草业学报 ›› 2021, Vol. 30 ›› Issue (9): 159-167.DOI: 10.11686/cyxb2020320
• 研究论文 • 上一篇
郭艳霞(), 李孟伟, 唐振华, 彭丽娟, 彭开屏, 谢芳, 谢华德, 杨承剑()
收稿日期:
2020-07-07
修回日期:
2020-09-27
出版日期:
2021-08-30
发布日期:
2021-08-30
通讯作者:
杨承剑
作者简介:
Corresponding author. E-mail: ycj0746@sina.com基金资助:
Yan-xia GUO(), Meng-wei LI, Zhen-hua TANG, Li-juan PENG, Kai-ping PENG, Fang XIE, Hua-de XIE, Cheng-jian YANG()
Received:
2020-07-07
Revised:
2020-09-27
Online:
2021-08-30
Published:
2021-08-30
Contact:
Cheng-jian YANG
摘要:
为了探究添加亚油酸条件下不同剂量硝酸钠对水牛瘤胃体外发酵脂肪酸组成及相关微生物数量的影响,本试验选用3头装有永久性瘤胃瘘管的母水牛,以精粗比40∶60为底物进行瘤胃液体外发酵试验。试验组硝酸钠的浓度分别为1、2、3 mg·mL-1,对照组不加硝酸钠,每组均添加0.25 mg·mL-1的亚油酸,每组各5个重复。在体外培养3、6、9、12、24 h时测定产气量和甲烷产量,24 h结束培养,测定瘤胃体外发酵参数、脂肪酸含量及瘤胃微生物数量。结果表明:1)添加硝酸钠显著降低了总产气量和甲烷产量(P<0.05);2)添加硝酸钠pH值和氨态氮(NH3-N)含量显著升高(P<0.05),异丁酸和异戊酸含量显著降低(P<0.05),而对总挥发性脂肪酸(TVFA)含量无显著性影响(P>0.05);3)添加1 mg·mL-1硝酸钠,C18:2cis-9,trans-11、C18:2trans-10,cis-12含量和不饱和脂肪酸/饱和脂肪酸(UFA/SFA)显著高于其他组(P<0.05),且C20:5n3 (EPA)含量显著高于添加3 mg·mL-1硝酸钠组(P<0.05),添加2 mg·mL-1硝酸钠C22:6n3 (DHA)含量显著高于其他组(P<0.05);4)添加硝酸钠组原虫数量显著低于对照组(P<0.05),添加2、3 mg·mL-1硝酸钠产甲烷菌数量显著低于添加1 mg·mL-1硝酸钠组(P<0.05),添加1 mg·mL-1硝酸钠总细菌、真菌、溶纤维丁酸弧菌、蛋白分解丁酸弧菌、非典型丁酸弧菌、亨氏丁酸弧菌数量显著高于其他组(P<0.05)。由此可得,体外法添加1~3 mg·mL-1硝酸钠和0.25 mg·mL-1亚油酸在维持水牛TVFA含量不变的情况下显著降低了甲烷含量,且1 mg·mL-1硝酸钠能促进亚油酸生成共轭亚油酸(CLA),优化脂肪酸组成,并能增加大多数瘤胃微生物的数量。
郭艳霞, 李孟伟, 唐振华, 彭丽娟, 彭开屏, 谢芳, 谢华德, 杨承剑. 添加亚油酸条件下不同剂量硝酸钠对水牛瘤胃体外发酵脂肪酸组成及相关微生物数量的影响[J]. 草业学报, 2021, 30(9): 159-167.
Yan-xia GUO, Meng-wei LI, Zhen-hua TANG, Li-juan PENG, Kai-ping PENG, Fang XIE, Hua-de XIE, Cheng-jian YANG. Effects of different doses of sodium nitrate on fatty acid composition and microbial population in in vitro simulation of buffalo rumen fermentation with added linoleic acid[J]. Acta Prataculturae Sinica, 2021, 30(9): 159-167.
