草业学报 ›› 2024, Vol. 33 ›› Issue (11): 15-29.DOI: 10.11686/cyxb2023485
冯娅斯1,2(), 蒋文婷1,2, 刘益宏1,2, 王燕1,2, 李渊3, 陈有超1,2, 蔡延江1,2()
收稿日期:
2023-12-18
修回日期:
2024-03-18
出版日期:
2024-11-20
发布日期:
2024-09-09
通讯作者:
蔡延江
作者简介:
E-mail: yjcai@zafu.edu.cn基金资助:
Ya-si FENG1,2(), Wen-ting JIANG1,2, Yi-hong LIU1,2, Yan WANG1,2, Yuan LI3, You-chao CHEN1,2, Yan-jiang CAI1,2()
Received:
2023-12-18
Revised:
2024-03-18
Online:
2024-11-20
Published:
2024-09-09
Contact:
Yan-jiang CAI
摘要:
草地修复是推动草地生态系统恢复和实现可持续发展的关键。为了探究翻耕和植物残体覆盖对极度退化高寒草地土壤氧化亚氮(N2O)排放的影响,以青藏高原东缘高寒草甸为研究对象,设置了移除草地地上和地下(0~20 cm)全部植物以模拟“黑土滩”型退化草地(CK)、退化草地进行翻耕(PL)、退化草地进行植物残体覆盖(MR)、退化草地进行翻耕和植物残体覆盖(PL+MR)4种处理,并测定不同处理下的土壤基础理化指标、微生物生物量、胞外酶活性、硝化和反硝化酶活性、功能微生物基因丰度和28 d N2O累积排放量。结果显示:翻耕较对照显著增加了土壤N2O累积排放量,增加了44.2%,翻耕后进行植物残体覆盖显著抑制了N2O排放,减少了29.1%。翻耕后,土壤pH、可溶性有机碳(DOC)和微生物生物量碳(MBC)含量、β-1,4-葡萄糖苷酶(BG)和β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)活性、氨氧化古菌(AOA)和氨氧化细菌(AOB)amoA基因丰度显著增大,增幅分别为2.6%、209.5%、23.8%、180.4%、233.9%、74.6%和68.0%,土壤C/N、有机碳(SOC)和微生物生物量氮(MBN)含量显著降低,降幅分别为11.3%、13.6%和72.8%。翻耕后覆盖植物残体较翻耕显著降低了土壤DOC含量,抑制了BG、NAG、亮氨酸氨基肽酶(LAP)、酸性磷酸酶(AP)活性及AOA-amoA、AOB-amoA和nosZ Ⅰ基因丰度,降幅分别为12.8%、49.1%、59.9%、31.6%、25.0%、46.5%、59.5%、23.1%,显著增加了MBN含量,增幅为29.1%。相关性分析表明,土壤N2O累积排放量与pH、DOC含量、胞外酶活性、氮循环基因丰度(除nirS以外)均呈显著正相关,而与C/N、SOC和MBN含量显著负相关。AOA-amoA和AOB-amoA丰度是影响N2O排放的关键因子。综上,翻耕会增加土壤胞外酶活性和amoA基因丰度,但会导致SOC分解消耗和N2O增排,而植物残体覆盖能够有效缓解这些负面影响,是一种可行的改良措施。
冯娅斯, 蒋文婷, 刘益宏, 王燕, 李渊, 陈有超, 蔡延江. 翻耕和植物残体覆盖对“黑土滩”型退化草地土壤氧化亚氮排放的影响[J]. 草业学报, 2024, 33(11): 15-29.
Ya-si FENG, Wen-ting JIANG, Yi-hong LIU, Yan WANG, Yuan LI, You-chao CHEN, Yan-jiang CAI. Effects of plowing and plant residue mulching on soil nitrous oxide emissions in a black soil beach-type degraded grassland[J]. Acta Prataculturae Sinica, 2024, 33(11): 15-29.
