草业学报 ›› 2025, Vol. 34 ›› Issue (2): 54-66.DOI: 10.11686/cyxb2024116
涂晓东1,2(), 崔俊芳1(), 况福虹1, 李春培1, 杜玖珍3, 王红兰3, 唐翔宇2
收稿日期:
2024-04-10
修回日期:
2024-06-05
出版日期:
2025-02-20
发布日期:
2024-11-27
通讯作者:
崔俊芳
作者简介:
E-mail: jfcui@imde.ac.cn基金资助:
Xiao-dong TU1,2(), Jun-fang CUI1(), Fu-hong KUANG1, Chun-pei LI1, Jiu-zhen DU3, Hong-lan WANG3, Xiang-yu TANG2
Received:
2024-04-10
Revised:
2024-06-05
Online:
2025-02-20
Published:
2024-11-27
Contact:
Jun-fang CUI
摘要:
20世纪60年代在川西北若尔盖地区,大面积高寒草甸挖渠排水后开垦为耕地,后又用于唐古特大黄等道地药材种植,土地利用转化对土壤理化性质和微生物群落会产生重要影响。利用Illumina MiSeq测序技术,对比分析了若尔盖高寒草甸和唐古特大黄土壤0~60 cm土层微生物群落特征,探究土地利用变化对土壤理化性质和微生物群落的影响。结果表明,高寒草甸开垦为耕地后土壤饱和含水量、田间持水量和滞留含水量降低。不同深度唐古特大黄土壤pH值和全钾含量均显著高于草甸土壤,有机质含量在0~20 cm土层显著低于草甸土壤,碱解氮和总氮含量仅在土壤深度分别为0~20 cm和20~40 cm时显著降低。与草甸土壤相比,唐古特大黄土壤细菌多样性增加而真菌多样性降低,芽孢杆菌属相对丰度显著增加,有益真菌相对丰度降低,潜在有害真菌相对丰度增加。冗余分析结果表明,速效钾、有机质、有效磷、总氮是影响土壤微生物群落的主要养分因子。共现网络分析表明,草甸开垦转为耕地后土壤微生物群落复杂性降低,细菌形成了比真菌更复杂的共现网络。研究结果有助于深入了解川西北高寒草甸开垦后土壤理化性质和微生物群落变化,可为人工种植唐古特大黄的可持续性提供理论依据。
涂晓东, 崔俊芳, 况福虹, 李春培, 杜玖珍, 王红兰, 唐翔宇. 川西北高寒草甸转为耕地对土壤微生物群落的影响[J]. 草业学报, 2025, 34(2): 54-66.
Xiao-dong TU, Jun-fang CUI, Fu-hong KUANG, Chun-pei LI, Jiu-zhen DU, Hong-lan WANG, Xiang-yu TANG. Effects of conversion of alpine meadow to cultivated land on the soil microbial community in northwest Sichuan[J]. Acta Prataculturae Sinica, 2025, 34(2): 54-66.
