草业学报 ›› 2025, Vol. 34 ›› Issue (2): 41-53.DOI: 10.11686/cyxb2024126
骆欣怡1,2,3,4(), 邱开阳1,2,3,4(), 金涛5, 鲍平安1,2,3,4, 黄业芸1,2,3,4, 何毅1,2,3,4, 谢应忠1,2,3,4
收稿日期:
2024-04-18
修回日期:
2024-06-05
出版日期:
2025-02-20
发布日期:
2024-11-27
通讯作者:
邱开阳
作者简介:
E-mail: kaiyangqiu@nxu.edu.cn基金资助:
Xin-yi LUO1,2,3,4(), Kai-yang QIU1,2,3,4(), Tao JIN5, Ping-an BAO1,2,3,4, Ye-yun HUANG1,2,3,4, Yi HE1,2,3,4, Ying-zhong XIE1,2,3,4
Received:
2024-04-18
Revised:
2024-06-05
Online:
2025-02-20
Published:
2024-11-27
Contact:
Kai-yang QIU
摘要:
凋落物分解是草地生态系统能量流动和物质循环的重要过程,而荒漠草原凋落物分解如何响应碳(C)、氮(N)、钾(K)添加尚不清楚,揭示这一关系对深入理解荒漠草原养分循环过程具有重要意义。本研究选用网袋分解法,进行随机区组设计,在试验样地分别设置C1 (0 g·m-2·a-1)、C2 (52.54 g·m-2·a-1)、C3 (705.09 g·m-2·a-1);N1 (0 g·m-2·a-1)、N2 (5 g·m-2·a-1)、N3 (20 g·m-2·a-1);K1 (0 g·m-2·a-1)、K2 (9.0 g·m-2·a-1)、K3 (18.0 g·m-2·a-1) 3个C、N、K浓度梯度,研究外源C、N、K添加对宁夏荒漠草原优势种短花针茅和赖草凋落物分解特征的影响。结果表明:1)C、N、K添加对荒漠草原两个物种凋落物分解的影响具有显著差异(P<0.05),短花针茅和赖草凋落物分解速率进程不同,分别在分解至120和240 d时,分解速率开始减缓;2)不同物种对C、N、K养分添加的响应不同。K3、K3+N3+C2处理下赖草凋落物分解速率较快,但CK、K2+N2处理下短花针茅凋落物分解速率较快。依据指数衰减模型预测分解速率结果为:赖草>短花针茅;3)短花针茅和赖草凋落物均在秋季分解较快。综上,同一生境不同物种凋落物分解速率存在差异,高添加量的K、N和低添加量的C相较于其他养分添加梯度,对凋落物分解速率的促进作用更明显。
骆欣怡, 邱开阳, 金涛, 鲍平安, 黄业芸, 何毅, 谢应忠. 碳、氮、钾添加对荒漠草原凋落物分解特征的影响[J]. 草业学报, 2025, 34(2): 41-53.
Xin-yi LUO, Kai-yang QIU, Tao JIN, Ping-an BAO, Ye-yun HUANG, Yi HE, Ying-zhong XIE. The effects of carbon, nitrogen, and potassium addition on the decomposition characteristics of litter in desert grasslands[J]. Acta Prataculturae Sinica, 2025, 34(2): 41-53.
pH | 含水量 Moisture content (%) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 碱解氮 Alkaline nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|---|---|
8.53 | 8.10 | 2.93 | 0.59 | 0.20 | 21.69 | 9.73 | 63.62 |
表1 研究区土壤理化性质
Table 1 Physicochemical properties of soil in the study area
pH | 含水量 Moisture content (%) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 碱解氮 Alkaline nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|---|---|
8.53 | 8.10 | 2.93 | 0.59 | 0.20 | 21.69 | 9.73 | 63.62 |
处理 Treatment | 分解模型 Decomposition model | R2 | T0.5(Month) | T0.95(Month) | 处理 Treatment | 分解模型 Decomposition model | R2 | T0.5(Month) | T0.95(Month) |
---|---|---|---|---|---|---|---|---|---|
K1+N1+C1 | y=0.94710e-0.00216t | 0.876 | 9.85 | 45.39 | K2+N2+C3 | y=0.91837e-0.00191t | 0.821 | 10.61 | 50.80 |
K1+N1+C2 | y=0.92219e-0.00135t | 0.802 | 15.12 | 71.97 | K2+N3+C1 | y=0.94643e-0.00197t | 0.845 | 10.80 | 49.76 |
K1+N1+C3 | y=0.93659e-0.00210t | 0.882 | 9.96 | 46.51 | K2+N3+C2 | y=0.92422e-0.00197t | 0.855 | 10.40 | 49.36 |
K1+N2+C1 | y=0.98703e-0.00207t | 0.910 | 10.95 | 48.03 | K2+N3+C3 | y=0.96869e-0.00181t | 0.856 | 12.18 | 54.58 |
K1+N2+C2 | y=0.92993e-0.00191t | 0.792 | 10.83 | 51.01 | K3+N1+C1 | y=0.94194e-0.00219t | 0.874 | 9.64 | 44.69 |
K1+N2+C3 | y=0.90056e-0.00177t | 0.881 | 11.08 | 54.44 | K3+N1+C2 | y=0.91022e-0.00206t | 0.818 | 9.69 | 46.95 |