基因Gene | 引物名称及序列 Primers names and sequences (5′-3′) | 片段长度Fragment length (bp) | 热循环Thermal condition |
---|---|---|---|
AOA-amoA | Arch-amoAF: STAATGGTCTGGCTTAGACG Arch-amoAR: GCGGCCATCCATCTGTATGT | 635 | 94 ℃预变性 5 min;94 ℃变性 30 s,55 ℃退火 45 s,72 ℃延伸 60 s,40 个循环Pre-denaturation at 94 ℃ for 5 min; 40 cycles of denaturation at 94 ℃ for 30 s, annealing at 55 ℃ for 45 s and extension at 72 ℃ for 60 s |
AOB-amoA | amoA-1F: GGGGTTTCTACTGGTGGT amoA-2R: CCCCTCKGSAAAGCCTTCTTC | 491 | 94 ℃预变性 5 min;94 ℃变性 30 s,57 ℃退火 45 s,72 ℃延伸 30 s,40 个循环Pre-denaturation at 94 ℃ for 5 min; 40 cycles of denaturation at 94 ℃ for 30 s, annealing at 57 ℃ for 45 s and extension at 72 ℃ for 30 s |
nirS | nirSCd3aF: GTSAACGTSAAGGARACSGG nirSR3cd: GASTTCGGRTGSGTCTTGA | 406 | 95 ℃预变性 3 min;95 ℃ 变性 10 s,56 ℃退火 30 s,72 ℃延伸 20 s,35 个循环Pre-denaturation at 95 ℃ for 3 min; 35 cycles of denaturation at 95 ℃ for 10 s, annealing at 56 ℃ for 30 s and extension at 72 ℃ for 20 s |
nirK | nirKF1aCu: ATCATGGTSCTGCCGCG nirKR3Cu: GCCTCGATCAGRTTGTGGTT | 473 | 95 ℃预变性 3 min;95 ℃变性 30 s,56 ℃退火 30 s,72 ℃延伸 20 s,35 个循环Pre-denaturation at 95 ℃ for 3 min; 35 cycles of denaturation at 95 ℃ for 30 s, annealing at 56 ℃ for 30 s and extension at 72 ℃ for 20 s |
nosZ I | NosZ1840F: CGCRACGGCAASAAGGTSMSSGT NosZ2090R: CAKRTGCAKSGCRTGGCAGAA | 259 | 95 ℃预变性 3 min;95 ℃变性 10 s,58 ℃退火 25 s,72 ℃延伸 20 s,35 个循环Pre-denaturation at 95 ℃ for 3 min; 35 cycles of denaturation at 95 ℃ for 10 s, annealing at 58 ℃ for 25 s and extension at 72 ℃ for 20 s |
表1 功能基因定量PCR引物信息和热循环条件
Table 1 PCR primers and thermal cycling conditions for gene quantification
基因Gene | 引物名称及序列 Primers names and sequences (5′-3′) | 片段长度Fragment length (bp) | 热循环Thermal condition |
---|---|---|---|
AOA-amoA | Arch-amoAF: STAATGGTCTGGCTTAGACG Arch-amoAR: GCGGCCATCCATCTGTATGT | 635 | 94 ℃预变性 5 min;94 ℃变性 30 s,55 ℃退火 45 s,72 ℃延伸 60 s,40 个循环Pre-denaturation at 94 ℃ for 5 min; 40 cycles of denaturation at 94 ℃ for 30 s, annealing at 55 ℃ for 45 s and extension at 72 ℃ for 60 s |
AOB-amoA | amoA-1F: GGGGTTTCTACTGGTGGT amoA-2R: CCCCTCKGSAAAGCCTTCTTC | 491 | 94 ℃预变性 5 min;94 ℃变性 30 s,57 ℃退火 45 s,72 ℃延伸 30 s,40 个循环Pre-denaturation at 94 ℃ for 5 min; 40 cycles of denaturation at 94 ℃ for 30 s, annealing at 57 ℃ for 45 s and extension at 72 ℃ for 30 s |
nirS | nirSCd3aF: GTSAACGTSAAGGARACSGG nirSR3cd: GASTTCGGRTGSGTCTTGA | 406 | 95 ℃预变性 3 min;95 ℃ 变性 10 s,56 ℃退火 30 s,72 ℃延伸 20 s,35 个循环Pre-denaturation at 95 ℃ for 3 min; 35 cycles of denaturation at 95 ℃ for 10 s, annealing at 56 ℃ for 30 s and extension at 72 ℃ for 20 s |
nirK | nirKF1aCu: ATCATGGTSCTGCCGCG nirKR3Cu: GCCTCGATCAGRTTGTGGTT | 473 | 95 ℃预变性 3 min;95 ℃变性 30 s,56 ℃退火 30 s,72 ℃延伸 20 s,35 个循环Pre-denaturation at 95 ℃ for 3 min; 35 cycles of denaturation at 95 ℃ for 30 s, annealing at 56 ℃ for 30 s and extension at 72 ℃ for 20 s |
nosZ I | NosZ1840F: CGCRACGGCAASAAGGTSMSSGT NosZ2090R: CAKRTGCAKSGCRTGGCAGAA | 259 | 95 ℃预变性 3 min;95 ℃变性 10 s,58 ℃退火 25 s,72 ℃延伸 20 s,35 个循环Pre-denaturation at 95 ℃ for 3 min; 35 cycles of denaturation at 95 ℃ for 10 s, annealing at 58 ℃ for 25 s and extension at 72 ℃ for 20 s |
图1 不同处理下土壤N2O累积排放量及硝化和反硝化酶活性CK: 对照Control; PL: 退化草地进行翻耕Plowing degraded grassland; MR: 退化草地进行植物残体覆盖Mulching plant residues on degraded grassland; PL+MR: 退化草地进行翻耕和植物残体覆盖Mulching plant residues after plowing on degraded grassland. 不同小写字母表示不同处理间差异显著(P<0.05)。Different lowercase letters showed significant differences among different treatments at 0.05 level. 下同The same below.