处理 Treatment | 黏粒含量 Clay content (%) | 粉粒含量 Silt content (%) | 砂粒含量 Sand content (%) | 饱和含水量 θs (%) | 田间持水量 θF (%) | 滞留含水量 θr (%) | 土壤容重 Bulk density (g·cm-3) | 大孔隙度 Macro- porosity |
---|---|---|---|---|---|---|---|---|
M20 | 10.59±0.71b | 45.32±2.13b | 44.09±1.42a | 0.86±0.02a | 0.60±0.02a | 0.36±0.05ab | 0.58±0.03c | 0.78±0.01a |
M40 | 12.59±0.71b | 42.32±2.13b | 45.09±2.84a | 0.86±0.01a | 0.60±0.05a | 0.42±0.14a | 0.67±0.07bc | 0.75±0.03ab |
T20 | 24.89±2.16a | 53.29±3.53a | 21.82±4.09b | 0.58±0.05b | 0.34±0.04b | 0.29±0.03b | 0.94±0.20ab | 0.64±0.08bc |
T40 | 24.99±1.61a | 53.33±4.59a | 21.67±4.26b | 0.58±0.04b | 0.33±0.03b | 0.29±0.03b | 0.98±0.13a | 0.63±0.05c |
表1 研究区草甸与唐古特大黄土壤基本物理性质
Table 1 Soil basic physical properties of meadow and R. tanguticum soils
处理 Treatment | 黏粒含量 Clay content (%) | 粉粒含量 Silt content (%) | 砂粒含量 Sand content (%) | 饱和含水量 θs (%) | 田间持水量 θF (%) | 滞留含水量 θr (%) | 土壤容重 Bulk density (g·cm-3) | 大孔隙度 Macro- porosity |
---|---|---|---|---|---|---|---|---|
M20 | 10.59±0.71b | 45.32±2.13b | 44.09±1.42a | 0.86±0.02a | 0.60±0.02a | 0.36±0.05ab | 0.58±0.03c | 0.78±0.01a |
M40 | 12.59±0.71b | 42.32±2.13b | 45.09±2.84a | 0.86±0.01a | 0.60±0.05a | 0.42±0.14a | 0.67±0.07bc | 0.75±0.03ab |
T20 | 24.89±2.16a | 53.29±3.53a | 21.82±4.09b | 0.58±0.05b | 0.34±0.04b | 0.29±0.03b | 0.94±0.20ab | 0.64±0.08bc |
T40 | 24.99±1.61a | 53.33±4.59a | 21.67±4.26b | 0.58±0.04b | 0.33±0.03b | 0.29±0.03b | 0.98±0.13a | 0.63±0.05c |
处理 Treatment | pH | 有机质 SOM (g·kg-1) | 碱解氮 AN (mg·kg-1) | 有效磷 AP (mg·kg-1) | 速效钾 AK (mg·kg-1) | 全磷 TP (mg·kg-1) | 全钾 TK (g·kg-1) | 全氮 TN (g·kg-1) |
---|---|---|---|---|---|---|---|---|
M20 | 6.68±0.12b | 52.19±2.93a | 184.67±19.86ab | 5.40±1.99bc | 238.33±63.07a | 925±28.93ab | 19.46±0.35c | 3.87±0.14a |
M40 | 6.77±0.20b | 49.21±7.62ab | 209.33±31.39a | 3.36±1.25c | 121.00±42.00bc | 846±16.44b | 19.50±0.40c | 3.13±0.29b |
M60 | 6.80±0.16b | 38.28±7.10c | 111.67±26.35b | 2.03±0.61c | 79.00±12.49c | 726±83.35c | 19.53±0.32c | 2.49±0.49c |
T20 | 7.92±0.03a | 40.97±4.71bc | 166.67±48.23ab | 8.20±2.26ab | 171.67±9.71b | 1013±21.66a | 20.77±0.15a | 2.96±0.06bc |
T40 | 7.89±0.17a | 41.09±2.24bc | 130.67±54.78b | 10.67±3.75a | 140.33±4.51bc | 984±35.34a | 20.70±0.17a | 2.89±0.13bc |
T60 | 7.85±0.24a | 39.46±5.28bc | 109.67±46.19b | 9.17±2.31ab | 119.33±13.58bc | 982±75.10a | 20.13±0.06b | 2.76±0.34bc |
表 2 不同深度草甸和唐古特大黄土壤化学性质
Table 2 Chemical properties of meadow and R. tanguticum soilswith different depths
处理 Treatment | pH | 有机质 SOM (g·kg-1) | 碱解氮 AN (mg·kg-1) | 有效磷 AP (mg·kg-1) | 速效钾 AK (mg·kg-1) | 全磷 TP (mg·kg-1) | 全钾 TK (g·kg-1) | 全氮 TN (g·kg-1) |
---|---|---|---|---|---|---|---|---|
M20 | 6.68±0.12b | 52.19±2.93a | 184.67±19.86ab | 5.40±1.99bc | 238.33±63.07a | 925±28.93ab | 19.46±0.35c | 3.87±0.14a |
M40 | 6.77±0.20b | 49.21±7.62ab | 209.33±31.39a | 3.36±1.25c | 121.00±42.00bc | 846±16.44b | 19.50±0.40c | 3.13±0.29b |
