草业学报 ›› 2021, Vol. 30 ›› Issue (11): 52-61.DOI: 10.11686/cyxb2020424
王玲玲(), 库努都孜阿依·吐鲁洪null, 孟广飞, 郭正刚()
收稿日期:
2020-09-21
修回日期:
2020-11-12
出版日期:
2021-10-19
发布日期:
2021-10-19
通讯作者:
郭正刚
作者简介:
Corresponding author. E-mail: guozhg@lzu.edu.cn基金资助:
Ling-ling WANG(), Kunduzay·Turgun, Guang-fei MENG, Zheng-gang GUO()
Received:
2020-09-21
Revised:
2020-11-12
Online:
2021-10-19
Published:
2021-10-19
Contact:
Zheng-gang GUO
摘要:
垂穗披碱草是高寒地区常见的优质牧草,主要以营养繁殖维持种群更新,然而植株密度和土壤水分互作是否影响其地下营养繁殖尚不清楚。本研究采用盆栽试验,分析了不同土壤水分和植株密度互作下垂穗披碱草地下营养繁殖(克隆小株数、传播距离和地下芽数量)和生物量的变化特征,其中土壤水分包括3个梯度,分别为土壤饱和含水量的30%(W1)、土壤饱和含水量的50%(W2)和土壤饱和含水量的80%(W3);植株密度包括3个梯度,分别为4株·盆-1(R1)、8株·盆-1(R2)和12株·盆-1(R3)。结果表明:随土壤水分增加,克隆小株数先增加后减小,但传播距离、地下芽数量、地下和地上生物量以及总生物量均呈增加趋势;随植株密度增加,克隆小株数、传播距离、地下芽数量、地上地下生物量以及总生物量均呈减小趋势。土壤水分和植株密度互作对克隆小株数、传播距离、地下芽数量、地上地下生物量、总生物量均具有显著的互作效应,理论上存在最佳的土壤水分和植株密度的组合模式,其中传播距离、地下芽数量、地上生物量以及总生物量的最佳组合方式为W3R1,而克隆小株数和地下生物量的最佳组合方式为W2R1。说明垂穗披碱草栽培草地的管理需要根据目标而确定其植株密度和土壤水分。
王玲玲, 库努都孜阿依·吐鲁洪null, 孟广飞, 郭正刚. 土壤水分和植株密度互作对垂穗披碱草地下营养繁殖及生物量的影响[J]. 草业学报, 2021, 30(11): 52-61.
Ling-ling WANG, Kunduzay·Turgun, Guang-fei MENG, Zheng-gang GUO. Effect of soil moisture and plant density on vegetative propagation traits and biomass of Elymus nutans[J]. Acta Prataculturae Sinica, 2021, 30(11): 52-61.
项目Item | 处理Treatments | 克隆小株数 Ramets per plant | 传播距离 Spreading length (cm) |
---|---|---|---|
土壤水分 Soil moisture | W1 | 4.44±0.53c | 2.24±0.25b |
W2 | 7.67±2.81a | 2.73±0.90b | |
W3 | 6.46±1.47b | 3.25±1.29a | |
显著性Significant | ** | ** | |
植株密度 Plant density | R1 | 7.88±2.66a | 3.35±1.28a |
R2 | 6.25±1.52b | 2.86±0.54a | |
R3 | 4.44±0.55c | 2.01±0.38b | |
显著性Significant | ** | ** | |
土壤水分×植株密度 Soil moisture×plant density | W1R1 | 4.63±0.48d | 2.19±0.19c |
W1R2 | 4.50±0.41d | 2.32±0.06bc | |
W1R3 | 4.21±0.71d | 2.21±0.43c | |
W2R1 | 10.75± 0.65a | 3.43±0.61a | |
W2R2 | 8.00±0.35b | 3.11±0.34b | |
W2R3 | 4.25±0.29d | 1.64±0.22c | |
W3R1 | 8.25±0.29b | 4.45±1.49a | |
W3R2 | 6.25±0.20c | 3.14±0.62b | |
W3R3 | 4.88±0.37d | 2.17±0.18c | |
显著性Significant | ** | ** |
表1 土壤水分和植株密度对垂穗披碱草克隆小株数和传播距离的影响
Table 1 Effects of soil moisture and plant density on ramets per plant and spreading length
项目Item | 处理Treatments | 克隆小株数 Ramets per plant | 传播距离 Spreading length (cm) |
---|---|---|---|
土壤水分 Soil moisture | W1 | 4.44±0.53c | 2.24±0.25b |
W2 | 7.67±2.81a | 2.73±0.90b | |
W3 | 6.46±1.47b | 3.25±1.29a | |
显著性Significant | ** | ** | |
植株密度 Plant density | R1 | 7.88±2.66a | 3.35±1.28a |
R2 | 6.25±1.52b | 2.86±0.54a | |
R3 | 4.44±0.55c | 2.01±0.38b | |
显著性Significant | ** | ** | |
