草业学报 ›› 2021, Vol. 30 ›› Issue (10): 53-62.DOI: 10.11686/cyxb2020351
收稿日期:
2020-07-21
修回日期:
2020-09-07
出版日期:
2021-09-16
发布日期:
2021-09-16
通讯作者:
安渊
作者简介:
Corresponding author. E-mail: anyuan@sjtu.edu.cn基金资助:
Ru-yue WANG(), Shi-li YUAN, Wu-wu WEN, Peng ZHOU, Yuan AN()
Received:
2020-07-21
Revised:
2020-09-07
Online:
2021-09-16
Published:
2021-09-16
Contact:
Yuan AN
摘要:
为了探究磷对铝胁迫下紫花苜蓿幼苗生长和生理特征的影响,分别用不含和含200 μmol·L-1磷(P)、100 μmol·L-1铝(Al)、200 μmol·L-1 P+100 μmol·L-1 Al的简易 [Ca(NO3)2]营养液(pH=4.5)处理铝敏感紫花苜蓿品种‘Wl440’幼苗。结果表明,在铝处理中添加磷后,苜蓿幼苗根系和叶片中的铝含量分别比铝处理降低81.53%和61.47%,苜蓿幼苗的根长和根系活力显著提高,叶片电导率和丙二醛(MDA)含量显著下降;光合生理得到明显改善,与铝处理相比,磷添加处理幼苗叶片的叶绿素含量、蒸腾速率、气孔导度和光合速率明显提高,光系统Ⅱ和光系统I的电子传递速率增加;磷添加处理明显提高了铝胁迫苜蓿根系的草酸和苹果酸含量,体内有机酸螯合铝离子的能力增强,光合能力提高。因此,磷能够通过增加根系有机酸含量,改善铝胁迫苜蓿光合系统,从而缓解苜蓿铝毒害。
王如月, 袁世力, 文武武, 周鹏, 安渊. 磷对铝胁迫紫花苜蓿幼苗根系生长和生理特征的影响[J]. 草业学报, 2021, 30(10): 53-62.
Ru-yue WANG, Shi-li YUAN, Wu-wu WEN, Peng ZHOU, Yuan AN. Effects of phosphorus on root growth and photosynthetic physiology of alfalfa seedlings under aluminum stress[J]. Acta Prataculturae Sinica, 2021, 30(10): 53-62.
图1 磷对铝胁迫紫花苜蓿根系生长和活力的影响同一测定时间不同字母表示差异显著(P<0.05),下同。The different letters in the same day indicate significant differences at the 0.05 level, the same below.
Fig. 1 Effects of phosphorus on root length and activity of alfalfa under aluminum stress
指标 Index | 处理 Treatments | 处理天数 Days after treatment | ||
---|---|---|---|---|
3 d | 7 d | 10 d | ||
叶绿素a Chlorophyll a | CK | 1.19±0.13a | 1.22±0.06a | 1.27±0.09a |
P | 1.23±0.08a | 1.20±0.08a | 1.30±0.14a | |
Al | 1.05±0.13a | 1.04±0.04b | 1.04±0.05b | |
Al+P | 1.11±0.03a | 1.16±0.10ab | 1.22±0.05a | |
叶绿素b Chlorophyll b | CK | 0.38±0.04a | 0.41±0.02a | 0.42±0.04a |
P | 0.39±0.05a | 0.40±0.03a | 0.44±0.04a | |
Al | 0.36±0.02a | 0.34±0.03ab | 0.34±0.01ab | |
Al+P | 0.39±0.03a | 0.38±0.02a | 0.40±0.03a |
表 1 磷对铝胁迫紫花苜蓿叶绿素含量的影响
Table 1 Effect of phosphorus on chlorophyll content of alfalfa under aluminum stress (μg·g-1 FW)
指标 Index | 处理 Treatments | 处理天数 Days after treatment | ||
---|---|---|---|---|
3 d | 7 d | 10 d | ||
叶绿素a Chlorophyll a | CK | 1.19±0.13a | 1.22±0.06a | 1.27±0.09a |
P | 1.23±0.08a | 1.20±0.08a | 1.30±0.14a | |
Al | 1.05±0.13a | 1.04±0.04b | 1.04±0.05b | |
Al+P | 1.11±0.03a | 1.16±0.10ab | 1.22±0.05a | |
叶绿素b Chlorophyll b | CK | 0.38±0.04a | 0.41±0.02a | 0.42±0.04a |
P | 0.39±0.05a | 0.40±0.03a | 0.44±0.04a | |
Al | 0.36±0.02a | 0.34±0.03ab | 0.34±0.01ab | |
Al+P | 0.39±0.03a | 0.38±0.02a | 0.40±0.03a |
