)高山韭深雪部位面临种子成熟风险性,繁殖阈值的提高促进了对繁殖器官的绝对投入,是典型高山晚花自交植物生长策略的代表;而线叶龙胆为异交植物,在资源丰富的中雪部位降低繁殖阈值,属于花粉风险型策略。
张宁, 王金牛, 罗栋梁, 张林, 徐波, 吴彦. 季节性雪被厚度对高山草甸4种优势晚花植物生物量分配的影响[J]. 草业学报, 2025, 34(2): 67-80.
Ning ZHANG, Jin-niu WANG, Dong-liang LUO, Lin ZHANG, Bo XU, Yan WU. Effects of seasonal snow cover thickness on biomass allocation of four dominant late flowering plants in an alpine meadow[J]. Acta Prataculturae Sinica, 2025, 34(2): 67-80.
图1 研究区概况及物种照片该图基于自然资源标准地图服务网站GS(2019)1822号标准地图制作,底图边界无修改。The map was based on the standard map service website of the Ministry of Nature Resources with the drawing review No.GS(2019)1822, and the base map borders were not modified. SS:浅雪部位Shallow snow;MS:中雪部位Medium snow;DS:深雪部位Deep snow. 下同The same below.
Fig.1 Overview map and target species of the study area
处理 Treatment | 海拔 Elevation (m) | 形成日期 Date of formation (Month/day/year) | 消失日期 Date of disappearance (Month/day/year) | 持续时间 Duration time (d) | 最大雪厚 Maximum snow thickness (cm) |
---|---|---|---|---|---|
浅雪Shallow snow, SS | 3920 | 01/14/2012 | 04/28/2013 | 106 | 46 |
中雪Medium snow, MS | 3915 | 01/09/2012 | 05/01/2013 | 114 | 61 |
深雪Deep snow, DS | 3910 | 02/28/2012 | 05/13/2013 | 138 | 115 |
表1 研究样地雪被基本信息
Table 1 Basic information on snow cover at the study sites
处理 Treatment | 海拔 Elevation (m) | 形成日期 Date of formation (Month/day/year) | 消失日期 Date of disappearance (Month/day/year) | 持续时间 Duration time (d) | 最大雪厚 Maximum snow thickness (cm) |
---|---|---|---|---|---|
浅雪Shallow snow, SS | 3920 | 01/14/2012 | 04/28/2013 | 106 | 46 |
中雪Medium snow, MS | 3915 | 01/09/2012 | 05/01/2013 | 114 | 61 |
深雪Deep snow, DS | 3910 | 02/28/2012 | 05/13/2013 | 138 | 115 |
图2 雪被厚度对4种植物不同器官生物量及其分配的影响不同字母表示同一物种同一器官不同雪层下差异显著(P<0.05)。Different letters indicate the significant differences in the same organ at the same species among snow thickness (P<0.05). 饼图大小表示生物量的总量,各部分占比表示相应器官占总生物量大小。The pie size represents the total biomass, and the proportion of each part represents the total biomass of the corresponding organ. ***: P<0.001; **: P<0.01; *: P<0.05; ns: P>0.05. 下同The same below.