土壤水分×植株密度 Soil moisture×plant density | W1R1 | 4.63±0.48d | 2.19±0.19c |
W1R2 | 4.50±0.41d | 2.32±0.06bc | |
W1R3 | 4.21±0.71d | 2.21±0.43c | |
W2R1 | 10.75± 0.65a | 3.43±0.61a | |
W2R2 | 8.00±0.35b | 3.11±0.34b | |
W2R3 | 4.25±0.29d | 1.64±0.22c | |
W3R1 | 8.25±0.29b | 4.45±1.49a | |
W3R2 | 6.25±0.20c | 3.14±0.62b | |
W3R3 | 4.88±0.37d | 2.17±0.18c | |
显著性Significant | ** | ** |
图1 土壤水分和植物密度互作下垂穗披碱草克隆小株数和传播距离曲面图
Fig.1 3D response surface of ramets per plant and spreading length of E. nutans between soil moisture and plant density
处理 Treatments | 植株密度 Plant density | 主效应土壤水分Main effect of soil moisture | ||
---|---|---|---|---|
R1 | R2 | R3 | ||
土壤水分Soil moisture | ||||
W1 | 2.25±0.29bc | 2.44±0.63bc | 2.79±0.21b | 2.49±0.44b |
W2 | 4.00±1.22a | 2.00±0.84c | 1.71±0.42c | 2.57±1.33b |
W3 | 4.75±1.19a | 2.44±0.88bc | 4.21±2.07a | 3.80±1.68a |
主效应植株密度Main effect of plant density | 3.67±1.42a | 2.29±0.74b | 2.90±1.54ab | |
土壤水分Soil moisture | ** | |||
植株密度Plant density | * | |||
土壤水分×植株密度Soil moisture×plant density | * |
表2 土壤水分和植株密度互作对垂穗披碱草地下芽数量的影响
Table 2 Effects of soil moisture and plant density on underground buds per plant
处理 Treatments | 植株密度 Plant density | 主效应土壤水分Main effect of soil moisture | ||
---|---|---|---|---|
R1 | R2 | R3 | ||
土壤水分Soil moisture | ||||
W1 | 2.25±0.29bc | 2.44±0.63bc | 2.79±0.21b | 2.49±0.44b |
W2 | 4.00±1.22a | 2.00±0.84c | 1.71±0.42c | 2.57±1.33b |
W3 | 4.75±1.19a | 2.44±0.88bc | 4.21±2.07a | 3.80±1.68a |
主效应植株密度Main effect of plant density | 3.67±1.42a | 2.29±0.74b | 2.90±1.54ab | |
土壤水分Soil moisture | ** | |||
植株密度Plant density | * | |||
土壤水分×植株密度Soil moisture×plant density | * |
项目 Item | 处理 Treatments | 地上生物量 Aboveground biomass | 地下生物量 Underground biomass | 总生物量 Total biomass |
---|---|---|---|---|
土壤水分 Soil moisture | W1 | 0.71±0.19b | 0.16±0.09b | 0.85±0.23b |
W2 | 0.83±0.26b | 0.47±0.36a | 1.23±0.40a | |
W3 | 1.07±0.69a | 0.43±0.27a | 1.46±0.93a | |
显著性Significant | ** | ** | ** | |
植株密度 Plant density | R1 | 1.25±0.56a | 0.53±0.43a | 1.68±0.80a |
R2 | 0.82±0.21b | 0.28±0.18b | 1.09±0.40b | |
R3 | 0.54±0.05c | 0.25±0.08b | 0.77±0.10c | |
显著性Significant | ** | ** | ** | |
土壤水分×植株密度 Soil moisture×plant density | W1R1 | 0.88±0.13b | 0.10±0.06c | 0.97±0.20c |
W1R2 | 0.72±0.18b | 0.19±0.13c | 0.88±0.31c | |
W1R3 | 0.52±0.04c | 0.18±0.05c | 0.69±0.08c | |
W2R1 | 0.91±0.19b | 0.75±0.49a | 1.43±0.03b | |
W2R2 | 1.02±0.24b | 0.40±0.22b | 1.46±0.48b | |
W2R3 | 0.56±0.05c | 0.25±0.06c | 0.80±0.10c | |
W3R1 | 1.96±0.28a | 0.73±0.27a | 2.64±0.55a | |