光合参数 Photosynthetic parameter | 处理 Treatment | 处理天数 Days after treatment | ||
---|---|---|---|---|
3 d | 7 d | 10 d | ||
蒸腾速率 Transpiration rate (mmol·m-2·s-1) | CK | 2.79±0.20a | 2.65±0.22a | 2.63±0.09a |
P | 2.55±0.53b | 2.70±0.05a | 2.66±0.07a | |
Al | 2.10±0.02c | 2.25±0.10c | 2.10±0.18c | |
Al+P | 2.39±0.02b | 2.54±0.15b | 2.37±0.14b | |
气孔导度 Stomatal conductance (mmol·m-2·s-1) | CK | 63.17±4.49a | 63.54±5.27a | 55.23±2.00a |
P | 58.01±12.20ab | 64.61±1.24a | 55.92±1.41a | |
Al | 47.68±1.38c | 53.84±2.57c | 43.30±3.67c | |
Al+P | 52.20±0.39b | 59.01±3.48b | 48.75±2.81b | |
光合速率 Photosynthetic rate (mmol·m-2·s-1) | CK | 12.77±0.83ab | 14.70±0.54a | 14.11±0.74a |
P | 12.26±0.44b | 14.73±0.14a | 14.56±0.52a | |
Al | 8.52±0.61c | 8.87±0.21c | 8.82±0.63b | |
Al+P | 9.58±0.46c | 10.74±0.94b | 9.46±0.54b | |
胞间CO2浓度 Intercellular CO2 concentration (ppm) | CK | 314.80±16.63bc | 276.27±14.80c | 278.36±11.25c |
P | 306.03±13.64c | 284.27±11.96c | 295.51±9.61c | |
Al | 350.82±9.59a | 340.97±16.08a | 350.28±10.19a | |
Al+P | 318.40±13.89bc | 314.03±15.81b | 316.91±17.23b |
表 2 磷对铝胁迫紫花苜蓿光合参数的影响
Table 2 Effects of phosphorus on photosynthetic parameters of alfalfa under aluminum stress
光合参数 Photosynthetic parameter | 处理 Treatment | 处理天数 Days after treatment | ||
---|---|---|---|---|
3 d | 7 d | 10 d | ||
蒸腾速率 Transpiration rate (mmol·m-2·s-1) | CK | 2.79±0.20a | 2.65±0.22a | 2.63±0.09a |
P | 2.55±0.53b | 2.70±0.05a | 2.66±0.07a | |
Al | 2.10±0.02c | 2.25±0.10c | 2.10±0.18c | |
Al+P | 2.39±0.02b | 2.54±0.15b | 2.37±0.14b | |
气孔导度 Stomatal conductance (mmol·m-2·s-1) | CK | 63.17±4.49a | 63.54±5.27a | 55.23±2.00a |
P | 58.01±12.20ab | 64.61±1.24a | 55.92±1.41a | |
Al | 47.68±1.38c | 53.84±2.57c | 43.30±3.67c | |
Al+P | 52.20±0.39b | 59.01±3.48b | 48.75±2.81b | |
光合速率 Photosynthetic rate (mmol·m-2·s-1) | CK | 12.77±0.83ab | 14.70±0.54a | 14.11±0.74a |
P | 12.26±0.44b | 14.73±0.14a | 14.56±0.52a | |
Al | 8.52±0.61c | 8.87±0.21c | 8.82±0.63b | |
Al+P | 9.58±0.46c | 10.74±0.94b | 9.46±0.54b | |
胞间CO2浓度 Intercellular CO2 concentration (ppm) | CK | 314.80±16.63bc | 276.27±14.80c | 278.36±11.25c |
P | 306.03±13.64c | 284.27±11.96c | 295.51±9.61c | |
Al | 350.82±9.59a | 340.97±16.08a | 350.28±10.19a | |
Al+P | 318.40±13.89bc | 314.03±15.81b | 316.91±17.23b |
参数 Parameter | PSII | PSI | ||||||
---|---|---|---|---|---|---|---|---|
CK | P | Al | Al+P | CK | P | Al | Al+P | |
快速光曲线斜率α | 0.13 | 0.15 | 0.11 | 0.09 | 0.39 | 0.39 | 0.45 | 0.42 |