Fig.2 Effect of snow cover thickness on the biomass and its biomass allocation of roots, stems, leaves and flowers of G. farreri, C. lineare, A. sikkimense and G. hexaphylla
性状Trait | 物种效应PS | 雪被厚度效应PT | 物种×雪被厚度PS×PT | 随机效应Psite |
---|---|---|---|---|
根Root | <0.001 | 0.304 | <0.001 | 0.646 |
茎Stem | <0.001 | 0.223 | 0.166 | <0.001 |
叶Leaf | <0.001 | 0.181 | 0.020 | <0.001 |
花Flower | <0.001 | 0.044 | 0.922 | 0.951 |
营养器官生物量Vegetative organ biomass | <0.001 | 0.083 | 0.006 | 0.003 |
总生物量Total biomass | <0.001 | 0.098 | 0.031 | <0.001 |
表2 植物物种和雪被厚度对植物不同器官生物量混合线性模型分析
Table 2 Analysis of mixed linear models on the impact of plant species and snow cover thickness on plant biomass of roots, stems, leaves and flowers
性状Trait | 物种效应PS | 雪被厚度效应PT | 物种×雪被厚度PS×PT | 随机效应Psite |
---|---|---|---|---|
根Root | <0.001 | 0.304 | <0.001 | 0.646 |
茎Stem | <0.001 | 0.223 | 0.166 | <0.001 |
叶Leaf | <0.001 | 0.181 | 0.020 | <0.001 |
花Flower | <0.001 | 0.044 | 0.922 | 0.951 |
营养器官生物量Vegetative organ biomass | <0.001 | 0.083 | 0.006 | 0.003 |
总生物量Total biomass | <0.001 | 0.098 | 0.031 | <0.001 |
图3 雪被厚度对4种植物地上地下生物量异速生长关系的影响AGB: 地上部分生物量Aboveground biomass; UGB: 地下部分生物量Underground biomass.
Fig.3 Effects of snow cover thickness on allometric relationships between aboveground and belowground biomass of G. farreri, C. lineare, A. sikkimense and G. hexaphylla
图4 雪被厚度对4种植物繁殖器官及分配的影响ST: 雪被厚度 Snow cover thickness; Flower: 花生物量Flower biomass; Height: 株高Plant height; TB: 总生物量Total biomass; VB: 营养器官生物量Vegetative organ biomass; RA: 繁殖分配Reproductive allocation.
Fig.4 Effects of snow cover thickness on reproductive organs and allocation of G. farreri, C. lineare, A. sikkimense and G. hexaphylla
物种 Species | 协变量 Covariate | 繁殖分配 Reproductive distribution | 雪被厚度Snow cover thickness | 雪被效应PT | 植株大小效应PH/PB | 随机效应 Psite | ||
---|---|---|---|---|---|---|---|---|
浅雪SS | 中雪MS | 深雪DS | ||||||
线叶龙胆 G. farreri | 株高 Height (m) | 花生物量Flower (g·plant-1) | 0.185±0.046a | 0.247±0.037a | - | 0.687 | 0.368 | 0.911 |
繁殖分配RA | 0.233±0.022a | 0.212±0.018a | - | 0.665 | 0.531 | 0.956 | ||
总生物量 TB (g·plant-1) | 花生物量Flower (g·plant-1) | 0.200±0.042a | 0.257±0.034a | - | 0.638 | <0.001 | 0.937 | |
繁殖分配RA | 0.225±0.011a | 0.206±0.010a | - | 0.178 | 0.194 | 0.832 | ||
条叶垂头菊 C. lineare | 株高 Height (m) | 花生物量Flower (g·plant-1) | 0.066±0.011a | 0.065±0.020a | - | 0.551 | 0.521 | 0.969 |
繁殖分配RA | 0.082±0.017a | 0.076±0.030a | - | 0.422 | 0.540 | 0.865 | ||
总生物量 TB (g·plant-1) | 花生物量Flower (g·plant-1) | 0.137±0.011a | 0.114±0.024a | - | 0.867 | 0.050 | - | |
繁殖分配RA | 0.116±0.010a | 0.096±0.022a | - | 0.836 | 0.050 | - | ||