W3R2 | 0.72±0.06b | 0.25±0.14c | 0.93±0.17c | |
W3R3 | 0.53±0.08c | 0.32±0.08b | 0.82±0.09c | |
显著性Significant | ** | * | ** |
表3 土壤水分和植株密度互作对垂穗披碱草生物量的影响
Table 3 Effects of soil moisture and plant density on biomass per plant of E. nutans (g·plant-1)
项目 Item | 处理 Treatments | 地上生物量 Aboveground biomass | 地下生物量 Underground biomass | 总生物量 Total biomass |
---|---|---|---|---|
土壤水分 Soil moisture | W1 | 0.71±0.19b | 0.16±0.09b | 0.85±0.23b |
W2 | 0.83±0.26b | 0.47±0.36a | 1.23±0.40a | |
W3 | 1.07±0.69a | 0.43±0.27a | 1.46±0.93a | |
显著性Significant | ** | ** | ** | |
植株密度 Plant density | R1 | 1.25±0.56a | 0.53±0.43a | 1.68±0.80a |
R2 | 0.82±0.21b | 0.28±0.18b | 1.09±0.40b | |
R3 | 0.54±0.05c | 0.25±0.08b | 0.77±0.10c | |
显著性Significant | ** | ** | ** | |
土壤水分×植株密度 Soil moisture×plant density | W1R1 | 0.88±0.13b | 0.10±0.06c | 0.97±0.20c |
W1R2 | 0.72±0.18b | 0.19±0.13c | 0.88±0.31c | |
W1R3 | 0.52±0.04c | 0.18±0.05c | 0.69±0.08c | |
W2R1 | 0.91±0.19b | 0.75±0.49a | 1.43±0.03b | |
W2R2 | 1.02±0.24b | 0.40±0.22b | 1.46±0.48b | |
W2R3 | 0.56±0.05c | 0.25±0.06c | 0.80±0.10c | |
W3R1 | 1.96±0.28a | 0.73±0.27a | 2.64±0.55a | |
W3R2 | 0.72±0.06b | 0.25±0.14c | 0.93±0.17c | |
W3R3 | 0.53±0.08c | 0.32±0.08b | 0.82±0.09c | |
显著性Significant | ** | * | ** |
项目 Item | 地下芽数量 Underground buds | 地上生物量 Aboveground biomass | 地下生物量 Belowground biomass | 克隆小株数 Ramets per plant | 传播距离 Spreading length |
---|---|---|---|---|---|
地上生物量Aboveground biomass | 0.359* | ||||
地下生物量Belowground biomass | 0.501** | 0.630** | |||
克隆小株数Ramets per plant | 0.374* | 0.390* | 0.694** | ||
传播距离Spreading length | 0.346* | 0.424** | 0.385* | 0.640** | |
总生物量Total biomass | 0.467** | 0.923** | 0.880** | 0.582** | 0.450** |
表4 各因素的相关系数
Table 4 The correlation coefficient of parameters
项目 Item | 地下芽数量 Underground buds | 地上生物量 Aboveground biomass | 地下生物量 Belowground biomass | 克隆小株数 Ramets per plant | 传播距离 Spreading length |
---|---|---|---|---|---|
地上生物量Aboveground biomass | 0.359* | ||||
地下生物量Belowground biomass | 0.501** | 0.630** | |||
克隆小株数Ramets per plant | 0.374* | 0.390* | 0.694** | ||
传播距离Spreading length | 0.346* | 0.424** | 0.385* | 0.640** | |
总生物量Total biomass | 0.467** | 0.923** | 0.880** | 0.582** | 0.450** |
1 | Gu M H. Study on the relationship between productivity and stability of artificial grassland in alpine meadow of Qinghai-Tibet Plateau. Lanzhou: Lanzhou University, 2008. |
顾梦鹤. 青藏高原高寒草甸人工草地生产力和稳定性关系的研究. 兰州: 兰州大学, 2008. | |
2 | Lu G P, Nie B. Field evaluation of Elymus nutans under alpine grassland conditions. Pratacultural Science, 2002(9): 13-15. |