Fig.1 Soil N2O cumulative emissions, nitrifying enzyme and denitrifying enzyme activity under different treatments
图4 不同处理下土壤胞外酶活性BG: β-1,4-葡萄糖苷酶 β-1,4-glucosidase; CBH: 纤维二糖水解酶 Cellobiohydrolase; NAG: β-1,4-N-乙酰氨基葡萄糖苷酶 β-1,4-N-acetylglucosaminidase; LAP: 亮氨酸氨基肽酶 Leucine aminopeptidase; AP: 酸性磷酸酶 Acid phosphatase. 下同The same below.
Fig.4 Soil extracellular enzyme activity under different treatments
指标Index | CK | PL | MR | PL+MR |
---|---|---|---|---|
土壤质量含水量Soil water content (SWC, %) | 44.26±1.43b | 38.27±1.77c | 49.04±1.49a | 41.59±2.18bc |
土壤pH值Soil pH value | 5.37±0.02b | 5.51±0.04a | 5.44±0.03a | 5.48±0.03a |
土壤有机碳Soil organic carbon (SOC, g·kg-1) | 57.11±3.27a | 49.34±2.31b | 53.02±3.54ab | 52.63±1.98ab |
总氮Total nitrogen (TN, g·kg-1) | 4.82±0.15a | 4.62±0.17a | 4.54±0.24a | 4.79±0.19a |
铵态氮Ammonium nitrogen (NH4+-N, mg·kg-1) | 5.88±0.50a | 4.32±0.58b | 3.56±0.40b | 3.75±0.46b |
硝态氮Nitrate nitrogen (NO3--N, mg·kg-1) | 40.23±3.69b | 37.06±1.41b | 48.22±2.62a | 36.61±2.42b |
可溶性有机碳Dissolved organic carbon (DOC, mg·kg-1) | 53.15±8.33c | 164.51±10.39a | 54.12±2.50c | 143.37±4.93b |
可溶性有机氮Dissolved organic nitrogen (DON, mg·kg-1) | 23.08±2.85a | 12.81±5.41b | 21.65±3.89a | 14.91±2.19ab |
土壤C/N Soil C/N | 12.05±0.04a | 10.69±0.09c | 11.82±0.07b | 10.77±0.08c |
表2 不同处理下土壤理化性质
Table 2 Soil physical and chemical properties under different treatments
指标Index | CK | PL | MR | PL+MR |
---|---|---|---|---|
土壤质量含水量Soil water content (SWC, %) | 44.26±1.43b | 38.27±1.77c | 49.04±1.49a | 41.59±2.18bc |
土壤pH值Soil pH value | 5.37±0.02b | 5.51±0.04a | 5.44±0.03a | 5.48±0.03a |
土壤有机碳Soil organic carbon (SOC, g·kg-1) | 57.11±3.27a | 49.34±2.31b | 53.02±3.54ab | 52.63±1.98ab |
总氮Total nitrogen (TN, g·kg-1) | 4.82±0.15a | 4.62±0.17a | 4.54±0.24a | 4.79±0.19a |
铵态氮Ammonium nitrogen (NH4+-N, mg·kg-1) | 5.88±0.50a | 4.32±0.58b | 3.56±0.40b | 3.75±0.46b |
硝态氮Nitrate nitrogen (NO3--N, mg·kg-1) | 40.23±3.69b | 37.06±1.41b | 48.22±2.62a | 36.61±2.42b |
可溶性有机碳Dissolved organic carbon (DOC, mg·kg-1) | 53.15±8.33c | 164.51±10.39a | 54.12±2.50c | 143.37±4.93b |
可溶性有机氮Dissolved organic nitrogen (DON, mg·kg-1) | 23.08±2.85a | 12.81±5.41b | 21.65±3.89a | 14.91±2.19ab |
土壤C/N Soil C/N | 12.05±0.04a | 10.69±0.09c | 11.82±0.07b | 10.77±0.08c |
图6 不同处理下土壤理化性质、微生物指标及N2O累积排放量之间的相关性热图NH4+-N: 铵态氮Ammonium nitrogen; NO3--N: 硝态氮Nitrate nitrogen; DOC: 可溶性有机碳Dissolved organic carbon; SOC: 土壤有机碳Soil organic carbon; TN: 总氮Total nitrogen; C/N: 土壤C/N Soil C/N; pH: 土壤pH值Soil pH value; MBC: 微生物生物量碳Microbial biomass carbon; MBN: 微生物生物量氮Microbial biomass nitrogen; MBP: 微生物生物量磷Microbial biomass phosphorus; DEA: 反硝化酶活性Denitrifying enzyme activity; (nirK+nirS)/nosZ I: nirK+nirS和nosZ I基因丰度比值The ratio of nirK+nirS and nosZ I gene abundance. 下同The same below.