高山韭 A. sikkimense | 株高 Height (m) | 花生物量Flower (g·plant-1) | - | 0.025±0.005a | 0.032±0.004a | 0.623 | 0.458 | 0.714 |
繁殖分配RA | - | 0.252±0.024a | 0.227±0.017a | 0.899 | 0.053 | 0.943 | ||
总生物量 TB (g·plant-1) | 花生物量Flower (g·plant-1) | - | 0.035±0.002a | 0.030±0.001a | 0.313 | <0.001 | 0.931 | |
繁殖分配RA | - | 0.262±0.014a | 0.228±0.009a | 0.609 | 0.478 | 0.924 | ||
六叶龙胆 G. hexaphylla | 株高 Height (m) | 花生物量Flower (g·plant-1) | - | 0.081±0.020a | 0.117±0.016a | 0.621 | 0.266 | - |
繁殖分配RA | - | 0.209±0.022a | 0.252±0.018a | 0.480 | 0.805 | - | ||
总生物量 TB (g·plant-1) | 花生物量Flower (g·plant-1) | - | 0.086±0.006a | 0.097±0.005a | 0.171 | <0.001 | 0.925 | |
繁殖分配RA | - | 0.211±0.013a | 0.223±0.011a | 0.515 | 0.047 | 0.925 |
表3 不同雪被厚度4种植物繁殖分配的线性混合模型分析
Table 3 Linear mixed model analysis of reproductive distribution with different snow cover thickness of G. farreri, C. lineare, A. sikkimense and G. hexaphylla
物种 Species | 协变量 Covariate | 繁殖分配 Reproductive distribution | 雪被厚度Snow cover thickness | 雪被效应PT | 植株大小效应PH/PB | 随机效应 Psite | ||
---|---|---|---|---|---|---|---|---|
浅雪SS | 中雪MS | 深雪DS | ||||||
线叶龙胆 G. farreri | 株高 Height (m) | 花生物量Flower (g·plant-1) | 0.185±0.046a | 0.247±0.037a | - | 0.687 | 0.368 | 0.911 |
繁殖分配RA | 0.233±0.022a | 0.212±0.018a | - | 0.665 | 0.531 | 0.956 | ||
总生物量 TB (g·plant-1) | 花生物量Flower (g·plant-1) | 0.200±0.042a | 0.257±0.034a | - | 0.638 | <0.001 | 0.937 | |
繁殖分配RA | 0.225±0.011a | 0.206±0.010a | - | 0.178 | 0.194 | 0.832 | ||
条叶垂头菊 C. lineare | 株高 Height (m) | 花生物量Flower (g·plant-1) | 0.066±0.011a | 0.065±0.020a | - | 0.551 | 0.521 | 0.969 |
繁殖分配RA | 0.082±0.017a | 0.076±0.030a | - | 0.422 | 0.540 | 0.865 | ||
总生物量 TB (g·plant-1) | 花生物量Flower (g·plant-1) | 0.137±0.011a | 0.114±0.024a | - | 0.867 | 0.050 | - | |
繁殖分配RA | 0.116±0.010a | 0.096±0.022a | - | 0.836 | 0.050 | - | ||
高山韭 A. sikkimense | 株高 Height (m) | 花生物量Flower (g·plant-1) | - | 0.025±0.005a | 0.032±0.004a | 0.623 | 0.458 | 0.714 |
繁殖分配RA | - | 0.252±0.024a | 0.227±0.017a | 0.899 | 0.053 | 0.943 | ||
总生物量 TB (g·plant-1) | 花生物量Flower (g·plant-1) | - | 0.035±0.002a | 0.030±0.001a | 0.313 | <0.001 | 0.931 | |
繁殖分配RA | - | 0.262±0.014a | 0.228±0.009a | 0.609 | 0.478 | 0.924 | ||
六叶龙胆 G. hexaphylla | 株高 Height (m) | 花生物量Flower (g·plant-1) | - | 0.081±0.020a | 0.117±0.016a | 0.621 | 0.266 | - |
繁殖分配RA | - | 0.209±0.022a | 0.252±0.018a | 0.480 | 0.805 | - | ||
总生物量 TB (g·plant-1) | 花生物量Flower (g·plant-1) | - | 0.086±0.006a | 0.097±0.005a | 0.171 | <0.001 | 0.925 | |
繁殖分配RA | - | 0.211±0.013a | 0.223±0.011a | 0.515 | 0.047 | 0.925 |
图5 雪被厚度对4种植物营养与繁殖生物量异速生长关系的影响VB:营养器官生物量Vegetative organ biomass;RB:繁殖生物量Reproductive biomass.