项目Item | 含量Content |
---|---|
底物Substrates | |
豆粕Soybean meal (%) | 25.00 |
玉米Corn (%) | 15.00 |
象草Elephant grass (%) | 60.00 |
合计Total (%) | 100.00 |
营养水平Nutrient levels | |
粗蛋白Crude protein (CP,%) | 17.48 |
总能Gross energy (GE, MJ·kg-1) | 13.49 |
酸性洗涤纤维Acid detergent fiber (ADF,%) | 29.09 |
中性洗涤纤维Neutral detergent fiber (NDF,%) | 52.33 |
粗灰分Crude ash (Ash,%) | 7.84 |
钙Calcium (Ca,%) | 0.35 |
磷Phosphorus (P,%) | 0.17 |
表1 底物组成及营养水平
Table 1 Composition and nutrient levels of the substrate
项目Item | 含量Content |
---|---|
底物Substrates | |
豆粕Soybean meal (%) | 25.00 |
玉米Corn (%) | 15.00 |
象草Elephant grass (%) | 60.00 |
合计Total (%) | 100.00 |
营养水平Nutrient levels | |
粗蛋白Crude protein (CP,%) | 17.48 |
总能Gross energy (GE, MJ·kg-1) | 13.49 |
酸性洗涤纤维Acid detergent fiber (ADF,%) | 29.09 |
中性洗涤纤维Neutral detergent fiber (NDF,%) | 52.33 |
粗灰分Crude ash (Ash,%) | 7.84 |
钙Calcium (Ca,%) | 0.35 |
磷Phosphorus (P,%) | 0.17 |
菌株Strain | 引物序列Primer sequences (5′-3′) | 扩增长度Amplicon (bp) |
---|---|---|
总细菌Total bacteria[ | F:GTGSTGCAYGGYYGTCGTCA | 123 |
R:ACGTCRTCCMCNCCTTCCTC | ||
真菌Total fungi[ | F:GAGGAAGTAAAAGTCGTAACAAGGTTTC | 120 |
R:CAAATTCACAAAGGGTAGGATGATT | ||
原虫Protozoa[ | F:GCTTTCGWTGGTAGTGTATT | 223 |
R:CTTGCCCTCYAATCGTWCT | ||
产甲烷菌Methanogens[ | F:TTCGGTGGATCDCARAGRGC | 130 |
R:GBARGTCGWAWCCGTAGAATCC | ||
蛋白分解丁酸弧菌Butyrivibrio proteoclasticus[ | F:TCCGGTGGTATGAGATGGGC | 185 |
R:GTCGCTGCATCAGAGTTTCCT | ||
溶纤维丁酸弧菌Butyrivibrio fibrisolvens[ | F:GCCTCAGCGTCAGTAATCG | 187 |
R:GGAGCGTAGGCGGTTTTAC | ||
亨氏丁酸弧菌Butyrivibrio hungatei[ | F:AGGGTAATGCCTGTAGCTC | 264 |
R:TCACCCTCGCGGGAT | ||
非典型丁酸弧菌Atypical butyrivibrio[ | F:GACGGTGTATCAAGTCTGAAGTG | 276 |
R:GCCGGCACTGAAAGACTATGTC |
表2 Real-time PCR引物序列
Table 2 Primers sequence of real-time PCR
菌株Strain | 引物序列Primer sequences (5′-3′) | 扩增长度Amplicon (bp) |
---|---|---|
总细菌Total bacteria[ | F:GTGSTGCAYGGYYGTCGTCA | 123 |
R:ACGTCRTCCMCNCCTTCCTC | ||
真菌Total fungi[ | F:GAGGAAGTAAAAGTCGTAACAAGGTTTC | 120 |
R:CAAATTCACAAAGGGTAGGATGATT | ||
原虫Protozoa[ | F:GCTTTCGWTGGTAGTGTATT | 223 |
R:CTTGCCCTCYAATCGTWCT | ||