Fig.6 Correlation heat maps of soil physical and chemical properties, microbial indicators and N2O cumulative emissions under different treatments
1 | IPCC. In climate change 2021: The physical science basis//Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2021: 673-816. |
2 | Syakila A, Kroeze C. The global nitrous oxide budget revisited. Greenhouse Gas Measurement and Management, 2011, 1(1): 17-26. |
3 | Dangal S R S, Tian H Q, Xu R T, et al. Global nitrous oxide emissions from pasturelands and rangelands: Magnitude, spatiotemporal patterns, and attribution. Global Biogeochemical Cycles, 2019, 33(2): 200-222. |
4 | Wang Q J, Jing Z C, Wang W Y, et al. The study of grassland resource, ecological environment and sustainable development in Qinghai-Xizang Plateau. Qinghai Prataculture, 1997(3): 1-11. |
王启基, 景增春, 王文颖, 等. 青藏高原高寒草甸草地资源环境及可持续发展研究. 青海草业, 1997(3): 1-11. | |
5 | Zhang Y. The Spatio-temporal patterns and controls of net primary productivity in China’s grasslands and their responses to reserve policy. Lanzhou: Lanzhou University, 2022. |
张意. 中国草地植被生产力时空格局、成因及其对保护区政策的响应. 兰州: 兰州大学, 2022. | |
6 | Fayiah M, Dong S K, Khomera S W, et al. Status and challenges of Qinghai-Tibet Plateau’s grasslands: An analysis of causes, mitigation measures, and way forward. Sustainability, 2020, 12(3): 1099. |
7 | Luo Z M, Liu J X, Hu Y Q, et al. Taxonomic and functional diversity of soil microbial communities in subalpine meadows with different degradation degrees in Mount Wutai. Environmental Science, 2023, 44(5): 2918-2927. |
罗正明, 刘晋仙, 胡砚秋, 等. 五台山不同退化程度亚高山草甸土壤微生物群落分类与功能多样性特征. 环境科学, 2023, 44(5): 2918-2927. | |
8 | Li Y Y, Dong S K, Liu S L, et al. Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China. Soil Biology and Biochemistry, 2015, 80: 306-314. |
9 | Guo X W, Dai L C, Li Y K, et al. Major greenhouse gas fluxes in different degradation levels of alpine meadow on the Qinghai-Tibetan Plateau. Research of Soil and Water Conservation, 2019, 26(5): 188-194, 209. |
郭小伟, 戴黎聪, 李以康, 等. 不同退化程度下的高寒草甸主要温室气体通量. 水土保持研究, 2019, 26(5): 188-194, 209. | |
10 | Yuan Q, Yuan Q Z, Ren P. Coupled effect of climate change and human activities on the restoration/degradation of the Qinghai-Tibet Plateau grassland. Journal of Geographical Sciences, 2021, 31(9): 1299-1327. |
11 | Shang Z H, Dong Q M, Shi J J, et al. Research progress in recent ten years of ecological restoration for ‘black soil land’ degraded grassland on Tibetan Plateau-Concurrently discuss of ecological restoration in Sanjiangyuan region. Acta Agrestia Sinica, 2018, 26(1): 1-21. |
尚占环, 董全民, 施建军, 等. 青藏高原“黑土滩”退化草地及其生态恢复近10年研究进展-兼论三江源生态恢复问题. 草地学报, 2018, 26(1): 1-21. | |
12 | Ma Y S. Studies on formation mechanism of ‘black soil type’ degraded grassland restoring pattern in the source region of Yangtze, Yellow and Lantsang Rivers. Lanzhou: Gansu Agricultural University, 2007. |
马玉寿. 三江源区“黑土型”退化草地形成机理与恢复模式研究. 兰州: 甘肃农业大学, 2007. | |
13 | Zhang G R, Li W Q, Zhang F W, et al. Responses of key ecological attributes to multi-path restoration measures of degraded alpine meadows. Acta Ecologica Sinica, 2020, 40(18): 6293-6303. |
张光茹, 李文清, 张法伟, 等. 退化高寒草甸关键生态属性对多途径恢复措施的响应特征. 生态学报, 2020, 40(18): 6293-6303. | |
14 | Qu W J, Song N P, Chen L, et al. Responses of two types of desertification grasslands in desert steppe to shallow ploughing. Research of Soil and Water Conservation, 2014, 21(1): 85-89, 94. |
曲文杰, 宋乃平, 陈林, 等. 荒漠草原两种沙化草地对浅耕翻的响应. 水土保持研究, 2014, 21(1): 85-89, 94. | |