K1+N3+C1 | y=0.91858e-0.00116t | 0.701 | 17.54 | 83.93 | K3+N1+C3 | y=0.92522e-0.00416t | 0.847 | 4.93 | 23.38 |
K1+N3+C2 | y=0.92294e-0.00179t | 0.882 | 11.41 | 54.29 | K3+N2+C1 | y=0.97824e-0.00200t | 0.896 | 11.19 | 49.56 |
K1+N3+C3 | y=0.93670e-0.00166t | 0.780 | 12.61 | 58.84 | K3+N2+C2 | y=0.93927e-0.00206t | 0.846 | 10.20 | 47.46 |
K2+N1+C1 | y=0.94759e-0.00199t | 0.916 | 10.71 | 49.28 | K3+N2+C3 | y=0.96153e-0.00217t | 0.833 | 10.04 | 45.41 |
K2+N1+C2 | y=0.92587e-0.00216t | 0.808 | 9.51 | 45.04 | K3+N3+C1 | y=0.99318e-0.00191t | 0.699 | 11.98 | 52.16 |
K2+N1+C3 | y=0.87007e-0.00163t | 0.718 | 11.33 | 58.42 | K3+N3+C2 | y=1.00549e-0.00220t | 0.919 | 10.59 | 45.47 |
K2+N2+C1 | y=0.96601e-0.00202t | 0.891 | 10.87 | 48.86 | K3+N3+C3 | y=0.91724e-0.00166t | 0.781 | 12.18 | 58.42 |
K2+N2+C2 | y=0.93898e-0.00202t | 0.850 | 10.40 | 48.40 |
表2 赖草凋落物分解模型
Table 2 L. secalinus litter decomposition model
处理 Treatment | 分解模型 Decomposition model | R2 | T0.5(Month) | T0.95(Month) | 处理 Treatment | 分解模型 Decomposition model | R2 | T0.5(Month) | T0.95(Month) |
---|---|---|---|---|---|---|---|---|---|
K1+N1+C1 | y=0.94710e-0.00216t | 0.876 | 9.85 | 45.39 | K2+N2+C3 | y=0.91837e-0.00191t | 0.821 | 10.61 | 50.80 |
K1+N1+C2 | y=0.92219e-0.00135t | 0.802 | 15.12 | 71.97 | K2+N3+C1 | y=0.94643e-0.00197t | 0.845 | 10.80 | 49.76 |
K1+N1+C3 | y=0.93659e-0.00210t | 0.882 | 9.96 | 46.51 | K2+N3+C2 | y=0.92422e-0.00197t | 0.855 | 10.40 | 49.36 |
K1+N2+C1 | y=0.98703e-0.00207t | 0.910 | 10.95 | 48.03 | K2+N3+C3 | y=0.96869e-0.00181t | 0.856 | 12.18 | 54.58 |
K1+N2+C2 | y=0.92993e-0.00191t | 0.792 | 10.83 | 51.01 | K3+N1+C1 | y=0.94194e-0.00219t | 0.874 | 9.64 | 44.69 |
K1+N2+C3 | y=0.90056e-0.00177t | 0.881 | 11.08 | 54.44 | K3+N1+C2 | y=0.91022e-0.00206t | 0.818 | 9.69 | 46.95 |
K1+N3+C1 | y=0.91858e-0.00116t | 0.701 | 17.54 | 83.93 | K3+N1+C3 | y=0.92522e-0.00416t | 0.847 | 4.93 | 23.38 |
K1+N3+C2 | y=0.92294e-0.00179t | 0.882 | 11.41 | 54.29 | K3+N2+C1 | y=0.97824e-0.00200t | 0.896 | 11.19 | 49.56 |
K1+N3+C3 | y=0.93670e-0.00166t | 0.780 | 12.61 | 58.84 | K3+N2+C2 | y=0.93927e-0.00206t | 0.846 | 10.20 | 47.46 |
K2+N1+C1 | y=0.94759e-0.00199t | 0.916 | 10.71 | 49.28 | K3+N2+C3 | y=0.96153e-0.00217t | 0.833 | 10.04 | 45.41 |
K2+N1+C2 | y=0.92587e-0.00216t | 0.808 | 9.51 | 45.04 | K3+N3+C1 | y=0.99318e-0.00191t | 0.699 | 11.98 | 52.16 |
K2+N1+C3 | y=0.87007e-0.00163t | 0.718 | 11.33 | 58.42 | K3+N3+C2 | y=1.00549e-0.00220t | 0.919 | 10.59 | 45.47 |
K2+N2+C1 | y=0.96601e-0.00202t | 0.891 | 10.87 | 48.86 | K3+N3+C3 | y=0.91724e-0.00166t | 0.781 | 12.18 | 58.42 |
K2+N2+C2 | y=0.93898e-0.00202t | 0.850 | 10.40 | 48.40 |
处理 Treatment | 分解模型 Decomposition model | R2 | T0.5(Month) | T0.95(Month) | 处理 Treatment | 分解模型 Decomposition model | R2 | T0.5(Month) | T0.95(Month) |