M60 | 6.80±0.16b | 38.28±7.10c | 111.67±26.35b | 2.03±0.61c | 79.00±12.49c | 726±83.35c | 19.53±0.32c | 2.49±0.49c |
T20 | 7.92±0.03a | 40.97±4.71bc | 166.67±48.23ab | 8.20±2.26ab | 171.67±9.71b | 1013±21.66a | 20.77±0.15a | 2.96±0.06bc |
T40 | 7.89±0.17a | 41.09±2.24bc | 130.67±54.78b | 10.67±3.75a | 140.33±4.51bc | 984±35.34a | 20.70±0.17a | 2.89±0.13bc |
T60 | 7.85±0.24a | 39.46±5.28bc | 109.67±46.19b | 9.17±2.31ab | 119.33±13.58bc | 982±75.10a | 20.13±0.06b | 2.76±0.34bc |
图1 不同处理土壤细菌和真菌OTU丰富度及Shannon指数M20:0~20 cm高寒草甸土壤 0-20 cm alpine meadow soil;M40:20~40 cm高寒草甸土壤 20-40 cm alpine meadow soil;M60:40~60 cm高寒草甸土壤 40-60 cm alpine meadow soil;T20:0~20 cm唐古特大黄土壤 0-20 cm R. tanguticum soil;T40:20~40 cm唐古特大黄土壤 20-40 cm R. tanguticum soil;T60:40~60 cm唐古特大黄土壤 40~60 cm R. tanguticum soil. 不同小写字母表示不同处理间差异显著(P<0. 05)。下同。Different lowercase letters indicate significant differences among different treatment at P<0. 05 level. The same below.
Fig.1 OTU richness and Shannon index of bacteria and fungi in soil with different treatments
图3 草甸和唐古特大黄土壤细菌在门(a)和属(b)水平的变化规律及显著性分析(c)*表示不同处理间差异显著(P<0.05)。下同。* indicates the differences are significant at P<0.05. The same below. M:高寒草甸土壤 Alpine meadow;T:唐古特大黄土壤 R. tanguticum.
Fig.3 Relative abundance of soil bacteria at the phylum (a) and genus (b) level and significance analysis (c) in meadow and R. tanguticum soils
图4 草甸和唐古特大黄土壤真菌在门(a)和属(b)水平的变化规律及显著性分析(c)
Fig.4 Relative abundance of soil fungal at the phylum (a) and genus (b) level and significance analysis (c) in meadow and R. tanguticum soils
拓扑学性质 Topology properties | 细菌Bacteria | 真菌Fungi | ||
---|---|---|---|---|
M | T | M | T | |
边数Edges | 860 | 390 | 217 | 147 |
平均度Average degree | 18.901 | 8.478 | 5.047 | 3.267 |
模块化系数Modularity | 0.223 | 0.504 | 0.646 | 0.730 |
平均聚类系数Average clustering coefficient | 0.642 | 0.516 | 0.445 | 0.361 |
平均路径长度Average path length | 2.246 | 3.804 | 4.168 | 6.548 |
表 3 微生物共现性网络拓扑学性质
Table 3 Topology properties of microorganism co-occurrence network
拓扑学性质 Topology properties | 细菌Bacteria | 真菌Fungi | ||
---|---|---|---|---|
M | T | M | T | |
边数Edges | 860 | 390 | 217 | 147 |
平均度Average degree | 18.901 | 8.478 | 5.047 | 3.267 |
模块化系数Modularity | 0.223 | 0.504 | 0.646 | 0.730 |
平均聚类系数Average clustering coefficient | 0.642 | 0.516 | 0.445 | 0.361 |
平均路径长度Average path length | 2.246 | 3.804 | 4.168 | 6.548 |
图6 不同深度草甸地土壤细菌(a)和真菌(b)门丰度与环境因子的RDA分析SOM:土壤有机质Soil organic matter;AN:土壤碱解氮Soil alkaline-hydrolyzable nitrogen;TN:土壤全氮Soil total nitrogen; TP:土壤全磷 Soil total phosphorus;TK:土壤全钾Soil total potassium;AP:土壤速效磷 Soil available phosphorus;AK:土壤速效钾Soil available potassium;Actinobacteriota:放线菌门;Proteobacteria:变形菌门;Acidobacteriota:酸杆菌门;Chloroflexi:绿弯菌门;Firmicutes:厚壁菌门;Gemmatimonadota:芽单胞菌门;Verrucomicrobiota:疣微菌门;Myxococcota:粘球菌门;Bacteroidota:拟杆菌门;Ascomycota:子囊菌门;Mortierellomycota:被孢霉门;Basidiomycota:担子菌门;Chytridiomycota:壶菌门;Rozellomycota:罗兹菌门;Olpidiomycota:油壶菌门; Glomeromycota:球囊菌门;Zoopagomycota:捕虫霉门;Others:其他。下同。The same below.