潜在最大相对电子传递效率rETRmax | 15.29 | 18.20 | 7.94 | 11.12 | 101.53 | 92.72 | 71.05 | 80.05 |
半饱和光强Ik | 125.35 | 79.54 | 124.80 | 142.44 | 257.96 | 239.00 | 158.17 | 191.39 |
表 3 紫花苜蓿光系统Ⅱ和光系统Ⅰ快速光曲线拟合参数
Table 3 Fitting parameter of fast light curve of photosystem Ⅱ and I in Al-stressed alfalfa
参数 Parameter | PSII | PSI | ||||||
---|---|---|---|---|---|---|---|---|
CK | P | Al | Al+P | CK | P | Al | Al+P | |
快速光曲线斜率α | 0.13 | 0.15 | 0.11 | 0.09 | 0.39 | 0.39 | 0.45 | 0.42 |
潜在最大相对电子传递效率rETRmax | 15.29 | 18.20 | 7.94 | 11.12 | 101.53 | 92.72 | 71.05 | 80.05 |
半饱和光强Ik | 125.35 | 79.54 | 124.80 | 142.44 | 257.96 | 239.00 | 158.17 | 191.39 |
有机酸 Organic acid | 处理 Treatments | 处理时间 Treatment time | |||
---|---|---|---|---|---|
3 h | 6 h | 12 h | 24 h | ||
草酸 Oxalic acid | CK | 0.057±0.008b | 0.062±0.007c | 0.059±0.003c | 0.061±0.000c |
P | 0.051±0.005b | 0.056±0.001c | 0.066±0.006c | 0.067±0.003c | |
Al | 0.088±0.007a | 0.239±0.007a | 0.342±0.005a | 0.457±0.006a | |
Al+P | 0.064±0.007b | 0.174±0.001b | 0.272±0.007b | 0.328±0.004b | |
柠檬酸 Citric acid | CK | 0.031±0.004c | 0.041±0.010c | 0.045±0.008c | 0.044±0.010c |
P | 0.033±0.009c | 0.038±0.010c | 0.038±0.010c | 0.045±0.008c | |
Al | 0.075±0.007a | 0.137±0.009a | 0.232±0.004a | 0.286±0.010a | |
Al+P | 0.063±0.001b | 0.119±0.010b | 0.210±0.008b | 0.250±0.009b |
表 4 磷对铝胁迫紫花苜蓿根系有机酸分泌量的影响
Table 4 Effect of P on organic acid secretion of alfalfa under aluminum stress (mg·mL-1)
有机酸 Organic acid | 处理 Treatments | 处理时间 Treatment time | |||
---|---|---|---|---|---|
3 h | 6 h | 12 h | 24 h | ||
草酸 Oxalic acid | CK | 0.057±0.008b | 0.062±0.007c | 0.059±0.003c | 0.061±0.000c |
P | 0.051±0.005b | 0.056±0.001c | 0.066±0.006c | 0.067±0.003c | |
Al | 0.088±0.007a | 0.239±0.007a | 0.342±0.005a | 0.457±0.006a | |
Al+P | 0.064±0.007b | 0.174±0.001b | 0.272±0.007b | 0.328±0.004b | |
柠檬酸 Citric acid | CK | 0.031±0.004c | 0.041±0.010c | 0.045±0.008c | 0.044±0.010c |
P | 0.033±0.009c | 0.038±0.010c | 0.038±0.010c | 0.045±0.008c | |
Al | 0.075±0.007a | 0.137±0.009a | 0.232±0.004a | 0.286±0.010a | |
Al+P | 0.063±0.001b | 0.119±0.010b | 0.210±0.008b | 0.250±0.009b |
有机酸 Organic acid | 处理 Treatments | 处理天数 Days after treatment | ||
---|---|---|---|---|
3 d | 7 d | 10 d | ||
草酸 Oxalic acid | CK | 4.260±0.070a | 4.360±0.090a | 4.310±0.250a |
P | 3.810±0.120b | 4.090±0.070b | 4.250±0.160a | |
Al | 2.700±0.230d | 2.470±0.420d | 2.640±0.310c | |
Al+P | 3.230±0.150c | 2.650±0.320c | 3.240±0.160b | |
苹果酸 Malic acid | CK | 0.764±0.030a | 0.610±0.045a | 0.528±0.076ab |