---|---|---|---|---|---|---|---|---|---|
K1+N1+C1 | y=0.94715e-0.00198t | 0.876 | 10.76 | 49.52 | K2+N2+C3 | y=0.95998e-0.00149t | 0.670 | 14.59 | 66.11 |
K1+N1+C2 | y=0.94188e-0.00135t | 0.711 | 15.64 | 72.49 | K2+N3+C1 | y=0.92832e-0.00103t | 0.835 | 20.03 | 94.54 |
K1+N1+C3 | y=0.95050e-0.00136t | 0.850 | 15.78 | 72.18 | K2+N3+C2 | y=0.93147e-0.00132t | 0.695 | 15.71 | 73.86 |
K1+N2+C1 | y=0.91925e-0.00126t | 0.802 | 16.11 | 77.02 | K2+N3+C3 | y=0.92818e-0.00140t | 0.738 | 14.73 | 69.55 |
K1+N2+C2 | y=0.91790e-0.00120t | 0.740 | 16.87 | 80.84 | K3+N1+C1 | y=0.93901e-0.00120t | 0.808 | 17.51 | 81.47 |
K1+N2+C3 | y=0.91020e-0.00119t | 0.623 | 16.78 | 81.28 | K3+N1+C2 | y=0.91293e-0.00148t | 0.666 | 13.56 | 65.42 |
K1+N3+C1 | y=0.89790e-0.00110t | 0.724 | 17.74 | 87.52 | K3+N1+C3 | y=0.91028e-0.00131t | 0.672 | 15.25 | 73.84 |
K1+N3+C2 | y=0.94508e-0.00139t | 0.870 | 15.27 | 70.49 | K3+N2+C1 | y=0.92698e-0.00110t | 0.795 | 18.71 | 88.48 |
K1+N3+C3 | y=0.90856e-0.00114t | 0.595 | 17.46 | 84.79 | K3+N2+C2 | y=0.92766e-0.00113t | 0.826 | 18.23 | 86.15 |
K2+N1+C1 | y=0.92441e-0.00110t | 0.711 | 18.62 | 88.40 | K3+N2+C3 | y=0.93520e-0.00121t | 0.773 | 17.25 | 80.68 |
K2+N1+C2 | y=0.91706e-0.00128t | 0.725 | 15.80 | 75.76 | K3+N3+C1 | y=0.96269e-0.00121t | 0.613 | 18.05 | 81.48 |
K2+N1+C3 | y=0.92413e-0.00132t | 0.822 | 15.51 | 73.66 | K3+N3+C2 | y=0.92374e-0.00119t | 0.759 | 17.19 | 81.69 |
K2+N2+C1 | y=0.89925e-0.00095t | 0.741 | 20.51 | 101.06 | K3+N3+C3 | y=0.93029e-0.00107t | 0.773 | 19.34 | 91.07 |
K2+N2+C2 | y=0.93599e-0.00128t | 0.735 | 16.33 | 76.29 |
表3 短花针茅凋落物分解模型
Table 3 S. breviflora litter decomposition model
处理 Treatment | 分解模型 Decomposition model | R2 | T0.5(Month) | T0.95(Month) | 处理 Treatment | 分解模型 Decomposition model | R2 | T0.5(Month) | T0.95(Month) |
---|---|---|---|---|---|---|---|---|---|
K1+N1+C1 | y=0.94715e-0.00198t | 0.876 | 10.76 | 49.52 | K2+N2+C3 | y=0.95998e-0.00149t | 0.670 | 14.59 | 66.11 |
K1+N1+C2 | y=0.94188e-0.00135t | 0.711 | 15.64 | 72.49 | K2+N3+C1 | y=0.92832e-0.00103t | 0.835 | 20.03 | 94.54 |
K1+N1+C3 | y=0.95050e-0.00136t | 0.850 | 15.78 | 72.18 | K2+N3+C2 | y=0.93147e-0.00132t | 0.695 | 15.71 | 73.86 |
K1+N2+C1 | y=0.91925e-0.00126t | 0.802 | 16.11 | 77.02 | K2+N3+C3 | y=0.92818e-0.00140t | 0.738 | 14.73 | 69.55 |
K1+N2+C2 | y=0.91790e-0.00120t | 0.740 | 16.87 | 80.84 | K3+N1+C1 | y=0.93901e-0.00120t | 0.808 | 17.51 | 81.47 |
K1+N2+C3 | y=0.91020e-0.00119t | 0.623 | 16.78 | 81.28 | K3+N1+C2 | y=0.91293e-0.00148t | 0.666 | 13.56 | 65.42 |
K1+N3+C1 | y=0.89790e-0.00110t | 0.724 | 17.74 | 87.52 | K3+N1+C3 | y=0.91028e-0.00131t | 0.672 | 15.25 | 73.84 |
K1+N3+C2 | y=0.94508e-0.00139t | 0.870 | 15.27 | 70.49 | K3+N2+C1 | y=0.92698e-0.00110t | 0.795 | 18.71 | 88.48 |