Fig.6 RDA analysis of phylum abundance of soil bacteria (a) and fungi (b) and nutrients factors of meadow with different depths
图7 不同深度唐古特大黄土壤细菌(a)和真菌(b)门丰度与环境因子的RDA分析
Fig.7 RDA analysis of phylum abundance of soil bacteria (a) and fungi (b) and nutrients factors of R. tanguticum soil with different depths
1 | Tang S M, Li S C, Wang Z, et al. Effects of grassland converted to cropland on soil microbial biomass and community from agro-pastoral ecotone in Northern China. Grassland Science, 2021, 68(1): 36-43. |
2 | Guan Z H, Li X G, Wang L, et al. Conversion of Tibetan grasslands to croplands decreases accumulation of microbially synthesized compounds in soil. Soil Biology and Biochemistry, 2018, 123: 10-20. |
3 | Bai J H, Lu Q Q, Wang J J, et al. Landscape pattern evolution processes of alpine wetlands and their driving factors in the Zoige Plateau of China. Journal of Mountain Science, 2013, 10(1): 54-67. |
4 | Zhen Y, Wu Z P, Yin Z H, et al. Study on spatio-temporal change of land use in Zoige County, Sichuan Province. Ecological Science, 2022, 41(2): 41-49. |
甄艳, 吴宗攀, 尹志恒, 等. 四川省若尔盖县土地利用时空变化研究. 生态科学, 2022, 41(2): 41-49. | |
5 | Yao S K, Chen Y L, Ma L, et al. Zoige County rhubarb industry research and development suggestions. Bulletin of Agricultural Science and Technology, 2020(3): 47-49, 248. |
姚顺凯, 陈玉林, 马林, 等. 若尔盖县大黄产业调研及发展建议. 农业科技通讯, 2020(3): 47-49, 248. | |
6 | Yang Y, Li H L, Ma K L, et al. Effect of continuous cropping on the physicochemical properties, microbial activity, and community characteristics of the rhizosphere soil of Codonopsis pilosula. Environmental Science, 2023, 44(11): 6387-6398. |
杨阳, 李海亮, 马凯丽, 等. 连作对党参根际土壤理化性质、微生物活性及群落特征的影响. 环境科学, 2023, 44(11): 6387-6398. | |
7 | Zhang M, Ma M. Response of rhizosphere soil microbial community to long-term continuous cropping of Glycyrrhiza glabra L. Acta Ecologica Sinica, 2022, 42(22): 9017-9025. |
张敏, 马淼. 甘草根际土壤微生物群落对长期连作的响应. 生态学报, 2022, 42(22): 9017-9025. | |
8 | Guo R Q, Guan R W, Lin H B. Diversity analysis and characteristic of fungal community in rhizosphere soil of Panax quinquefolium L. in different cropping years. China Journal of Traditional Chinese Medicine and Pharmacy, 2022, 37(8): 4731-4736. |
郭瑞齐, 管仁伟, 林慧彬. 生长年限对西洋参根际土真菌群落结构的影响及多样性分析. 中华中医药杂志, 2022, 37(8): 4731-4736. | |
9 | Wang Q, Wang Y F, Zhang Y Y, et al. Mechanism of Dahuang Mudantang in improving pancreatic injury in rats with acute pancreatitis of dampness-heat in large intestine syndrome based on network pharmacology and experimental verification. Chinese Journal of Experimental Traditional Medical Formulae, 2023, 29(20): 61-68. |