P | 0.467±0.023c | 0.532±0.030a | 0.555±0.050a | |
Al | 0.419±0.039c | 0.390±0.121b | 0.100±0.067c | |
Al+P | 0.598±0.027b | 0.410±0.104ab | 0.384±0.115b | |
柠檬酸 Citric acid | CK | 0.419±0.035a | 0.493±0.107a | 0.421±0.176a |
P | 0.363±0.006ab | 0.470±0.008a | 0.411±0.109a | |
Al | 0.331±0.016b | 0.344±0.021b | 0.246±0.011a | |
Al+P | 0.319±0.044b | 0.426±0.031ab | 0.246±0.012a | |
琥珀酸 Succinic acid | CK | 0.261±0.015a | 0.281±0.013a | 0.276±0.011a |
P | 0.221±0.010b | 0.251±0.010b | 0.249±0.010a | |
Al | 0.216±0.011bc | 0.221±0.005c | 0.230±0.009a | |
Al+P | 0.189±0.019c | 0.261±0.004b | 0.228±0.053a |
表 5 磷对铝胁迫下紫花苜蓿根系有机酸含量的影响
Table 5 Effect of P on organic acid content in alfalfa under aluminum stress (mg·mL-1)
有机酸 Organic acid | 处理 Treatments | 处理天数 Days after treatment | ||
---|---|---|---|---|
3 d | 7 d | 10 d | ||
草酸 Oxalic acid | CK | 4.260±0.070a | 4.360±0.090a | 4.310±0.250a |
P | 3.810±0.120b | 4.090±0.070b | 4.250±0.160a | |
Al | 2.700±0.230d | 2.470±0.420d | 2.640±0.310c | |
Al+P | 3.230±0.150c | 2.650±0.320c | 3.240±0.160b | |
苹果酸 Malic acid | CK | 0.764±0.030a | 0.610±0.045a | 0.528±0.076ab |
P | 0.467±0.023c | 0.532±0.030a | 0.555±0.050a | |
Al | 0.419±0.039c | 0.390±0.121b | 0.100±0.067c | |
Al+P | 0.598±0.027b | 0.410±0.104ab | 0.384±0.115b | |
柠檬酸 Citric acid | CK | 0.419±0.035a | 0.493±0.107a | 0.421±0.176a |
P | 0.363±0.006ab | 0.470±0.008a | 0.411±0.109a | |
Al | 0.331±0.016b | 0.344±0.021b | 0.246±0.011a | |
Al+P | 0.319±0.044b | 0.426±0.031ab | 0.246±0.012a | |
琥珀酸 Succinic acid | CK | 0.261±0.015a | 0.281±0.013a | 0.276±0.011a |
P | 0.221±0.010b | 0.251±0.010b | 0.249±0.010a | |
Al | 0.216±0.011bc | 0.221±0.005c | 0.230±0.009a | |
Al+P | 0.189±0.019c | 0.261±0.004b | 0.228±0.053a |
1 | Li J F, Shi S L, Zhang S Q. Effects of the pH value of an acid environment on early growth and physiology of Medicago sativa W525. Acta Prataculturae Sinica, 2010, 19(2): 47-54. |
李剑峰, 师尚礼, 张淑卿. 环境酸度对紫花苜蓿早期生长和生理的影响. 草业学报, 2010, 19(2): 47-54. | |
2 | Li J F. Studies on adaption of Medicago sativa under Fe2+ and acid stress. Lanzhou: Gansu Agricultural University, 2007. |
李剑峰. 紫花苜蓿在酸铁胁迫下的适应性研究. 兰州: 甘肃农业大学, 2007. | |
3 | Wang Y, Wang S R, Zhang L L, et al. Effect of aluminum stress on photosynthesis of Schima superba seedlings and regulation by adding base cations and phosphorous. Journal of Tropical and Subtropical Botany, 2014(1): 61-67. |
王瑜, 王思荣, 张玲玲, 等. 铝胁迫对木荷幼苗光合特性的影响及添加盐基阳离子和磷的调节作用. 热带亚热带植物学报, 2014(1): 61-67. | |