K1+N3+C3 | y=0.90856e-0.00114t | 0.595 | 17.46 | 84.79 | K3+N2+C2 | y=0.92766e-0.00113t | 0.826 | 18.23 | 86.15 |
K2+N1+C1 | y=0.92441e-0.00110t | 0.711 | 18.62 | 88.40 | K3+N2+C3 | y=0.93520e-0.00121t | 0.773 | 17.25 | 80.68 |
K2+N1+C2 | y=0.91706e-0.00128t | 0.725 | 15.80 | 75.76 | K3+N3+C1 | y=0.96269e-0.00121t | 0.613 | 18.05 | 81.48 |
K2+N1+C3 | y=0.92413e-0.00132t | 0.822 | 15.51 | 73.66 | K3+N3+C2 | y=0.92374e-0.00119t | 0.759 | 17.19 | 81.69 |
K2+N2+C1 | y=0.89925e-0.00095t | 0.741 | 20.51 | 101.06 | K3+N3+C3 | y=0.93029e-0.00107t | 0.773 | 19.34 | 91.07 |
K2+N2+C2 | y=0.93599e-0.00128t | 0.735 | 16.33 | 76.29 |
影响因子Influence factor | F | P |
---|---|---|
钾添加K addition (K) | 0.300 | 0.741 |
氮添加N addition (N) | 12.630 | <0.001** |
碳添加C addition (C) | 7.348 | <0.001** |
时间Time (T) | 1853.805 | <0.001** |
物种Species (S) | 378.788 | <0.001** |
钾添加×氮添加K×N | 1.356 | 0.249 |
钾添加×碳添加K×C | 0.474 | 0.755 |
钾添加×时间K×T | 0.435 | 0.856 |
钾添加×物种K×S | 1.565 | 0.210 |
钾添加×氮添加×碳添加K×N×C | 0.141 | 0.997 |
钾添加×氮添加×时间K×N×T | 0.780 | 0.671 |
钾添加×氮添加×物种K×N×S | 0.726 | 0.575 |
钾添加×氮添加×碳添加×时间K×N×C×T | 0.824 | 0.757 |
钾添加×氮添加×碳添加×物种K×N×C×S | 1.278 | 0.228 |
钾添加×氮添加×碳添加×时间×物种 K×N×C×T×S | 1.029 | 0.423 |
氮添加×碳添加N×C | 0.912 | 0.457 |
氮添加×时间N×T | 3.569 | 0.002** |
氮添加×物种N×S | 2.249 | 0.107 |
氮添加×碳添加×时间N×C×T | 0.623 | 0.823 |
氮添加×碳添加×物种N×C×S | 1.173 | 0.322 |
氮添加×碳添加×时间×物种N×C×T×S | 0.855 | 0.634 |
碳添加×时间C×T | 3.080 | 0.006** |
碳添加×物种C×S | 0.707 | 0.494 |
碳添加×时间×物种C×T×S | 0.931 | 0.472 |
时间×物种T×S | 43.677 | <0.001** |
表4 C、N、K添加对两种凋落物质量残余率影响的多因素方差分析
Table 4 Multivariate ANOVA for the effects of C, N, and K additions on the mass residue rates of the two litters
影响因子Influence factor | F | P |
---|---|---|
钾添加K addition (K) | 0.300 | 0.741 |
氮添加N addition (N) | 12.630 | <0.001** |
碳添加C addition (C) | 7.348 | <0.001** |
时间Time (T) | 1853.805 | <0.001** |
物种Species (S) | 378.788 | <0.001** |
钾添加×氮添加K×N | 1.356 | 0.249 |
钾添加×碳添加K×C | 0.474 | 0.755 |
钾添加×时间K×T | 0.435 | 0.856 |
钾添加×物种K×S | 1.565 | 0.210 |
钾添加×氮添加×碳添加K×N×C | 0.141 | 0.997 |
钾添加×氮添加×时间K×N×T | 0.780 | 0.671 |
钾添加×氮添加×物种K×N×S | 0.726 | 0.575 |
钾添加×氮添加×碳添加×时间K×N×C×T | 0.824 | 0.757 |
钾添加×氮添加×碳添加×物种K×N×C×S | 1.278 | 0.228 |
钾添加×氮添加×碳添加×时间×物种 K×N×C×T×S | 1.029 | 0.423 |
氮添加×碳添加N×C | 0.912 | 0.457 |
氮添加×时间N×T | 3.569 | 0.002** |
氮添加×物种N×S | 2.249 | 0.107 |
氮添加×碳添加×时间N×C×T | 0.623 | 0.823 |
氮添加×碳添加×物种N×C×S | 1.173 | 0.322 |
氮添加×碳添加×时间×物种N×C×T×S | 0.855 | 0.634 |
碳添加×时间C×T | 3.080 | 0.006** |
碳添加×物种C×S | 0.707 | 0.494 |
碳添加×时间×物种C×T×S | 0.931 | 0.472 |
时间×物种T×S | 43.677 | <0.001** |
图4 养分添加与季节变化下的凋落物分解率不同小写字母表示同一物种同一处理下不同季节的凋落物分解率在P<0.05水平上差异显著。Different lowercase letters indicate significant differences in litter decomposition rates in different seasons of the same species under the same treatment at the P<0.05 level.