Fig.5 Effects of snow cover thickness on allometric relationships between vegetative organ and reproductive biomass of G. farreri, C. lineare, A. sikkimense and G. hexaphylla
图6 4种晚花植物对高山草地环境因子变化的响应与作用性状结果AGB:Aboveground biomass;TB:Total biomass;RA:Reproductive allocation;Root:根生物量Root biomass;Stem:茎生物量Stem biomass;Leaf:叶生物量Leaf biomass;Flower:花生物量Flower biomass;RBA:根生物量分配Root biomass allocation;SBA:茎生物量分配Stem biomass allocation;LBA:叶生物量分配Leaf biomass allocation;ABA:地上部分生物量分配Aboveground biomass allocation;RSR:根冠比Root/shoot.
Fig.6 Response trait and effect trait to the change of environmental factors in alpine grassland of G. farreri, C. lineare, A. sikkimense and G. hexaphylla
1 | David V, Josefino C C, Ian A, et al. Climate change 2013: the physical science basis: Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2014: 317-382. |
2 | Zhang Z, Xiao P F, Zhang X L, et al. Analysis of the characteristics of snow albedo during the snowmelt period of the Qinghai-Tibet Plateau. Remote Sensing Technology and Application, 2019, 34(6): 1146-1154. |
张正, 肖鹏峰, 张学良, 等.青藏高原融雪期积雪反照率特性分析. 遥感技术与应用, 2019, 34(6): 1146-1154. | |
3 | Pauli J N, Zuckerberg B, Whiteman J P, et al. The subnivium: a deteriorating seasonal refugium. Frontiers in Ecology and the Environment, 2013, 11(5): 260-267. |
4 | Aalto J, Scherrer D, Lenoir J, et al. Biogeophysical controls on soil-atmosphere thermal differences: implications on warming Arctic ecosystems. Environmental Research Letters, 2018, 13(7): 074003. |
5 | Jackson R B, Canadell J G, Ehleringer J R, et al. A global analysis of root distributions for terrestrial biomes. Oecologia, 1996, 108(3): 389-411. |
6 | Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 2003, 218(1): 1-14. |
7 | Niittynen P, Heikkinen R K, Luoto M. Snow cover is a neglected driver of Arctic biodiversity loss. Nature Climate Change, 2018, 8(11): 997-1001. |
8 | Stinson K A. Natural selection favors rapid reproductive phenology in Potentilla pulcherrima (Rosaceae) at opposite ends of a subalpine snowmelt gradient. American Journal of Botany, 2004, 91(4): 531-539. |
9 | Christiansen C T, Lafreniére M J, Henry G H R, et al. Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO2 gain but reduces soil carbon and nutrient pools. Global Change Biology, 2018, 24(8): 3508-3525. |
10 | Choler P. Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration. Biogeosciences, 2015, 12(12): 3885-3897. |
11 | Carlson B Z, Choler P, Renaud J, et al. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities. Annals of Botany, 2015, 116(6): 1023-1034. |
12 | Leinaas H P. Activity of Arthropoda in snow within a coniferous forest, with special reference to Collembola. Ecography, 1981, 4(2): 127-138. |
13 | Lucie Z, Bahar S, Florence B, et al. Microbial diversity in alpine tundra soils correlates with snow cover dynamics. The ISME Journal, 2009, 3(7): 850-859. |
14 | Weigelt A, Mommer L, Andraczek K, et al. An integrated framework of plant form and function: The belowground perspective. New Phytologist, 2021, 232(1): 42-59. |