15 | Li Y, Li Z, Cui S, et al. Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. Soil and Tillage Research, 2019, 194: 104292. |
16 | Zhang L, Hao B T, Qi L X, et al. Dynamic responses of aboveground biomass and soil organic matter content to grassland restoration. Chinese Journal of Plant Ecology, 2018, 42(3): 317-326. |
张璐, 郝匕台, 齐丽雪, 等. 草原群落生物量和土壤有机质含量对改良措施的动态响应. 植物生态学报, 2018, 42(3): 317-326. | |
17 | Laudicina V A, Palazzolo E, Catania P, et al. Soil quality indicators as affected by shallow tillage in a vineyard grown in a semiarid mediterranean environment. Land Degradation & Development, 2017, 28(3): 1038-1046. |
18 | Gu C, Jia Z Q, Du B B, et al. Reviews and prospects of ecological restoration measures for degraded grasslands of China. Ecology and Environmental Sciences, 2022, 31(7): 1465-1475. |
古琛, 贾志清, 杜波波, 等. 中国退化草地生态修复措施综述与展望. 生态环境学报, 2022, 31(7): 1465-1475. | |
19 | Feng J H, Huang J F, Liu T Q, et al. Effects of tillage and straw returning methods on N2O emission from paddy fields, nitrogen uptake of rice plant and grain yield. Acta Agronomica Sinica, 2019, 45(8): 1250-1259. |
冯珺珩, 黄金凤, 刘天奇, 等. 耕作与秸秆还田方式对稻田N2O排放、水稻氮吸收及产量的影响. 作物学报, 2019, 45(8): 1250-1259. | |
20 | Li Z X, Zhang Q Y, Li Z, et al. Effects of no-tillage on greenhouse gas emissions in maize fields in a semi-humid temperate climate region. Environmental Pollution, 2022, 309: 119747. |
21 | Wang W Y, Yang M, Shen P F, et al. Conservation tillage reduces nitrous oxide emissions by regulating functional genes for ammonia oxidation and denitrification in a winter wheat ecosystem. Soil and Tillage Research, 2019, 194: 104347. |
22 | Badagliacca G, Benitez E, Amato G, et al. Long-term no-tillage application increases soil organic carbon, nitrous oxide emissions and faba bean (Vicia faba L.) yields under rain-fed mediterranean conditions. Science of the Total Environment, 2018, 639: 350-359. |
23 | Zhang Z S, Chen J, Liu T Q, et al. Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China. Atmospheric Environment, 2016, 144: 274-281. |
24 | Liu Y Q, Wang J L, Li Z Z. Research process on the effects of straw mulch on soil moisture and soil erosion. Research of Soil and Water Conservation, 2021, 28(6): 429-436. |
刘燕青, 王计磊, 李子忠. 秸秆覆盖对土壤水分和侵蚀的影响研究进展. 水土保持研究, 2021, 28(6): 429-436. | |
25 | Berhane M, Xu M, Liang Z Y, et al. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Global Change Biology, 2020, 26(4): 2686-2701. |
26 | Lin J T, Xu Z Y, Xue Y H, et al. N2O emissions from soils under short-term straw return in a wheat-corn rotation system are associated with changes in the abundance of functional microbes. Agriculture, Ecosystems & Environment, 2023, 341: 108217. |
27 | Hu N, Wang B, Gu Z, et al. Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice-wheat rotation system. Agriculture, Ecosystems & Environment, 2016, 223: 115-122. |
28 | Dai J H, Wu P F, Tang S S, et al. Effects of altered precipitation on soil nematode communities in alpine meadow. Acta Ecologica Sinica, 2023, 43(22): 9371-9383. |
代江慧, 吴鹏飞, 唐思思, 等. 降水变化对高寒草甸土壤线虫群落的影响. 生态学报, 2023, 43(22): 9371-9383. | |
29 | Tang L T, Mao R, Wang C T, et al. Effects of nitrogen and phosphorus addition on root characteristics of alpine meadow. Acta Prataculturae Sinica, 2021, 30(9): 105-116. |
唐立涛, 毛睿, 王长庭, 等. 氮磷添加对高寒草甸植物群落根系特征的影响. 草业学报, 2021, 30(9): 105-116. | |
30 | Ma Y S, Lang B N, Li Q Y, et al. Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow River source region. Pratacultural Science, 2002(9): 1-5. |