Fig.4 Nutrient addition and litter decomposition rate under seasonal variation
1 | Ye R H, Shan Y M, Zhang P J, et al. Effects of nitrogen and water addition on litter decomposition in desert grassland under different grazing intensities. Acta Ecologica Sinica, 2020, 40(8): 2775-2783. |
晔薷罕, 单玉梅, 张璞进, 等. 荒漠草原不同放牧强度背景下添加氮水对凋落物分解的影响. 生态学报, 2020, 40(8): 2775-2783. | |
2 | Huo L X, Hong M, Zhao B Y N M L, et al. Effects of increased nitrogen deposition and changing rainfall patterns on litter decomposition in a desert grassland. Acta Ecologica Sinica, 2019, 39(6): 2139-2146. |
霍利霞, 红梅, 赵巴音那木拉, 等. 氮沉降和降雨变化对荒漠草原凋落物分解的影响. 生态学报, 2019, 39(6): 2139-2146. | |
3 | Fan B, Gong Z, Xin X, et al. Both evenness and dominant species identity have effects on litter decomposition. Ecology and Evolution, 2024, 14(2): e11052. |
4 | Du P C, Pan Y Z, Hou S L, et al. Effects of nitrogen and phosphorus addition on litter decomposition in Hulunber steppe. Acta Prataculturae Sinica, 2023, 32(2): 44-53. |
杜鹏冲, 潘昱臻, 侯双利, 等. 氮磷添加对呼伦贝尔草地凋落物分解的影响. 草业学报, 2023, 32(2): 44-53. | |
5 | Wang Z H, Wang Z R, Li T P, et al. N and P fertilization enhanced carbon decomposition function by shifting microbes towards an r-selected community in meadow grassland soils. Ecological Indicators, 2021, 132: 108306. |
6 | Garibaldi L A, Semmartin M, Chaneton E J. Grazing-induced changes in plant composition affect litter quality and nutrient cycling in flooding Pampa grasslands. Oecologia, 2007, 151(4): 650-662. |
7 | Zhang J F, Zhou J G, Lambers H, et al. Nitrogen and phosphorus addition exerted different influences on litter and soil carbon release in a tropical forest. Science of the total Environment, 2022, 832: 155049. |
8 | Ma Z W, Wu J, Li L, et al. Litter-induced reduction in ecosystem multifunctionality is mediated by plant diversity and cover in an alpine meadow. Frontiers in Plant Science, 2021, 12: 773804. |
9 | Guo X, Luo H, Xu X M, et al. Effects of litter decomposition with different qualities on soil organic carbon content and its stability in grassland on the Loess Plateau. Acta Prataculturae Sinica, 2023, 32(5): 83-93. |
郭鑫, 罗欢, 许雪梅, 等. 不同品质凋落物分解对黄土高原草地土壤有机碳及其稳定性的影响. 草业学报, 2023, 32(5): 83-93. | |
10 | Chen Z H, Shen Y, Tan B, et al. Decreased soil organic carbon under litter input in three subalpine forests. Forests, 2021, 12(11): 1479. |
11 | Shi B, Ling X, Cui H, et al. Response of nutrient resorption of Leymus chinensis to nitrogen and phosphorus addition in a meadow steppe of northeast China. Plant Biology, 2020, 22(6): 1123-1132. |
12 | Zhang Y H, Feng J C, Isbell F, et al. Productivity depends more on the rate than the frequency of N addition in a temperate grassland. Scientific Reports, 2015, 5(1): 12558. |
13 | Bharath S, Borer E T, Biederman L A, et al. Nutrient addition increases grassland sensitivity to droughts. Ecology, 2020, 101(5): e02981. |
14 | Lin C F, Peng J Q, Hong H B, et al. Effect of nitrogen and phosphorus availability on forest litter decomposition. Acta Ecologica Sinica, 2017, 37(1): 54-62. |
林成芳, 彭建勤, 洪慧滨, 等. 氮、磷养分有效性对森林凋落物分解的影响研究进展. 生态学报, 2017, 37(1): 54-62. | |
15 | Guo X X, Zuo X A, Yue P, et al. Direct and indirect effects of precipitation change and nutrients addition on desert steppe productivity in Inner Mongolia, northern China. Plant and Soil, 2022, 471(1): 527-540. |
16 | Qiu K Y, Xie Y Z, Xu D M, et al. Ecosystem functions including soil organic carbon, total nitrogen and available potassium are crucial for vegetation recovery. Scientific Reports, 2018, 8(1): 7607. |