陆光平, 聂斌. 垂穗披碱草利用价值评价. 草业科学, 2002(9): 13-15. | |
3 | Zhang D Y, Zhang L J, Huang D J, et al. Comprehensive evaluation of germplasm resources of Elymus nutans in alpine regions. Acta Agrestia Sinica, 2015(6): 1239-1246. |
张典业, 张丽静, 黄德君, 等. 高寒地区垂穗披碱草种质资源综合评价. 草地学报, 2015(6): 1239-1246. | |
4 | Luo W R, Li W H, Ganzhu Z B, et al. Effects of nitrogen on leaf functioni traits and population characteristics of the artificial grassland Elymus nutans in Northern Tibet. Acta Prataculturae Sinica, 2018, 27(5): 51-60. |
罗文蓉, 栗文瀚, 干珠扎布, 等. 施氮对藏北垂穗披碱草人工草地叶片功能性状和种群特征的影响. 草业学报, 2018, 27(5): 51-60. | |
5 | Wen Y, Zhou P, Zhang Z X, et al. Effects of irrigation quantity and nitrogen application application rate on Elymus nutans biomass and its compents. Pratacultural Science, 2020, 37(2): 330-338. |
文雅, 周培, 张忠雪, 等. 施氮和灌溉互作对垂穗披碱草生物量及构成要素的影响. 草业科学, 2020, 37(2): 330-338. | |
6 | Zhou H K, Zhao X Q, Zhao L, et al. The community characteristics and stability of the Elymus nutans artificial grassland in alpine meadow. Chinese Journal of Grassland, 2005, 21(3): 191-203. |
周华坤, 赵新全, 赵亮, 等. 高山草甸垂穗披碱草人工草地群落特征及稳定性研究. 中国草地学报, 2005, 21(3): 191-203. | |
7 | Dong S K, Wang X X, Liu S L, et al. Reproductive responses of alpine plants to grassland degradation and artificial restoration in the Qinghai-Tibetan Plateau. Grass and Forage Science, 2014, 70(2): 229-238. |
8 | Sun H, Niu Y, Chen Y S, et al. Survial and reproduction of plant species in the Qinghai-Tibet Plateau. Journal of Systematics and Evolution, 2014, 52(3): 378-396. |
9 | Wang Q, Yu C, Pang X P, et al. The disturbance and disturbance intensity of small and semi-fossorial herbivores alter the belowground bud density of graminoids in alpine meadows. Ecological Engineering, 2018, 113: 35-42. |
10 | Wang H Y, Wang Z W, Li L H, et al. Reproductive tendency of clonal plants in various habitats. Chinese Journal of Ecology, 2005(6): 670-676. |
王洪义, 王正文, 李凌浩, 等. 不同生境中克隆植物的繁殖倾向. 生态学杂志, 2005(6): 670-676. | |
11 | Frances S, Alessandra F, Sally A, et al. Introducing bud bank and below-ground plant organ research to South Africa: Report on a workshop and the way forward. South African Journal of Science, 2019, 115(11/12): 6-7. |
12 | Marek S. Length of the spacer rather than its plasticity relates to species distribution in various natural habitats. Folia Geobotanica, 2011, 46(2/3): 137-153. |
13 | Zhao L P, Wang Z B, Cheng J M. Review of bud banks in grassland ecosystem. Acta Prataculturae Sinica, 2015, 24(7): 172-179. |