4 | Shen R F, Zhao X Q. The sustainable use of acid soils. Journal of Agriculture, 2019, 9(3): 16-20. |
沈仁芳, 赵学强. 酸性土壤可持续利用. 农学学报, 2019, 9(3): 16-20. | |
5 | Liu Q, Zheng S J, Lin X Y. Plant physiological and molecular biological mechanism in response to aluminium toxicity. Chinese Journal of Applied Ecology, 2004, 15(9): 1641-1649. |
刘强, 郑绍建, 林咸永. 植物适应铝毒胁迫的生理及分子生物学机理. 应用生态学报, 2004, 15(9): 1641-1649. | |
6 | Zhao W G, Wu Z D. Research progress on genetic improvement of sweet sorghum tolerance to salt-alkali, cold and aluminum toxicity stress. Sugar Crops of China, 2017(3): 60-62. |
赵文光, 吴则东. 甜高粱耐盐碱、寒冷、铝毒胁迫遗传改良研究进展. 中国糖料, 2017(3): 60-62. | |
7 | Liang J X, Zhang B Y, Kang Y C, et al. Physiological response of Eucalyptus urophylla×E. grandis seedlings to exogenous phosphorus under aluminum stress. Guangxi Forestry Science, 2020, 49(1): 117-120. |
梁君霞, 张博宇, 亢亚超, 等. 铝胁迫下尾巨桉幼苗对外源磷的生理响应, 广西林业科学, 2020, 49(1): 117-120. | |
8 | Shao J F, Chen R F, Dong X Y, et al. Effects of different phosphorus rates on variations of Mn, Al, Mg and Ca concentrations in soil solution and wheat growth in acid red soil. Soils, 2016, 48(1): 36-41. |
邵继锋, 陈荣府, 董晓英, 等. 不同磷水平对红壤溶液中锰、铝、镁和钙浓度变化以及小麦生长的影响. 土壤, 2016, 48(1): 36-41. | |
9 | He L F, Liu Y L. Effects of aluminum on the absorption and distribution of nutrient elements of wheat seedlings. Journal of Chinese Electron Microscopy Society, 2000, 19(5): 685-694. |
何龙飞, 刘友良. 铝对小麦幼苗营养元素吸收和分布的影响. 电子显微学报, 2000, 19(5): 685-694. | |
10 | Teng W C, Kang Y C, Hou W J, et al. Phosphorus application reduces aluminum toxicity in two Eucalyptus clones by increasing its accumulation in roots and decreasing its content in leaves. PLoS One, 2018, 13(1): 1-20. |
11 | Wang W J, Zhao L L, Wang P C, et al. Effect of different nitrogen levels on the physiology and ecology of Paspalum wettsteinii. Acta Prataculturae Sinica, 2019, 36(3), 744-753. |
王文娟, 赵丽丽, 王普昶, 等. 氮素水平对宽叶雀稗生理生态的影响. 草业学报, 2019, 36(3), 744-753. | |
12 | Nakagawa T, Mori S, Yoshinura E. Amelioration of aluminum toxicity by pretreatment with phosphate in aluminum-tolerant rice cultivar. Journal of Plant Nutrition, 2003, 26(3): 619-628. |
13 | He G, Zhang J, Hu X, et al. Effect of aluminum toxicity and phosphorus deficiency on the growth and photosynthesis of oil tea (Camellia oleifera Abel.) seedlings in acidic red soils. Acta Physiologiae Plantarum, 2011, 33(4): 1285-1292. |