17 | Szlachcic E, Rożen A. Nutrients (N, P, K, Na) and warming affect heterotrophic respiration in temperate forest litter. European Journal of Forest Research, 2023, 142(1): 117-127. |
18 | Hobbie S E. Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems, 2005, 8(6): 644-656. |
19 | Liu P, Huang J H, Han X G, et al. Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China. Applied Soil Ecology, 2006, 34(2): 266-275. |
20 | Su Y, Le J J, Han W X, et al. Long-term nitrogen addition consistently decreased litter decomposition rates in an alpine grassland. Plant and Soil, 2022, 479(1): 495-509. |
21 | Xia M X, Talhelm A F, Pregitzer K S. Long-term simulated atmospheric nitrogen deposition alters leaf and fine root decomposition. Ecosystems, 2018, 21(1): 1-14. |
22 | Wang W B, Zhang Q, Sun X M, et al. Effects of mixed-species litter on bacterial and fungal lignocellulose degradation functions during litter decomposition. Soil Biology and Biochemistry, 2020, 141(1): 107690. |
23 | Xie P, Liu G D, Sun J F, et al. Effects of simulated warming on litter decomposition and bacteria communities of wetland plants. Acta Ecologica Sinica, 2023, 43(24): 10308-10319. |
谢鹏, 刘国栋, 孙晋芳, 等. 模拟增温对湿地植物凋落物分解及细菌群落的影响. 生态学报, 2023, 43(24): 10308-10319. | |
24 | Wu J J, Zhang H, Cheng X L, et al. Nitrogen addition stimulates litter decomposition rate: From the perspective of the combined effect of soil environment and litter quality. Soil Biology and Biochemistry, 2023, 179: 108992. |
25 | Bebber D P, Watkinson S C, Boddy L, et al. Simulated nitrogen deposition affects wood decomposition by cord-forming fungi. Oecologia, 2011, 167(4): 1177-1184. |
26 | Matos P S, Fonte S J, Lima S S, et al. Linkages among soil properties and litter quality in agroforestry systems of southeastern Brazil. Sustainability, 2020, 12(22): 9752. |
27 | Rong H, He J L, Zhang X, et al. Ecological benefits of soil and water conservation in different vegetation restoration patterns on desert steppe. Bulletin of Soil and Water Conservation, 2019, 39(5): 295-300. |
荣浩, 何京丽, 张欣, 等. 荒漠草原不同植被恢复模式的水土保持生态效益. 水土保持通报, 2019, 39(5): 295-300. | |
28 | Zhang C Y, Zhao H M, Liu H, et al. Effects of exogenous nitrogen addition on litter decomposition and nutrient release in a temperate desert. Chinese Journal of Applied Ecology, 2020, 31(11): 3631-3638. |
张彩云, 赵红梅, 刘辉, 等. 外源氮添加对温带荒漠地表凋落物分解及养分释放的影响. 应用生态学报, 2020, 31(11): 3631-3638. | |
29 | Yin R, Eisenhauer N, Auge H, et al. Additive effects of experimental climate change and land use on faunal contribution to litter decomposition. Soil Biology and Biochemistry, 2019, 131: 141-148. |
30 | Olson J S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 1963, 44(2): 322-331. |
31 | Li Y, Zhou J B, Dong Y J, et al. Decomposition of different plant litters in Loess Plateau of Northwest China. Chinese Journal of Applied Ecology, 2012, 23(12): 3309-3316. |
李云, 周建斌, 董燕捷, 等. 黄土高原不同植物凋落物的分解特性. 应用生态学报, 2012, 23(12): 3309-3316. | |
32 | Zhao H M, Yang W J, Cheng J H, et al. The effects of N-addition on litter mixture effects depend on decomposition time: A case from mixed-litter decomposition in the Gurbantunggut Desert. Ecology and Evolution, 2023, 13(8): e10377. |
33 | Zhang H H, Bai Y Y, Zhang Y J, et al. Response of chemical composition and ecological stoichiometric characteristics of three types of litter to simulated nitrogen deposition in the Changbai Mountain tundra. Acta Ecologica Sinica, 2022, 42(21): 8795-8808. |
张慧慧, 白云玉, 张英洁, 等. 长白山苔原带凋落物生态化学计量特征及其对模拟氮沉降的响应. 生态学报, 2022, 42(21): 8795-8808. | |