赵凌平, 王占彬, 程积民. 草地生态系统芽库研究进展. 草业学报, 2015, 24(7): 172-179. | |
14 | Feng T, Li Y X, Yang Z S, et al. The clone configuration and plant population characteristics of Epimedium brevicornum in different habitat. Ecological Science, 2005(4): 298-303. |
冯图, 黎云祥, 杨子松, 等. 不同生境中淫羊藿克隆构型和分株种群特征. 生态科学, 2005(4): 298-303. | |
15 | Zhang D M, Zhao W Z, Luo W C. Effect of the population density on belowground bud bank of a rhizomatous clonal plant Leymus secalinus in Mu Us sandy land. Journal of Plant Research, 2019, 132(1): 69-80. |
16 | Niu J W, Lei Z L, Zhou H K, et al. Effects of planting density and nitrogen application level on biomass allocation of Elymus nutans. Pratacultural Science, 2014, 31(7): 1343-1351. |
牛建伟, 雷占兰, 周华坤, 等. 种植密度和施氮水平对垂穗披碱草生物量分配的影响. 草业科学, 2014, 31(7): 1343-1351. | |
17 | Wang H Y, Du G Z, Ren J J. The effects of population density and fertilization on the compensation effect of Elymus nutans after mowing. Chinese Journal of Plant Ecology, 2003(4): 477-483. |
王海洋, 杜国祯, 任金吉. 种群密度与施肥对垂穗披碱草刈割后补偿作用的影响. 植物生态学报, 2003(4): 477-483. | |
18 | Feng G L, Duan Y Y, Wen Y, et al. Effects of irrigation amount and density on growth performance and material distribution of Elymus nutans. Pratacultural Science, 2019, 36(8): 2087-2095. |
冯甘霖, 段媛媛, 文雅, 等. 灌溉量和密度对垂穗披碱草生长性能和物质分配的影响. 草业科学, 2019, 36(8): 2087-2095. | |
19 | Li Y S, Wang G X, Ding Y J, et al. Spatial heterogeneity of soil moisture in alpine meadow region of Qinghai-Tibet Plateau. Advances in Water Science, 2008(1): 61-67. |
李元寿, 王根绪, 丁永建, 等. 青藏高原高寒草甸区土壤水分的空间异质性. 水科学进展, 2008(1): 61-67. | |
20 | Hernández M D, Alfonso C, Cerrudo C, et al. Eco-physiological processes underlying maize water use efficiency response to plant density under contrasting water regime. Field Crop Research, 2020, 254: 1-7. |
21 | Zeng X, Wang Y R, Hu X W. The optimum temperature and temperature threshold of seed germination of Elymus nutans. Pratacultural Science, 2011(6): 988-992. |
曾霞, 王彦荣, 胡小文. 垂穗披碱草种子的萌发适宜温度及温度阈值. 草业科学, 2011(6): 988-992. | |
22 | Wang Q L, Han Y J, Ren L X, et al. Phenological period and its correlation with meteorological factors of Elymus nutans in Sichuan Province. Guizhou Agricultural Science, 2020(2): 65-69. |
王庆莉, 韩玉江, 任丽霞, 等. 四川石渠垂穗披碱草的物候期及其与气象因子的相关性. 贵州农业科学, 2020(2): 65-69. | |
23 | Hans K, Bart F, Jan W A, et al. High levels of inter-ramet water translocation in two rhizomatous Cares species, as quantified by deuterium labelling. Oecologia, 1996, 106(1): 73-84. |