王琼, 汪永锋, 张延英, 等. 基于网络药理学和实验验证探讨大黄牡丹汤改善大肠湿热型急性胰腺炎大鼠胰腺损伤的机制. 中国实验方剂学杂志, 2023, 29(20): 61-68. | |
10 | Cao C Q, Sun H Z, Zhao Z X, et al. Quantitative determination of 24 components in Daochi pills based on UHPLC-MS/MS technology combined with chemometrics quality evaluation. Chinese Traditional and Herbal Drugs, 2023, 54(21): 7034-7043. |
曹春琪, 孙慧珠, 赵振霞, 等. 基于UHPLC-MS/MS技术的导赤丸中24个成分定量测定联合化学计量学质量评价. 中草药, 2023, 54(21): 7034-7043. | |
11 | Ju Y F, Chen Y L, Meng J L, et al. Effects of Dahuanglingxianfang on miRNA-30b expression and inflammatory fibrosis related factors in bile duct tissue of rats with biliary tract inflammation. Journal of Traditional Chinese Medicine, 2023, 64(18): 1908-1915. |
居燕飞, 陈雅璐, 蒙健林, 等. 大黄灵仙方对胆道炎症模型大鼠胆管组织miRNA-30b表达及炎症-纤维化相关因子的影响. 中医杂志, 2023, 64(18): 1908-1915. | |
12 | Sun F H, Xiao B, Li S L, et al. Effects of biological soil crusts in different developmental stages on soil water permeability and water holding capacity in the Chinese Loess Plateau. Acta Prataculturae Sinica, 2021, 30(6): 54-63. |
孙福海, 肖波, 李胜龙, 等. 黄土高原不同发育阶段生物结皮的导水和持水特征. 草业学报, 2021, 30(6): 54-63. | |
13 | Cui J F, Deng J B, Liu C D, et al. Pedo-transfer functions of soil water retention curve for alpine meadow grassland in Zoige area, China. Mountain Research, 2021, 39(4): 483-494. |
崔俊芳, 邓建波, 刘传栋, 等. 若尔盖高寒草甸表层土壤水分特征曲线传递函数研究. 山地学报, 2021, 39(4): 483-494. | |
14 | Bao S D. Agrochemical analysis of soil (3rd Edition). Beijing: China Agriculture Press, 2000: 25-114. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000: 25-114. | |
15 | Gao H F, Meng T, Xiong Q, et al. Changes in physicochemical property and microbial community of Pseudostellaria heterophylla soil at different fallow ages. Chinese Journal of Applied Ecology, 2022, 33(8): 2196-2204. |
高慧芳, 孟婷, 熊琦, 等. 太子参不同休耕年限土壤理化特征和微生物群落变化. 应用生态学报, 2022, 33(8): 2196-2204. | |
16 | Su Z X, Su B Q, Wu Y, et al. A less complex but more specialized microbial network resulted in faster fine-root decomposition in young stands of Robinia pseudoacacia. Applied Soil Ecology, 2023, 182: 104735. |
17 | Hu Y, Fair H, Liu Q, et al. Diversity and co-occurrence networks of bacterial and fungal communities on two typical debris-covered glaciers, southeastern Tibetan Plateau. Microbiological Research, 2023, 273: 127409. |
18 | Mao X Y, Liu J X, Jia T, et al. Distribution pattern of bacterial community in soil profile of Larix principisrupprechtii forest in Luya Mountain. Environmental Science, 2023, 44(6): 3376-3385. |