14 | Chen R F, Shen R F. Root phosphate exudation and pH shift in the rhizosphere are not responsible for aluminum resistance in rice. Acta Physiologiae Plantarum, 2008, 30(6): 817. |
15 | Dacosta M, Wang Z, Huang B, et al. Physiological adaptation of kentucky bluegrass to localized soil drying. Crop Science, 2004, 44(4): 1307-1314. |
16 | Hou F L. Experimental course in plant biology. Beijing: Science Press, 2004: 1-91. |
侯福林. 植物生物学实验教程. 北京: 科学出版社, 2004: 1-91. | |
17 | Cai Y P. Experimental guidance of plant physiology. Beijing: China Agricultural University Press, 2014: 1-204. |
蔡永萍. 植物生理学实验指导. 北京: 中国农业大学出版社, 2014: 1-204. | |
18 | Wang Z. Plant physiology. Beijing: Science and Technology Literature Press, 2006: 1-579. |
王忠. 植物生理学. 北京: 科学技术文献出版社, 2006: 1-579. | |
19 | Pellet D M, Grunes D L, Kochian L V. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta, 1995, 196(4): 788-795. |
20 | Mucha A P, Almeida C M R, Bordalo A A, et al. Exudation of organic acids by a marsh plant and implications on trace metal availability in the rhizosphere of estuarine sediments. Estuarine Coastal & Shelf Science, 2005, 65(1): 191-198. |
21 | An F, Li C Z, Zhang T T, et al. Effects of aluminum toxicity on physiological and leaf chlorophyll fluorescent characteristics of rubber tree seedlings. Chinese Journal of Applied Ecology, 2018, 29(12): 4191-4198. |
安锋, 李昌珍, 张婷婷, 等. 铝胁迫对橡胶苗生理和叶绿素荧光特性的影响. 应用生态学报, 2018, 29(12): 4191-4198. | |
22 | Wang B M, Chen Y Z, Wang X N, et al. The response to low phosphorus stress and its regulation mechanism in plants. Journal of Fujian Agricultural and Forestry University, 2015, 44(6): 567-575. |
王保明, 陈永忠, 王湘南, 等. 植物低磷胁迫响应及其调控机制. 福建农林大学学报, 2015, 44(6): 567-575. | |
23 | Zhao Y, Wei X H, Li T T. Effects of exogenous nitric oxide on seed germination and seedling growth of Chenopodium quinoa under complex saline-alkali stress. Acta Prataculturae Sinica, 2020, 29(4): 92-101. |
赵颖, 魏小红, 李桃桃. 外源NO对混合盐碱胁迫下藜麦种子萌发和幼苗生长的影响. 草业学报, 2020, 29(4): 92-101. | |
24 | Xie D J, Li J W, Ye Y J, et al. Effects of light quality on growth, and physiological and biochemical traits of Sarcandra glaba seedlings. Acta Prataculturae Sinica, 2020, 29(8): 104-115. |
谢德金, 李静文, 叶友杰, 等. 光质对草珊瑚幼苗生长及其生理生化基础的影响. 草业学报, 2020, 29(8): 104-115. | |
25 | Zhang Q M, Chen R F, Zhao X Q, et al. Effects of P on growth of rice seedling under Al stress and relationship between Al tolerance and P efficiency of the rice. Acta Pedologica Sinica, 2011, 48(1): 103-111. |
张启明, 陈荣府, 赵学强, 等. 铝胁迫下磷对水稻苗期生长的影响及水稻耐铝性与磷效率的关系. 土壤学报, 2011, 48(1): 103-111. | |