15 | Dennis L H, Albert M G K T, Matilde R, et al. Climate change 2013: the physical science basis: Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2014: 159-254. |
16 | Notarnicola C. Hotspots of snow cover changes in global mountain regions over 2000-2018. Remote Sensing of Environment, 2020, 243(1): 111781. |
17 | Bokhorst S, Pedersen S H, Brucker L, et al. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio, 2016, 45(5): 516-537. |
18 | Yang D M, Mao L C, Peng G Q. Within-twig biomass allocation in evergreen and deciduous broad-leaved species: Allometric scaling analyses. Bulletin of Botanical Research, 2011, 31(4): 472-477. |
杨冬梅, 毛林灿, 彭国全. 常绿和落叶阔叶木本植物小枝内生物量分配关系研究:异速生长分析. 植物研究, 2011, 31(4): 472-477. | |
19 | Kerkhoff A J, Enquist B J. Ecosystem allometry: The scaling of nutrient stocks and primary productivity across plant communities. Ecology Letters, 2006, 9(4): 419-427. |
20 | Gao J, Wang J N, Xu B, et al. Plant leaf traits, height and biomass partitioning in typical ephemerals under different levels of snow cover thickness in an alpine meadow. Chinese Journal of Plant Ecology, 2016, 40(8): 775-787. |
高景, 王金牛, 徐波, 等. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究. 植物生态学报, 2016, 40(8): 775-787. | |
21 | Zhang N, Wang J N, Zhu N, et al. Plant traits of Stellera chamaejasme in the degraded grasslands of Mangco Lake, Tibet: Influences of altitudinal gradients and growth stages. Xizang Science and Technology, 2023, 45(11): 29-38. |
张宁, 王金牛, 朱牛, 等. 西藏芒康山莽措湖退化草地中瑞香狼毒的植物性状:不同海拔和发育阶段影响. 西藏科技, 2023, 45(11): 29-38. | |
22 | Bonser S P, Aarssen L W. Interpreting reproductive allometry: Individual strategies of allocation explain size dependent reproduction in plant populations. Perspectives in Plant Ecology Evolution and Systematics, 2009, 11(1): 31-40. |
23 | Fabbro T, Körner C. Altitudinal differences in flower traits and reproductive allocation. Flora-Morphology, Distribution, Functional Ecology of Plants, 2004, 199(1): 70-81. |
24 | Xue J, He J, Wang L, et al. Plant traits and biomass allocation of Gentiana hexaphylla on different slope aspects at the eastern margin of Qinghai-Tibet Plateau. Applied Ecology and Environmental Research, 2018, 16(2): 1835-1853. |
25 | Molau U. Relationships between flowering phenology and life history strategies in Tundra plants. Arctic and Alpine Research, 1993, 55(4): 391-402. |
26 | Baruah G, Molau U, Bai Y, et al. Community and species-specific responses of plant traits to 23 years of experimental warming across subarctic tundra plant communities. Scientific Reports, 2017, 7(1): 2571. |
27 | Olden J D, Poff N L, Bestgen K R. Life-history strategies predict fish invasions and extirpations in the Colorado river basin. Ecological Monographs, 2006, 76(1): 25-40. |
28 | Mouillot D, Graham N A J, Villéger S, et al. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 2013, 28(3): 167-177. |
29 | Zhang N, Wang J N, Shi N, et al. Differentiation patterns of current-year twig traits and biomass allocation of two dominant coniferous trees along an altitudinal gradient on the eastern edge of the Tibetan Plateau. Acta Eclogica Sinica, 2023, 43(23): 9814-9826. |