产甲烷菌Methanogens[ | F:TTCGGTGGATCDCARAGRGC | 130 |
R:GBARGTCGWAWCCGTAGAATCC | ||
蛋白分解丁酸弧菌Butyrivibrio proteoclasticus[ | F:TCCGGTGGTATGAGATGGGC | 185 |
R:GTCGCTGCATCAGAGTTTCCT | ||
溶纤维丁酸弧菌Butyrivibrio fibrisolvens[ | F:GCCTCAGCGTCAGTAATCG | 187 |
R:GGAGCGTAGGCGGTTTTAC | ||
亨氏丁酸弧菌Butyrivibrio hungatei[ | F:AGGGTAATGCCTGTAGCTC | 264 |
R:TCACCCTCGCGGGAT | ||
非典型丁酸弧菌Atypical butyrivibrio[ | F:GACGGTGTATCAAGTCTGAAGTG | 276 |
R:GCCGGCACTGAAAGACTATGTC |
项目 Item | 硝酸钠浓度NaNO3 concentration | |||
---|---|---|---|---|
0 mg·mL-1 | 1 mg·mL-1 | 2 mg·mL-1 | 3 mg·mL-1 | |
总产气量Total gas production (mL·g-1) | 162.00±3.70a | 77.00±5.35b | 73.50±1.71b | 72.50±5.68b |
总甲烷量Methane production (mL·g-1) | 8.86±0.04a | 2.78±0.06b | 2.30±0.09c | 2.01±0.03d |
pH值pH value | 6.71±0.01b | 6.81±0.01a | 6.82±0.01a | 6.81±0.01a |
氨态氮NH3-N (mg·100 mL-1) | 12.84±0.17b | 14.99±0.21a | 15.01±0.30a | 14.34±0.32a |
微生物蛋白Microprotein (MCP, mg·mL-1) | 5.01±0.31 | 5.52±0.32 | 4.83±0.07 | 5.53±0.36 |
乙酸Acetate (mmol·L-1) | 11.87±0.23 | 11.33±0.28 | 10.93±0.40 | 11.99±0.59 |
丙酸Propionate (mmol·L-1) | 5.20±0.10 | 4.93±0.17 | 4.66±0.16 | 5.18±0.23 |
丁酸Butyrate (mmol·L-1) | 1.22±0.02 | 1.39±0.03 | 1.24±0.07 | 1.30±0.08 |
异丁酸Isobutyrate (mmol·L-1) | 0.17±0.001a | 0.15±0.001bc | 0.14±0.01c | 0.16±0.001b |
戊酸Valerate (mmol·L-1) | 0.14±0.001 | 0.13±0.001 | 0.13±0.001 | 0.14±0.01 |
异戊酸Isovalerate (mmol·L-1) | 0.37±0.01a | 0.31±0.01b | 0.31±0.01b | 0.34±0.01a |
总挥发性脂肪酸Total volatile fatty acid (TVFA, mmol·L-1) | 18.97±0.36 | 18.24±0.49 | 17.41±0.63 | 19.12±0.92 |
乙酸/丙酸Acetate to propionate ratio | 2.28±0.01 | 2.31±0.04 | 2.34±0.02 | 2.31±0.01 |
表3 体外发酵24 h后的累积总产气量、总甲烷量、pH值、氨态氮、微生物蛋白和挥发性脂肪酸含量
Table 3 The cumulative total gas production, total methane production, pH value, NH3-N, MCP and volatile fatty acid content after 24 h in vitro fermentation
项目 Item | 硝酸钠浓度NaNO3 concentration | |||
---|---|---|---|---|
0 mg·mL-1 | 1 mg·mL-1 | 2 mg·mL-1 | 3 mg·mL-1 | |
总产气量Total gas production (mL·g-1) | 162.00±3.70a | 77.00±5.35b | 73.50±1.71b | 72.50±5.68b |