毛晓雅, 刘晋仙, 贾彤, 等. 芦芽山华北落叶松林土壤剖面细菌群落分布格局. 环境科学, 2023, 44(6): 3376-3385. | |
19 | Wang D P, Song Q, Liu Z K, et al. Effects of grassland utilization on microbial community structure in Hulunbuir grassland. Pratacultural Science, 2022, 39(3): 421-430. |
王德平, 宋倩, 刘忠宽, 等. 草地利用方式对呼伦贝尔草地微生物群落结构的影响. 草业科学, 2022, 39(3): 421-430. | |
20 | Guo H T, Gao J, Zhang Q, et al. Differences and reasons for the effects of organic fertilizer on the pH of acidic and alkaline soils in China. Chinese Journal of Applied and Environmental Biology, 2024, 30(3): 496-503. |
郭慧婷, 高静, 张强, 等. 有机肥对我国酸性和碱性土壤pH的影响差异及原因. 应用与环境生物学报, 2024, 30(3): 496-503. | |
21 | Tan W F, Xu Y, Shi Z H, et al. The formation process and stabilization mechanism of soil aggregates driven by binding materials. Acta Pedologica Sinica, 2023, 60(5): 1297-1308. |
谭文峰, 许运, 史志华, 等. 胶结物质驱动的土壤团聚体形成过程与稳定机制. 土壤学报, 2023, 60(5): 1297-1308. | |
22 | Liu J J, Guo Y P, Gu H D, et al. Conversion of steppe to cropland increases spatial heterogeneity of soil functional genes. The ISME Journal, 2023, 17(11): 1872-1883. |
23 | Shen N, Cui Y L, Xu W H, et al. Impact of phosphorus and potassium fertilizers on growth and anthraquinone content in Rheum tanguticum Maxim. ex Balf. Industrial Crops and Products, 2017, 107: 312-319. |
24 | Guo J X, Li J S, Liu K S, et al. Analysis of soil microbial dynamics at a cropland-grassland interface in an agro-pastoral zone in a temperate steppe in northern China. Catena, 2018, 170: 257-265. |
25 | Xu A A, Liu J, Guo Z Y, et al. Soil microbial community composition but not diversity is affected by land-use types in the agro-pastoral ecotone undergoing frequent conversions between cropland and grassland. Geoderma, 2021, 401: 115165. |
26 | Ren C, Liu K S, Dou P P, et al. The changes in soil microorganisms and soil chemical properties affect the heterogeneity and stability of soil aggregates before and after grassland conversion. Agriculture, 2022, 12(2): 307. |
27 | Pang Q L, Alami M M, Yu W L, et al. A meta-analysis in nine different continuous cropping fields to find the relationship between plant species and rhizosphere fungal community. Agronomy, 2023, 13(7): 1827. |
28 | Xiao H, Sheng H, Zhang L, et al. How does land-use change alter soil microbial diversity, composition, and network in subtropical China. Catena, 2023, 231: 107335. |
29 | Zhang L. Characteristics and influencing factors of soil microbial community structure in alpine grassland of Tibet Plateau. Beijing: University of Chinese Academy of Sciences, 2022. |
张路. 青藏高原高寒草地土壤微生物群落结构特征及影响因素. 北京: 中国科学院大学, 2022. | |