张宁, 王金牛, 石凝, 等. 岷江源区两种优势针叶树当年生小枝性状与生物量分配随海拔的分异规律. 生态学报, 2023, 43(23): 9814-9826. | |
30 | Wang J N, Zhou T Y, Gao J, et al. Effect of different snow depths on plant traits at individual and functional group levels in an alpine meadow. Pratacultural Science, 2019, 36(4): 1126-1136. |
王金牛, 周天阳, 高景, 等. 不同积雪厚度下的高山草地植物个体与功能群水平的性状. 草业科学, 2019, 36(4): 1126-1136. | |
31 | Li J H, Zhang R, Cheng B H, et al. Effects of nitrogen and phosphorus additions on decomposition and accumulation of soil organic carbon in alpine meadows on the Tibetan Plateau. Land Degradation & Development, 2020, 32(3): 1467-1477. |
32 | Chen Y, Collins S L, Zhao Y, et al. Warming reduced flowering synchrony and extended community flowering season in an alpine meadow on the Tibetan Plateau. Ecology, 2022, 104(1): e3862. |
33 | Zhu J, Zhang Y J, Wang W. Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow. Biology Letters, 2016, 12(7): 20150749. |
34 | Berdanier A B, Klein J A. Growing season length and soil moisture interactively constrain high elevation aboveground net primary production. Ecosystems, 2011, 14(6): 963-974. |
35 | Wadgymar S M, Ogilvie J E, Inouye D W, et al. Phenological responses to multiple environmental drivers under climate change: insights from a long-term observational study and a manipulative field experiment. New phytologist, 2018, 218(2): 517-529. |
36 | Zhou T Y, Wang J N, Du W T, et al. Litter decomposition of alpine meadow under seasonal snow cover. Chinese Journal of Applied & Environmental Biology, 2019, 25(1): 1-8. |
周天阳, 王金牛, 杜文涛, 等. 季节性积雪下的高山草地凋落物分解. 应用与环境生物学报, 2019, 25(1): 1-8. | |
37 | Wang L H, Gao J, Wang J N, et al. Adaptation of traits and biomass allocation of Pedicularis longiflora to different slope aspects in an alpine meadow. Chinese Journal of Applied & Environmental Biology, 2017, 23(4): 648-657. |
王丽华, 高景, 王金牛, 等. 高山草地长花马先蒿的性状和生物量分配对坡向的适应. 应用与环境生物学报, 2017, 23(4): 648-657. | |
38 | Chen W N, Wu Y, Wu N, et al. Changes of five alpine species’ individual growth along snowmelt gradient. Journal of Wuhan Botanical Research, 2009, 27(6): 629-636. |
陈文年, 吴彦, 吴宁, 等. 五种高山植物的个体生长在融雪梯度上的变化. 武汉植物学研究, 2009, 27(6): 629-636. | |
39 | Suding K N, Lavorel S, Chapin F S I, et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology, 2008, 14(5): 1125-1140. |
40 | Hou Q Z, Wen J, Li H C, et al. Reproductive allocation of three Gentianaceae species. Pratacultural Science, 2017, 34(5): 1017-1023. |
侯勤正, 文静, 李昊聪, 等. 3种龙胆科植物的资源分配对策. 草业科学, 2017, 34(5): 1017-1023. | |
41 | Fan Y, Miguez-Macho G, Jobbágy E G, et al. Hydrologic regulation of plant rooting depth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40): 10572-10577. |
42 | Slatyer R A, Umbers K D L, Arnold P A. Ecological responses to variation in seasonal snow cover. Conservation Biology, 2021, 36(1): e13727. |
43 | Wang X, Wang T, Guo H, et al. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Global Change Biology, 2017, 24(4): 1651-1662. |
44 | Sommerfeld R A, Mosier A R, Musselman R C. CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets. Nature, 1993, 361(6408): 140-142. |