马玉寿, 郎百宁, 李青云, 等. 江河源区高寒草甸退化草地恢复与重建技术研究. 草业科学, 2002(9): 1-5. | |
31 | Xiao X Q, Zhang H K, Feng Y S, et al. Effects of plant residues on C∶N∶P of soil, microbial biomass, and extracellular enzyme in an alpine meadow on the Qinghai-Tibetan Plateau, China. Chinese Journal of Applied Ecology, 2023, 34(1): 58-66. |
肖向前, 张海阔, 冯娅斯, 等. 植物残体对青藏高原高寒草甸土壤、微生物和胞外酶C∶N∶P化学计量特征的影响. 应用生态学报, 2023, 34(1): 58-66. | |
32 | Lu R K. Analytical method of soil and agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
33 | Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707. |
34 | Brookes P C, Powlson D S, Jenkinson D S. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry, 1982, 14(4): 319-329. |
35 | Zhang H K, Zhang B G, Zhou Z Y, et al. Effects of converting natural forests to Moso bamboo and tea plantations on soil extracellular enzyme activity in subtropical China. Journal of Agro-Environment Science, 2022, 41(4): 826-833. |
张海阔, 张宝刚, 周钟昱, 等. 亚热带天然林转变为毛竹林和茶园对土壤胞外酶活性的影响. 农业环境科学学报, 2022, 41(4): 826-833. | |
36 | Jiang W T, Tian L B, Zhu G D, et al. Effects of different forms of nitrogen addition on N2O emissions from the soil of Moso bamboo (Phyllostachys edulis) forest. Journal of Plant Nutrition and Fertilizers, 2022, 28(5): 857-868. |
蒋文婷, 田立斌, 朱高荻, 等. 不同形态氮添加对毛竹林土壤N2O排放的影响. 植物营养与肥料学报, 2022, 28(5): 857-868. | |
37 | Hart S C, Stark J M, Davidson E A, et al. Nitrogen mineralization, immobilization, and nitrification//Weaver R W, Angle S, Bottomley P, et al. Methods of soil analysis. America: The American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 1994: 985-1018. |
38 | Welsh M K, McMillan S K, Vidon P G. Denitrification along the stream-riparian continuum in restored and unrestored agricultural streams. Journal of Environmental Quality, 2017, 46(5): 1010-1019. |
39 | Zhou Z Y, Zhang H K, Liang J H, et al. Soil denitrifying enzyme activity and its influencing factors in a bamboo forest riparian zone in the upper reaches of the Taihu Lake Basin, China. Chinese Journal of Applied Ecology, 2021, 32(9): 3070-3078. |
周钟昱, 张海阔, 梁佳辉, 等. 太湖流域上游竹林河岸带土壤反硝化酶活性及其影响因素. 应用生态学报, 2021, 32(9): 3070-3078. | |
40 | Zhang H K, Fang Y Y, Chen Y C, et al. Enhanced soil potential N2O emissions by land-use change are linked to AOB-amoA and nirK gene abundances and denitrifying enzyme activity in subtropics. Science of the Total Environment, 2022, 850: 158032. |
41 | Shi H A, Li L J, You M Y, et al. Impact of soil temperature and moisture on soil N2O emission from mollisols under different land-use types. Journal of Agro-Environment Science, 2013, 32(11): 2286-2292. |
石洪艾, 李禄军, 尤孟阳, 等. 不同土地利用方式下土壤温度与土壤水分对黑土N2O排放的影响. 农业环境科学学报, 2013, 32(11): 2286-2292. | |
42 | Zhao Y, Sun S N, Yan X B. Research status and development trends of soil nitrogen cycle in grasslands during 2010-2020. Pratacultural Science, 2021, 38(8): 1498-1512. |
赵仪, 孙盛楠, 严学兵. 2010-2020年草地土壤氮循环研究现状与发展趋势. 草业科学, 2021, 38(8): 1498-1512. | |
43 | Helfrich M, Nicolay G, Well R, et al. Effect of chemical and mechanical grassland conversion to cropland on soil mineral N dynamics and N2O emission. Agriculture, Ecosystems & Environment, 2020, 298: 106975. |
44 | He M X, Duan P P, Li D J. Review on the pathways of soil nitrous oxide production and its research methods. Chinese Journal of Ecology, 2023, 42(6): 1497-1508. |
何美霞, 段鹏鹏, 李德军. 土壤氧化亚氮产生路径及其研究方法进展. 生态学杂志, 2023, 42(6): 1497-1508. | |
45 | Liu L, Ma Y L, Yue F X, et al. Effects of biochar on nitrogen transformation functional genes abundances, arbuscular mycorrhizal fungi and N2O emission of rainfed maize season in cinnamon soil. Acta Ecologica Sinica, 2021, 41(7): 2803-2815. |