30 | Saxena A K, Kumar M, Chakdar H, et al. Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 2020, 128(6): 1583-1594. |
31 | Du H H, Zhu F R, Yang M, et al. lsolation and identification of phosphatolytic bacteria in Paris polyphylla var. yunnanensis. China Journal of Chinese Materia Medica, 2021, 46(4): 915-922. |
杜慧慧, 朱芙蓉, 杨敏, 等. 不同生境滇重楼根际解磷菌的筛选与鉴定. 中国中药杂志, 2021, 46(4): 915-922. | |
32 | Wang W C, Zhao J, Huang W Y, et al. Research progress in metabolites produced by Bacillus against three common plant pathogenic fungi. Biotechnology Bulletin, 2023, 39(3): 59-68. |
王伟宸, 赵进, 黄薇颐, 等. 芽孢杆菌代谢产物防治三种常见植物病原真菌的研究进展. 生物技术通报, 2023, 39(3): 59-68. | |
33 | Zhang X Y, Chen X F, Liu M, et al. Study on the relationship between diversity of endophytic fungi and rhizosphere fungi and environmental factors in different cultivation modes. Journal of Chinese Medicinal Materials, 2023(6): 1353-1360. |
张翔宇, 陈晓芳, 柳敏, 等. 不同栽培模式重楼内生真菌、根际真菌多样性与环境因子关联性研究. 中药材, 2023(6): 1353-1360. | |
34 | Xu Q Q, Fu Y, Zhou T, et al. Study on the correlation between fungal community structure and soil factors in the rhizosphere soil of Bletilla striata. Northern Horticulture, 2024(2): 79-85. |
许清清, 付艳, 周涛, 等. 白及根际土壤真菌群落结构与土壤因子相关性. 北方园艺, 2024(2): 79-85. | |
35 | Yang J Y, Tong X X, He C Y, et al. Comparison of endogenetic microbial community diversity between wild Cordyceps sinensis, artificial C. sinensis and habitat soil. Journal of Chinese Materia Medica, 2021, 46(12): 3106-3115. |
杨晶艳, 童芯锌, 何成艳, 等. 野生与人工冬虫夏草伴生菌及栖息地土壤微生物群落多样性比较研究. 中国中药杂志, 2021, 46(12): 3106-3115. | |
36 | Wang M Q. Study of Phoma in Northeast China. Changchun: Jilin Agricultural University, 2019. |
王梦奇. 东北地区茎点霉属真菌研究. 长春: 吉林农业大学, 2019. | |
37 | Zheng F. Pathogen identification, biological characteristics and identification of partial mycovirus in the pathogen of Curcuma wenyujin Phoma leaf blight. Haikou: Hainan University, 2019. |
郑樊. 温郁金茎点霉叶枯病菌的鉴定、生物学特性及其部分真菌病毒的鉴定. 海口: 海南大学, 2019. | |
38 | Wang Z Q, Zhang J X, Yang X L, et al. Characteristics of soil microbial diversity in different patches of alpine meadow. Acta Agrestia Sinica, 2021, 29(9): 1916-1926. |
王占青, 张杰雪, 杨雪莲, 等. 高寒草甸不同斑块草地土壤微生物多样性特征研究. 草地学报, 2021, 29(9): 1916-1926. | |
39 | Xing J J, Peng L Y, Chen J H, et al. A new insight into spacing patterns of soil bacterial microbiome induced by root rot of Carya cathayensis. Applied Soil Ecology, 2022, 174: 104416. |