34 | Bao P A, Qiu K Y, Huang Y Y, et al. Effects of nitrogen and phosphorus additions on litter decomposition characteristics of two grass species in Stipa breviflora desert steppe. Chinese Journal of Grassland, 2023, 45(9): 66-76. |
鲍平安, 邱开阳, 黄业芸, 等. 氮磷添加对短花针茅荒漠草原两种禾草凋落物分解特征的影响. 中国草地学报, 2023, 45(9): 66-76. | |
35 | Steffensen J P, Andersen K K, Bigler M, et al. High-resolution greenland ice core data show abrupt climate change happens in few years. Science, 2008, 321(5889): 680-684. |
36 | Ibrahima A, Joffre R, Gillon D. Changes in litter during the initial leaching phase: An experiment on the leaf litter of Mediterranean species. Soil Biology and Biochemistry, 1995, 27(7): 931-939. |
37 | Aguilar-Cruz Y, García-Franco J G, Zotz G. Microsites and early litter decomposition patterns in the soil and forest canopy at regional scale. Biogeochemistry, 2020, 151(1): 15-30. |
38 | Xiang Y B, Zhou S X, Xiao Y X, et al. Effects of simulated nitrogen deposition and precipitation changes on litter decomposition in an evergreen broad-leaved forest in the rainy area of western China. Acta Ecologica Sinica, 2017, 37(2): 455-463. |
向元彬, 周世兴, 肖永翔, 等. 模拟氮沉降和降雨对华西雨屏区常绿阔叶林凋落物分解的影响. 生态学报, 2017, 37(2): 455-463. | |
39 | Zhang L L, Li J W, Wang Z L, et al. Litter mixing promoted decomposition and altered microbial community in common bean root litter. BMC Microbiology, 2023, 23(1): 148. |
40 | Li X B, Chen L, Wu X L, et al. Litter decomposition rates and influencing factors of four typical plant communities in desert steppe. Acta Ecologica Sinica, 2015, 35(12): 4105-4114. |
李学斌, 陈林, 吴秀玲, 等. 荒漠草原4种典型植物群落枯落物分解速率及影响因素. 生态学报, 2015, 35(12): 4105-4114. | |
41 | Hou S L, Hättenschwiler S, Yang J J, et al. Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland. New Phytologist, 2021, 229(1): 296-307. |
42 | Chen F S, Wang G G, Fang X M, et al. Nitrogen deposition effect on forest litter decomposition is interactively regulated by endogenous litter quality and exogenous resource supply. Plant and Soil, 2019, 437(1): 413-426. |
43 | Wang J, Ge Y, Cornelissen J H C, et al. Litter nitrogen concentration changes mediate effects of drought and plant species richness on litter decomposition. Oecologia, 2022, 198(2): 507-518. |
44 | Aerts R, van Logtestijn R, van Staalduinen M, et al. Nitrogen supply effects on productivity and potential leaf litter decay of Carex species from peatlands differing in nutrient limitation. Oecologia, 1995, 104(4): 447-453. |
45 | Kong B S, Zhou J L, Qi L G, et al. Effects of nitrogen deposition on leaf litter decomposition and soil organic carbon density in arid and barren rocky mountainous regions: A case study of Yimeng Mountain. Forests, 2023, 14(7): 1351. |
46 | Zhang Y J, Jin Y H, Xu J W, et al. Effects of exogenous N and endogenous nutrients on alpine tundra litter decomposition in an area of high nitrogen deposition. Science of the Total Environment, 2022, 805: 150388. |
47 | Gong J R, Dong X D, Li X B, et al. Phosphorus fertilization affects litter quality and enzyme activity in a semiarid grassland. Plant and Soil, 2023, 492(1): 91-108. |
48 | Zhang C H, Li S G, Zhang L M, et al. Effects of species and low dose nitrogen addition on litter decomposition of three dominant grasses in Hulun Buir meadow steppe. Journal of Resources and Ecology, 2013, 4(1): 20-26. |
张彩虹, 李胜功, 张雷明, 等. 物种和低剂量氮添加对呼伦贝尔草甸草原三种主要优势种凋落物分解的影响. 资源与生态学报, 2013, 4(1): 20-26. | |
49 | Sardans J, Peñuelas J. Potassium: A neglected nutrient in global change. Global Ecology and Biogeography, 2015, 24(3): 261-275. |
50 | Maestre F T, Quero J L, Gotelli N J, et al. Plant species richness and ecosystem multifunctionality in global drylands. Science, 2012, 335(6065): 214-218. |