24 | Zhan A, Chenn X P, Li S Q. Effects of soil water on maize root morphological and physiological responses to phosphorus supply. Journal of Plant Nutrition and Soil Science, 2019, 182(3): 477-484. |
25 | Hu J J, Chen S L, Guo Z W, et al. Influence of the length of spacer seed on the physiological integration effect of the clone of Latifolius decorus. Acta Botanica Boreali-Occidentalia Sinica, 2015(12): 2532-2541. |
胡俊靖, 陈双林, 郭子武, 等. 间隔子长度对美丽箬竹克隆分株水分生理整合效应的影响. 西北植物学报, 2015(12): 2532-2541. | |
26 | Jiang J, Wang Y Z. Water relationship and drought resistance sequence of potted seedlings of several xerophytes. Arid Areas Research, 1992(4): 31-38. |
蒋进, 王永增. 几种旱生植物盆栽苗木的水分关系和抗旱性排序. 干旱区研究, 1992(4): 31-38. | |
27 | Yuan S B, Yang Z D, Liu X Q, et al. Water level requirements of a Carex hygrophyte in Yangtze floodplain lakes. Ecological Engineering, 2019, 129: 29-37. |
28 | Aarssen L W. Denth without sex-the ‘problem of the small’ and selection for reproductive economy in flowering plants. Evolutionary Ecology, 2008, 22(3): 279-298. |
29 | Wang J F, Shi Y J, Ao Y N, et al. Summer drought decreases Leymus chinensis productivity through constraining the bud, tiller and production. Journal of Agronomy and Crop Science, 2019, 205(6): 554-561. |
30 | Gutiérrez J R, Vasquez H. The effects of water and nutrient addition on annual aboveground biomass production of Chenopodium petiolare H. B. K. (Chenopodiaceae) in a north-central Chilean old field. Ecoscience, 1996, 3(2): 211-215. |
31 | Wang S L, Wang R X, Jing W M, et al. Response of grassland biomass to water condition in arid mountainous area of Qilian Mountains. Geography of Arid Region, 2017, 40(4): 772-779. |
王顺利, 王荣新, 敬文茂, 等. 祁连山干旱山地草地生物量对水分条件的响应. 干旱区地理, 2017, 40(4): 772-779. | |
32 | Dai L C, Guo X W, Ke X, et al. Biomass allocation and productivity-richness relationship across four grassland types at the Qinghai Plateau. Ecology and Evolution, 2020, 10(1): 1-11. |
33 | Makihiko I, Dennis F W, Marinus J A. Effects of local density of clonal plants on their sexual and vegetative propagation strategies in a lattice structure mode. Ecological Modelling, 2012, 234: 51-59. |
34 | Paweł O. Optimal allocation to vegetative and sexual reproduction in plants: The effect of ramet density. Evolutionary Ecology, 2003, 17(3): 265-275. |
35 | Wong S, Anand M, Bauch C T. Agent-based modelling of clonal plant propagation across space: Recapturing fairy rings, power laws and other phenomena. Ecological Informatics, 2011, 6(2): 127-135. |