40 | Wu H Q, Li Y Z, Yang M, et al. Characteristics of rhizosphere soil microbial community and its relationship with disease occurrence under direct-seeding mode of Panax notoginseng. Molecular Plant Breeding, 2023, 1-25[2024-09-04]. http://kns.cnki.net/kcms/detail/46.1068.S.20230705.1233.010.html. |
吴洪钦, 李云峥, 杨敏, 等. 直播模式下三七根际土壤微生物群落特征及其与病害发生的关系. 分子植物育种, 2023, 1-25[2024-09-04]. http://kns.cnki.net/kcms/detail/46.1068.S.20230705.1233.010.html. | |
41 | Yang W Q, Jin J, Zhu L, et al. Screening and characteristics of plant growth-promoting rhizobacteria from alpine meadow plants in Northwestern Sichuan. Acta Agrestia Sinica, 2021, 29(6): 1174-1182. |
杨婉秋, 敬洁, 朱灵, 等. 川西北高寒草甸植物根际促生菌筛选及其特性研究. 草地学报, 2021, 29(6): 1174-1182. | |
42 | Marta G, Alicia M N, Alfonso V B, et al. Incorporating phylogenetic metrics to microbial co-occurrence networks based on amplicon sequences to discern community assembly processes. Molecular Ecology Resources, 2019, 19(6): 1552-1564. |
43 | De Vries F T, Griffiths R I, Bailey M, et al. Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 2018, 9(1): 1-12. |
44 | Cameron W, Klaus S, Samiran B, et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 2019, 10: 4841. |
[1] | 霍佳娟, 宋明华. 青藏高原高寒草甸不同退化阶段植物氮利用速率变化[J]. 草业学报, 2025, 34(2): 16-26. |
[2] | 李争艳, 徐智明, 李岩, 李杨. 江淮地区苜蓿短期连作对后作高丹草生长及土壤微环境的影响[J]. 草业学报, 2024, 33(9): 155-168. |
[3] | 和阳一丹, 陈昌明, 黄晓霞, 施国美, 和克俭. 川西高寒草甸植物功能属性与环境因子的关系研究[J]. 草业学报, 2024, 33(9): 28-39. |
[4] | 谭湘蛟, 董逵才, 张华, 唐川川, 杨燕. 积雪增加对青藏高原高寒草甸土壤磷有效性的影响[J]. 草业学报, 2024, 33(7): 205-214. |
[5] | 秦瑞敏, 程思佳, 马丽, 张中华, 魏晶晶, 苏洪烨, 史正晨, 常涛, 胡雪, 阿的哈则, 袁访, 李珊, 周华坤. 围封和施肥对高寒草甸群落特征和植被碳氮库的影响[J]. 草业学报, 2024, 33(4): 1-11. |
[6] | 油志远, 马淑娟, 王长庭, 丁路明, 宋小艳, 尹高飞, 毛军. 川滇高原高寒草甸生态系统不同功能群植物分布格局的MaxEnt模型预测[J]. 草业学报, 2024, 33(3): 1-12. |
[7] | 马源, 王晓丽, 马玉寿, 张德罡. 高寒草甸退化程度对优势物种根际土壤真菌群落和生态网络的影响[J]. 草业学报, 2024, 33(2): 125-137. |
[8] | 冯娅斯, 蒋文婷, 刘益宏, 王燕, 李渊, 陈有超, 蔡延江. 翻耕和植物残体覆盖对“黑土滩”型退化草地土壤氧化亚氮排放的影响[J]. 草业学报, 2024, 33(11): 15-29. |
[9] | 赵杰, 尹雪敬, 王思然, 董志浩, 李君风, 贾玉山, 邵涛. 贮藏时间对甜高粱青贮发酵品质、微生物群落组成和功能的影响[J]. 草业学报, 2023, 32(8): 164-175. |
[10] | 李林芝, 张德罡, 马源, 罗珠珠, 林栋, 海龙, 白兰鸽. 不同退化程度高寒草甸土壤团聚体养分及生态化学计量特征研究[J]. 草业学报, 2023, 32(8): 48-60. |
[11] | 廖小琴, 王长庭, 刘丹, 唐国, 毛军. 氮磷配施对高寒草甸植物根系特征的影响[J]. 草业学报, 2023, 32(7): 160-174. |
[12] | 路欣, 祁娟, 师尚礼, 车美美, 李霞, 独双双, 赛宁刚, 贾燕伟. 阔叶类草抑制剂与氮素配施对高寒草甸土壤特性的影响[J]. 草业学报, 2023, 32(7): 38-48. |
[13] | 刘彩凤, 段媛媛, 王玲玲, 王乙茉, 郭正刚. 高原鼠兔干扰对高寒草甸植物物种多样性与土壤生态化学计量比间关系的影响[J]. 草业学报, 2023, 32(6): 157-166. |
[14] | 孙玉, 杨永胜, 何琦, 王军邦, 张秀娟, 李慧婷, 徐兴良, 周华坤, 张宇恒. 三江源高寒草甸水源涵养功能及土壤理化性质对退化程度的响应[J]. 草业学报, 2023, 32(6): 16-29. |
[15] | 周娟娟, 刘云飞, 王敬龙, 魏巍. 短期养分添加对西藏沼泽化高寒草甸地上生物量、植物多样性和功能性状的影响[J]. 草业学报, 2023, 32(11): 17-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||