26 | Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plant. Internationale Review of Cytology, 2000, 200: 1-46. |
27 | Xiao X X, Liu X H, Yang Z W, et al. Effect of aluminum stress on the photosynthesis of longan seedlings. Chinese Journal of Tropical Crops, 2005, 26(1): 63-69. |
肖祥希, 刘星辉, 杨宗武, 等. 铝胁迫对龙眼幼苗光合作用的影响. 热带作物学报, 2005, 26(1): 63-69. | |
28 | Yan H P, Peng Y L, Zhao X Q, et al. Effect of exogenous 24-epibrassinolide on seed germination and seedling growth of maize under different stress. Journal of Nuclear Agricultural Sciences, 2016, 30(5): 988-996. |
闫惠萍, 彭云玲, 赵小强, 等. 外源24-表油菜素内酯对逆境胁迫下玉米种子萌发和幼苗生长的影响. 核农学报, 2016, 30(5): 988-996. | |
29 | Yang Z M, Yang H, Wang J, et al. Aluminum regulation of citrate metabolism for Al-induced citrate efflux in the roots of Cassia toral. Plant Science, 2004, 166(6): 1589-1594. |
30 | Yu L, Yan J, Guo S, et al. Aluminum-induced secretion of organic acid by cowpea (Vigna unguiculata L.) roots. Scientia Horticulturae, 2012, 135(1): 52-58. |
[1] | 唐立涛, 毛睿, 王长庭, 李洁, 胡雷, 字洪标. 氮磷添加对高寒草甸植物群落根系特征的影响[J]. 草业学报, 2021, 30(9): 105-116. |
[2] | 赵颖, 辛夏青, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿氮代谢的影响[J]. 草业学报, 2021, 30(9): 86-96. |
[3] | 汪雪, 刘晓静, 赵雅姣, 王静. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究[J]. 草业学报, 2021, 30(8): 73-85. |
[4] | 古丽娜扎尔·艾力null, 陶海宁, 王自奎, 沈禹颖. 基于APSIM模型的黄土旱塬区苜蓿——小麦轮作系统深层土壤水分及水分利用效率研究[J]. 草业学报, 2021, 30(7): 22-33. |
[5] | 周倩倩, 张亚见, 张静, 殷涂童, 盛下放, 何琳燕. 产硫化氢细菌的筛选及阻控苜蓿吸收铅和改良土壤的作用[J]. 草业学报, 2021, 30(7): 44-52. |
[6] | 马英, 许志豪, 曾巧红, 孟建龙, 胡亚虎, 苏洁琼. 氮素添加对荒漠化草原草本植物养分化学计量特征的影响[J]. 草业学报, 2021, 30(6): 64-72. |
[7] | 臧真凤, 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性[J]. 草业学报, 2021, 30(6): 73-81. |
[8] | 谢展, 穆麟, 张志飞, 陈桂华, 刘洋, 高帅, 魏仲珊. 乳酸菌或有机酸盐与尿素复配添加对紫花苜蓿混合青贮的影响[J]. 草业学报, 2021, 30(5): 165-173. |
[9] | 王吉祥, 宫焕宇, 屠祥建, 郭侲洐, 赵嘉楠, 沈健, 栗振义, 孙娟. 耐亚磷酸盐紫花苜蓿品种筛选及评价指标的鉴定[J]. 草业学报, 2021, 30(5): 186-199. |
[10] | 彭艳, 孙晶远, 马素洁, 王向涛, 孙磊, 魏学红. 氮磷添加对藏北人工牧草生产性能和品质的评价[J]. 草业学报, 2021, 30(5): 52-64. |
[11] | 张小芳, 魏小红, 刘放, 朱雪妹. PEG胁迫下紫花苜蓿幼苗内源激素对NO的响应[J]. 草业学报, 2021, 30(4): 160-169. |
[12] | 候怡谣, 李霄, 龙瑞才, 杨青川, 康俊梅, 郭长虹. 过量表达紫花苜蓿MsHB7基因对拟南芥耐旱性的影响[J]. 草业学报, 2021, 30(4): 170-179. |
[13] | 王辛有, 曹文侠, 王小军, 刘玉祯, 高瑞, 王世林, 安海涛, 邓秀霞, 王文虎. 河西地区豆禾混播草地生产性能对刈割高度与施肥的响应[J]. 草业学报, 2021, 30(4): 99-110. |
[14] | 刘帅楠, 李广, 吴江琪, 马维伟, 杨传杰, 张世康, 姚瑶, 陆燕花, 魏星星, 张娟. 黄土丘陵区不同土地类型下土壤养分特征—基于生态化学计量学[J]. 草业学报, 2021, 30(3): 200-207. |
[15] | 马欣, 罗珠珠, 张耀全, 刘家鹤, 牛伊宁, 蔡立群. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||