刘领, 马宜林, 悦飞雪, 等. 生物炭对褐土旱地玉米季氮转化功能基因、丛枝菌根真菌及N2O释放的影响. 生态学报, 2021, 41(7): 2803-2815. | |
46 | Wang W Y, Hou Y T, Pan W H, et al. Continuous application of conservation tillage affects in situ N2O emissions and nitrogen cycling gene abundances following nitrogen fertilization. Soil Biology and Biochemistry, 2021, 157: 108239. |
47 | Sun G, Wu N, Luo P. Characteristics of soil nitrogen and carbon of pastures under different management in northwestern Sichuan. Chinese Journal of Plant Ecology, 2005(2): 304-310. |
孙庚, 吴宁, 罗鹏. 不同管理措施对川西北草地土壤氮和碳特征的影响. 植物生态学报, 2005(2): 304-310. | |
48 | Hao D C, Su X Y, Xie H T, et al. Effects of tillage patterns and stover mulching on N2O production, nitrogen cycling genes and microbial dynamics in black soil. Journal of Environmental Management, 2023, 345: 118458. |
49 | Liu X T, Song X J, Li S P, et al. Understanding how conservation tillage promotes soil carbon accumulation: Insights into extracellular enzyme activities and carbon flows between aggregate fractions. Science of the Total Environment, 2023, 897: 165408. |
50 | Zheng J Q, Berns-Herrboldt E C, Gu B H, et al. Quantifying pH buffering capacity in acidic, organic-rich Arctic soils: Measurable proxies and implications for soil carbon degradation. Geoderma, 2022, 424: 116003. |
51 | Torabian S, Farhangi-Abriz S, Denton M D. Do tillage systems influence nitrogen fixation in legumes? A review. Soil and Tillage Research, 2019, 185: 113-121. |
52 | Zhong Y Q W, Yan W M, Canisares L P, et al. Alterations in soil pH emerge as a key driver of the impact of global change on soil microbial nitrogen cycling: Evidence from a global meta-analysis. Global Ecology and Biogeography, 2023, 32(1): 145-165. |
53 | Tzanakakis V A, Taylor A E, Bakken L R, et al. Relative activity of ammonia oxidizing archaea and bacteria determine nitrification-dependent N2O emissions in Oregon forest soils. Soil Biology and Biochemistry, 2019, 139: 107612. |
54 | O’Neill R M, Krol D J, Wall D, et al. Assessing the impact of long-term soil phosphorus on N-transformation pathways using 15N tracing. Soil Biology and Biochemistry, 2021, 152: 108066. |
55 | Jansen-Willems A B, Lanigan G J, Clough T J, et al. Long-term elevation of temperature affects organic N turnover and associated N2O emissions in a permanent grassland soil. Soil, 2016, 2(4): 601-614. |
56 | Zhang J B, Müller C, Cai Z C. Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biology and Biochemistry, 2015, 84: 199-209. |
57 | Cai Y J, Ding W X, Xiang J. Mechanisms of nitrous oxide and nitric oxide production in soils: A review. Soils, 2012, 44(5): 712-718. |
蔡延江, 丁维新, 项剑. 土壤N2O和NO产生机制研究进展. 土壤, 2012, 44(5): 712-718. | |
58 | Liu S Y, Zhang X P, Zhao J, et al. Effects of long-term no tillage treatment on gross soil N transformations in black soil in Northeast China. Geoderma, 2017, 301: 42-46. |
59 | Yu X, Dijkstra F A. Carbon and nitrogen dynamics affected by litter and nitrogen addition in a grassland soil: Role of fungi. European Journal of Soil Biology, 2020, 100: 103211. |
60 | Bent E, Németh D, Wagner-Riddle C, et al. Residue management leading to higher field-scale N2O flux is associated with different soil bacterial nitrifier and denitrifier gene community structures. Applied Soil Ecology, 2016, 108: 288-299. |