51 | Brandt L A, King J Y, Milchunas D G. Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Global Change Biology, 2007, 13(10): 2193-2205. |
52 | Kamczyc J, Dyderski M K, Horodecki P, et al. Temperature and precipitation affect seasonal changes in mite communities (Acari: Mesostigmata) in decomposing litter of broadleaved and coniferous temperate tree species. Annals of Forest Science, 2022, 79(1): 12. |
53 | Li X F, Han S J, Zhang Y. Indirect effects of precipitation on litter decomposition of Quercus mongolica. Chinese Journal of Applied Ecology, 2007, 18(2): 261-266. |
李雪峰, 韩士杰, 张岩. 降水量变化对蒙古栎落叶分解过程的间接影响. 应用生态学报, 2007, 18(2): 261-266. | |
54 | Lu W J, Qi J Y, Wu C, et al. Effects of mixed litter with different degrees of decomposition on the decomposition characteristics of semi-arid grassland in northern Shanxi. Acta Prataculturae Sinica, 2023, 32(12): 47-57. |
路文杰, 齐晋云, 吴聪, 等. 晋北半干旱草地不同分解程度凋落物混合对分解特征的影响. 草业学报, 2023, 32(12): 47-57. | |
55 | Saj S, Nijmeijer A, Nieboukaho J D E, et al. Litterfall seasonal dynamics and leaf-litter turnover in cocoa agroforests established on past forest lands or savannah. Agroforestry Systems, 2021, 95(4): 583-597. |
56 | Ye H, Hong M, Liang Z W, et al. Effects of precipitation and nitrogen deposition on litter decomposition of two perennial grasses in a desert steppe. Acta Ecologica Sinica, 2022, 42(7): 2910-2920. |
叶贺, 红梅, 梁志伟, 等. 降水变化和氮沉降对荒漠草原两种多年生禾草凋落物分解的影响. 生态学报, 2022, 42(7): 2910-2920. | |
57 | Zhang C F, de Pasquale S, Hartman K, et al. The microbial contribution to litter decomposition and plant growth. Environmental Microbiology Reports, 2024, 16(1): e13205. |
58 | Di Sabatino A, Cicolani B, Miccoli F P, et al. Plant detritus origin and microbial-detritivore interactions affect leaf litter breakdown in a Central Apennine (Italy) cold spring. Aquatic Ecology, 2020, 54(2): 495-504. |
59 | Ruhland C T, Remund A J, Tiry C M, et al. Litter decomposition of three lignin-deficient mutants of Sorghum bicolor during spring thaw. Acta Oecologica, 2018, 91: 16-21. |
[1] | 张振豪, 贾子玉, 李鑫宇, 程云湘. 荒漠草原混牧牛羊的放牧行为特征[J]. 草业学报, 2025, 34(1): 226-237. |
[2] | 贺世龙, 叶贺, 李静, 张雅玲, 德海山, 红梅. 不同时限氮沉降和降水变化对荒漠草原中小型土壤节肢动物群落结构与多样性的影响[J]. 草业学报, 2024, 33(9): 140-154. |
[3] | 曹颖, 聂明鹤, 沈艳, 胡艳, 马登宝, 李东, 候腾思, 方鹏, 王学琴. 宁夏干旱风沙区荒漠草原不同退化阶段植被土壤变化特征及其相关性[J]. 草业学报, 2024, 33(8): 1-14. |
[4] | 候腾思, 沈艳, 马红彬, 方鹏, 曹颖. 柠条平茬对荒漠草原土壤水分特征及水量平衡的影响[J]. 草业学报, 2024, 33(8): 15-24. |
[5] | 佘洁, 沈爱红, 石云, 赵娜, 张风红, 何洪源, 吴涛, 李红霞, 马益婷, 朱晓雯. 基于无人机遥感影像和面向对象技术的荒漠草原植被分类[J]. 草业学报, 2024, 33(7): 1-14. |
[6] | 姜海鑫, 周瑶, 胡科, 丁占胜, 马红彬. 不同放牧时间对荒漠草原土壤颗粒组成及分形维数的影响[J]. 草业学报, 2024, 33(6): 17-28. |
[7] | 赵亚楠, 王红梅, 李志丽, 张振杰, 陈彦硕, 苏荣霞. 荒漠草原灌丛转变过程土壤水分亏缺空间特征及影响因素[J]. 草业学报, 2024, 33(4): 22-34. |
[8] | 李俊瑶, 蒋星驰, 胡晋瑜, 魏栋光, 赵学勇, 王少昆. 生物有机肥施加对荒漠草原植被-土壤-微生物的影响[J]. 草业学报, 2024, 33(3): 34-45. |
[9] | 鲍平安, 邱开阳, 黄业芸, 王思瑶, 崔璐瑶, 骆欣怡, 杨云涛, 谢应忠. 荒漠草原植物在氮磷添加下叶功能性状特征及其可塑性[J]. 草业学报, 2024, 33(3): 97-106. |
[10] | 段鹏, 韦鎔宜, 王芳萍, 姚步青, 赵之重, 胡碧霞, 宋词, 杨萍, 王婷. 不同养分添加对黄河源区退化高寒湿地土壤微生物碳源利用的影响[J]. 草业学报, 2024, 33(2): 138-153. |
[11] | 鲍平安, 季波, 孙果, 张娜, 吴旭东, 何建龙, 王占军, 田英. 光伏电站建设对植物群落与土壤特征的影响[J]. 草业学报, 2024, 33(12): 23-33. |
[12] | 常怡然, 史佳梅, 许冬梅, 康如龙, 马媛. 荒漠草原不同自然种群蒙古冰草生物量和养分权衡特征[J]. 草业学报, 2024, 33(11): 186-197. |
[13] | 赵敏, 赵坤, 王赟博, 殷国梅, 刘思博, 闫宝龙, 孟卫军, 吕世杰, 韩国栋. 长期放牧干扰降低了短花针茅荒漠草原植物多样性[J]. 草业学报, 2023, 32(9): 39-49. |
[14] | 刘欣雷, 杜鹤强, 刘秀帆, 范亚伟. 内蒙古荒漠草原地表风沙活动对放牧强度的响应[J]. 草业学报, 2023, 32(7): 1-11. |
[15] | 陈彦硕, 马彦平, 王红梅, 赵亚楠, 李志丽, 张振杰. 荒漠草原不同年限灌丛引入过程土壤细菌碳源利用特征[J]. 草业学报, 2023, 32(6): 30-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||