45 | Sun J, Ma B, Lu X. Grazing enhances soil nutrient effects: Trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau. Land Degradation & Development, 2018, 29(2): 337-348. |
46 | Diggle P K, Meixner M A, Carroll A B, et al. Barriers to sexual reproduction in Polygonum viviparum: A comparative developmental analysis of P. viviparum and P. bistortoides. Annals of Botany, 2002, 89(2): 145-156. |
47 | Gadgil M, Solbrig O T. The concept of r- and K-selection: Evidence from wild flowers and some theoretical considerations. American Naturalist, 1972, 106(947): 14-31. |
48 | Vorkauf M, Kahmen A, Körner C, et al. Flowering phenology in alpine grassland strongly responds to shifts in snowmelt but weakly to summer drought. Alpine Botany, 2021, 131(1): 73-88. |
49 | Austen E J, Rowe L, Stinchcombe J R, et al. Explaining the apparent paradox of persistent selection for early flowering. New Phytologist, 2017, 215(3): 929-934. |
50 | Iwasa Y, Cohen D. Optimal growth schedule of a perennial plant. The American Naturalist, 1989, 133(4): 480-505. |
51 | Wang Y, Hu L J, Duan Y W, et al. Altitudinal variations in reproductive allocation of Bergenia purpurascens (Saxifragaceae). Plant Diversity, 2010, 32(3): 270-280. |
52 | Jongejans E, de Kroon H, Berendse F. The interplay between shifts in biomass allocation and costs of reproduction in four grassland perennials under simulated successional change. Oecologia, 2006, 147(2): 369-378. |
53 | Hemborg A M, Karlsson P S. Altitudinal variation in size effects on plant reproductive effort and somatic costs of reproduction. Ecoscience, 1998, 5(4): 517-525. |
54 | Worley A C, Harder L D. Size-dependent resource allocation and costs of reproduction in Pinguicula vulgaris (Lentibulariaceae). Journal of Ecology, 1996, 84(2): 195-206. |
[1] | 油志远, 马淑娟, 王长庭, 丁路明, 宋小艳, 尹高飞, 毛军. 川滇高原高寒草甸生态系统不同功能群植物分布格局的MaxEnt模型预测[J]. 草业学报, 2024, 33(3): 1-12. |
[2] | 常怡然, 史佳梅, 许冬梅, 康如龙, 马媛. 荒漠草原不同自然种群蒙古冰草生物量和养分权衡特征[J]. 草业学报, 2024, 33(11): 186-197. |
[3] | 王鹏, 金正, 余婷, 秦康强, 桑新亚, 陶建平, 罗唯学. 预测姜黄属植物在中国当前和未来气候情景下的潜在分布区变化[J]. 草业学报, 2024, 33(10): 14-27. |
[4] | 李紫晶, 高翠萍, 王忠武, 韩国栋. 中国草地固碳减排研究现状及其建议[J]. 草业学报, 2023, 32(2): 191-200. |
[5] | 金欣悦, 龚莉, 王梦亭, 陶冶, 周多奇. 紫草科2种短命植物功能性状的差异化协变特征[J]. 草业学报, 2023, 32(10): 58-70. |
[6] | 范晓敏, 井新, 肖博文, 马小亮, 贺金生. 气候和土地利用变化共同驱动青海海南、海北州生态系统服务的时空变化[J]. 草业学报, 2022, 31(12): 17-30. |
[7] | 郭文慧, 顾润源, 丁锋. 蒲公英和车前草在山东境内的春季物候特征及对气候变化的响应[J]. 草业学报, 2021, 30(12): 27-38. |
[8] | 林慧龙, 范迪, 冯琦胜, 梁天刚. 草地综合顺序分类法研究新热点:2008-2020年回顾与展望[J]. 草业学报, 2021, 30(10): 201-213. |
[9] | 郭强, 王玉琴, 鲍根生, 王宏生. 气象因子对高原鼢鼠种群数量的影响[J]. 草业学报, 2020, 29(8): 188-194. |
[10] | 马倩倩, 刘彤, 董合干, 王寒月, 赵文轩, 王瑞丽, 刘延, 陈乐. 气候变化下三裂叶豚草在新疆的潜在地理分布[J]. 草业学报, 2020, 29(12): 73-85. |
[11] | 张智起, 张立旭, 徐炜, 汪浩, 王金洲, 王娓, 贺金生. 气候变暖背景下土壤呼吸研究的几个重要问题[J]. 草业学报, 2019, 28(9): 164-173. |
[12] | 宋月媛, 杨允菲. 松嫩平原林缘草地羽茅无性系构件结构与生长分析[J]. 草业学报, 2019, 28(7): 168-174. |
[13] | 王多斌, 籍常婷, 林慧龙. 基于DNDC模型的高寒草甸土壤有机碳含量动态研究[J]. 草业学报, 2019, 28(12): 197-204. |
[14] | 王迎新, 陈先江, 娄珊宁, 胡安, 任劲飞, 胡俊奇, 张静, 侯扶江. 草原灌丛化入侵:过程、机制和效应[J]. 草业学报, 2018, 27(5): 219-227. |
[15] | 郭丁, 郭文斐, 赵建, 特木其勒图, 李旭东, 傅华, 骆亦其. 黄土高原草地和农田系统碳动态对降雨、温度和CO2浓度变化响应的模拟[J]. 草业学报, 2018, 27(2): 1-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||