61 | Abiven S, Menasseri S, Chenu C, et al. The effects of organic inputs over time on soil aggregate stability-A literature analysis. Soil Biology and Biochemistry, 2009, 41(1): 1-12. |
62 | Daly E J, Hernandez-Ramirez G, Congreves K A, et al. Soil organic nitrogen priming to nitrous oxide: A synthesis. Soil Biology and Biochemistry, 2024, 189: 109254. |
63 | Zhang R, Zhao X, Pu C, et al. Meta-analysis on effects of residue retention on soil N2O emissions and influence factors in China. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22): 1-6. |
张冉, 赵鑫, 濮超, 等. 中国农田秸秆还田土壤N2O排放及其影响因素的Meta分析. 农业工程学报, 2015, 31(22): 1-6. | |
64 | Liu X, Li Q Z, Liu M X, et al. Responses of N2O emissions to straw addition under different tillage soils: A 15N labelling study. Applied Soil Ecology, 2023, 183: 104744. |
65 | Gan G Y, Yan R Y, Zhao X M, et al. Effects of straw addition on phosphorus availability in paddy soil under different hydrothermal conditions. Soil and Fertilizer Sciences in China, 2023(9): 20-27. |
甘国渝, 严如玉, 赵希梅, 等. 不同水热条件下秸秆添加对水稻土磷素有效性的影响. 中国土壤与肥料, 2023(9): 20-27. | |
66 | Zhao Z X, Wang X Y, Tian Y J, et al. Effects of straw returning on soil ammonia volatilization under different production conditions based on Meta-analysis. Environmental Science, 2022, 43(3): 1678-1687. |
赵政鑫, 王晓云, 田雅洁, 等. 基于Meta分析的不同生产条件下秸秆还田对土壤氨挥发的影响. 环境科学, 2022, 43(3): 1678-1687. | |
67 | Allison S D, Weintraub M N, Gartner T B, et al. Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function//Shukla G, Varma A. Soil enzymology. Berlin: Springer Berlin Heidelberg, 2010: 229-243. |
68 | Chen H H, Liu Y, Lu L P, et al. Effects of no-tillage and stover mulching on the transformation and utilization of chemical fertilizer N in Northeast China. Soil and Tillage Research, 2021, 213: 105131. |
69 | Tu H Z, Lin S, Wang J, et al. Effects of straw addition on N2O and CO2 emissions from red soil subjected to different long-term fertilization. Environmental Science, 2024, 45(6): 3716-3724. |
涂昊泽, 林杉, 王军, 等. 秸秆添加对长期施肥旱地红壤N2O和CO2排放的影响. 环境科学, 2024, 45(6): 3716-3724. |
[1] | 和阳一丹, 陈昌明, 黄晓霞, 施国美, 和克俭. 川西高寒草甸植物功能属性与环境因子的关系研究[J]. 草业学报, 2024, 33(9): 28-39. |
[2] | 谭湘蛟, 董逵才, 张华, 唐川川, 杨燕. 积雪增加对青藏高原高寒草甸土壤磷有效性的影响[J]. 草业学报, 2024, 33(7): 205-214. |
[3] | 秦瑞敏, 程思佳, 马丽, 张中华, 魏晶晶, 苏洪烨, 史正晨, 常涛, 胡雪, 阿的哈则, 袁访, 李珊, 周华坤. 围封和施肥对高寒草甸群落特征和植被碳氮库的影响[J]. 草业学报, 2024, 33(4): 1-11. |
[4] | 油志远, 马淑娟, 王长庭, 丁路明, 宋小艳, 尹高飞, 毛军. 川滇高原高寒草甸生态系统不同功能群植物分布格局的MaxEnt模型预测[J]. 草业学报, 2024, 33(3): 1-12. |
[5] | 马源, 王晓丽, 马玉寿, 张德罡. 高寒草甸退化程度对优势物种根际土壤真菌群落和生态网络的影响[J]. 草业学报, 2024, 33(2): 125-137. |
[6] | 李林芝, 张德罡, 马源, 罗珠珠, 林栋, 海龙, 白兰鸽. 不同退化程度高寒草甸土壤团聚体养分及生态化学计量特征研究[J]. 草业学报, 2023, 32(8): 48-60. |
[7] | 廖小琴, 王长庭, 刘丹, 唐国, 毛军. 氮磷配施对高寒草甸植物根系特征的影响[J]. 草业学报, 2023, 32(7): 160-174. |
[8] | 路欣, 祁娟, 师尚礼, 车美美, 李霞, 独双双, 赛宁刚, 贾燕伟. 阔叶类草抑制剂与氮素配施对高寒草甸土壤特性的影响[J]. 草业学报, 2023, 32(7): 38-48. |
[9] | 刘彩凤, 段媛媛, 王玲玲, 王乙茉, 郭正刚. 高原鼠兔干扰对高寒草甸植物物种多样性与土壤生态化学计量比间关系的影响[J]. 草业学报, 2023, 32(6): 157-166. |
[10] | 孙玉, 杨永胜, 何琦, 王军邦, 张秀娟, 李慧婷, 徐兴良, 周华坤, 张宇恒. 三江源高寒草甸水源涵养功能及土壤理化性质对退化程度的响应[J]. 草业学报, 2023, 32(6): 16-29. |
[11] | 周娟娟, 刘云飞, 王敬龙, 魏巍. 短期养分添加对西藏沼泽化高寒草甸地上生物量、植物多样性和功能性状的影响[J]. 草业学报, 2023, 32(11): 17-29. |
[12] | 游郭虹, 刘丹, 王艳丽, 王长庭. 高寒草甸植物叶片生态化学计量特征对长期氮肥添加的响应[J]. 草业学报, 2022, 31(9): 50-62. |
[13] | 张玉琢, 杨志贵, 于红妍, 张强, 杨淑霞, 赵婷, 许画画, 孟宝平, 吕燕燕. 基于STARFM的草地地上生物量遥感估测研究——以甘肃省夏河县桑科草原为例[J]. 草业学报, 2022, 31(6): 23-34. |
[14] | 李洋, 王毅, 韩国栋, 孙建, 汪亚峰. 青藏高原高寒草地土壤微生物量碳氮含量特征及其控制要素[J]. 草业学报, 2022, 31(6): 50-60. |
[15] | 刘咏梅, 董幸枝, 龙永清, 朱志梅, 王雷, 盖星华, 赵樊, 李京忠. 退化高寒草甸狼毒群落分类特征及其环境影响因子[J]. 草业学报, 2022, 31(4): 1-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||