36 | Gerik T J, Neely C L. Plant density effects on main culm and tiller development of grain sorghum. Crop Science, 1987, 27(6): 1225-1230. |
37 | Zhang L M, Jin Y, Yao S M, et al. Growth and morphological responses of duckweed to clonal fragmentation, nutrient availability, and population density. Frontiers in Plant Science, 2020, 11: 618. |
38 | Gong B C R, Dou A M. Effects of different density and cutting height on biomass of Elymus sibiricus. Qinghai Prataculturae, 2000(4): 9-12. |
公保才让, 窦爱民. 不同密度, 不同刈割高度对老芒麦种群生物量的影响. 青海草业, 2000(4): 9-12. | |
39 | Kang C R, Xie J H, Li L L, et al. Effects of planting density and nitrogen application amount on maize yield and photosynthetic characteristics in arid area of Gansu Province. Acta Prataculturae Sinica, 2020, 29(5): 141-149. |
康彩睿, 谢军红, 李玲玲, 等. 种植密度与施氮量对陇中旱农区玉米产量及光合特性的影响. 草业学报, 2020, 29(5): 141-149. | |
40 | Zhao H K, Ma Z, Zhang C H, et al. Effects of planting density and nitrogen application level on biomass allocation of Avena sativa. Pratacultural Science, 2016, 33(2): 249-258. |
赵宏魁, 马真, 张春辉, 等. 种植密度和施氮水平对燕麦生物量分配的影响. 草业科学, 2016, 33(2): 249-258. |
[1] | 郭丰辉, 丁勇, 马文静, 李贤松, 李西良, 侯向阳. 母体放牧经历对羊草克隆后代干旱敏感性的影响[J]. 草业学报, 2021, 30(8): 119-126. |
[2] | 马婧婧, 刘耘华, 盛建东, 李宁, 武红旗, 贾宏涛, 孙宗玖, 程军回. 新疆草地优势种植物相对生物量沿海拔梯度变化特征[J]. 草业学报, 2021, 30(8): 25-35. |
[3] | 彭磊, 张力, 周小龙, 万彦博, 师庆东. 水分胁迫对新疆准东地区钠猪毛菜的生活史对策的影响[J]. 草业学报, 2021, 30(5): 65-74. |
[4] | 张亦然, 刘廷玺, 童新, 段利民, 吴宇辰. 基于XGBoost算法的草甸地上生物量的高光谱遥感反演[J]. 草业学报, 2021, 30(4): 1-12. |
[5] | 王子欣, 胡国铮, 水宏伟, 葛怡情, 韩玲, 高清竹, 干珠扎布, 旦久罗布. 不同时期干旱对青藏高原高寒草甸生态系统碳交换的影响[J]. 草业学报, 2021, 30(4): 24-33. |
[6] | 顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57. |
[7] | 张茹, 李建平, 彭文栋, 王芳, 李志刚. 柠条枝条覆盖对宁夏荒漠草原土壤水热及补播牧草生物量的影响[J]. 草业学报, 2021, 30(4): 58-67. |
[8] | 吕广一, 徐学宝, 高翠萍, 于志慧, 王新雅, 王成杰. 放牧对内蒙古不同类型草原植物和土壤总氮与稳定氮同位素的影响[J]. 草业学报, 2021, 30(3): 208-214. |
[9] | 张殿岱, 王雪梅, 昝梅. 基于Landsat 8 OLI影像的渭-库绿洲植被地上生物量估算[J]. 草业学报, 2021, 30(11): 1-12. |
[10] | 陈晓芬, 张路平, 秦文婧, 陈静蕊, 徐样庚, 刘明, 李忠佩, 徐昌旭, 刘佳. 红壤旱地上4种冬绿肥适宜播种量研究[J]. 草业学报, 2021, 30(10): 137-146. |
[11] | 周诗晶, 罗佳宁, 刘仲淼, 董超, 秦燕, 吴淑娟, 甘红军, 谢菲, 庄光辉, 伏兵哲, 牛得草. 箭筈豌豆种植密度对土壤微生物养分代谢的影响[J]. 草业学报, 2021, 30(10): 63-72. |
[12] | 李静, 红梅, 闫瑾, 张宇晨, 梁志伟, 叶贺, 高海燕, 赵巴音那木拉. 短花针茅荒漠草原植被群落结构及生物量对水氮变化的响应[J]. 草业学报, 2020, 29(9): 38-48. |
[13] | 鲍根生, 宋梅玲, 王玉琴, 尹亚丽, 王宏生. 围封和防除狼毒对狼毒斑块土壤理化性质和微生物量影响的研究[J]. 草业学报, 2020, 29(9): 63-72. |
[14] | 孙小富, 黄莉娟, 王普昶, 赵丽丽, 刘芳. 不同供磷水平对宽叶雀稗形态及生理的影响[J]. 草业学报, 2020, 29(8): 58-69. |
[15] | 郭强, 王玉琴, 鲍根生, 王宏生. 气象因子对高原鼢鼠种群数量的影响[J]. 草业学报, 2020, 29(8): 188-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||