总甲烷量Methane production (mL·g-1) | 8.86±0.04a | 2.78±0.06b | 2.30±0.09c | 2.01±0.03d |
pH值pH value | 6.71±0.01b | 6.81±0.01a | 6.82±0.01a | 6.81±0.01a |
氨态氮NH3-N (mg·100 mL-1) | 12.84±0.17b | 14.99±0.21a | 15.01±0.30a | 14.34±0.32a |
微生物蛋白Microprotein (MCP, mg·mL-1) | 5.01±0.31 | 5.52±0.32 | 4.83±0.07 | 5.53±0.36 |
乙酸Acetate (mmol·L-1) | 11.87±0.23 | 11.33±0.28 | 10.93±0.40 | 11.99±0.59 |
丙酸Propionate (mmol·L-1) | 5.20±0.10 | 4.93±0.17 | 4.66±0.16 | 5.18±0.23 |
丁酸Butyrate (mmol·L-1) | 1.22±0.02 | 1.39±0.03 | 1.24±0.07 | 1.30±0.08 |
异丁酸Isobutyrate (mmol·L-1) | 0.17±0.001a | 0.15±0.001bc | 0.14±0.01c | 0.16±0.001b |
戊酸Valerate (mmol·L-1) | 0.14±0.001 | 0.13±0.001 | 0.13±0.001 | 0.14±0.01 |
异戊酸Isovalerate (mmol·L-1) | 0.37±0.01a | 0.31±0.01b | 0.31±0.01b | 0.34±0.01a |
总挥发性脂肪酸Total volatile fatty acid (TVFA, mmol·L-1) | 18.97±0.36 | 18.24±0.49 | 17.41±0.63 | 19.12±0.92 |
乙酸/丙酸Acetate to propionate ratio | 2.28±0.01 | 2.31±0.04 | 2.34±0.02 | 2.31±0.01 |
项目 Item | 硝酸钠浓度NaNO3 concentration | |||
---|---|---|---|---|
0 mg·mL-1 | 1 mg·mL-1 | 2 mg·mL-1 | 3 mg·mL-1 | |
C6:0 | 0.15±0.04c | 0.20±0.04bc | 0.30±0.03b | 0.45±0.03a |
C8:0 | 1.60±0.22 | 1.22±0.48 | 2.07±0.10 | 1.78±0.07 |
C10:0 | 0.38±0.04b | 0.38±0.30b | 0.56±0.04a | 0.58±0.05a |
C11:0 | 0.26±0.02 | 0.26±0.06 | 0.20±0.02 | 0.26±0.05 |
C12:0 | 0.47±0.04 | 0.43±0.03 | 0.43±0.05 | 0.42±0.02 |
C13:0 | 6.03±2.02 | 4.95±0.19 | 2.74±0.23 | 2.68±0.20 |
C14:1n5 | 0.90±0.03 | 0.95±0.05 | 0.90±0.06 | 0.82±0.06 |
C14:0 | 3.02±0.28 | 3.58±0.26 | 3.25±0.29 | 0.82±0.06 |
C15:0 | 3.23±0.55 | 3.97±0.75 | 2.43±0.23 | 2.86±0.23 |
C16:1n7 | 0.36±0.07 | 0.36±0.03 | 0.70±0.28 | 0.89±0.30 |
C16:0 | 51.53±9.19 | 55.85±2.27 | 48.91±3.40 | 54.87±7.97 |
C17:0 | 1.86±0.31 | 2.30±0.44 | 1.45±0.18 | 1.94±0.21 |
C18:3n6 | 0.71±0.10 | 1.01±0.13 | 0.93±0.15 | 0.82±0.09 |
C18:3n3 | 0.55±0.16 | 0.60±0.12 | 0.97±0.33 | 0.56±0.22 |
C18:2n6c | 15.27±3.28 | 16.30±0.72 | 11.54±2.16 | 9.33±2.97 |
t11-C18:1 | 12.12±2.01b | 13.85±0.56ab | 14.89±1.39ab | 17.92±1.73a |
C18:1n9c | 35.96±6.95 | 49.75±9.74 | 31.94±7.14 | 51.53±4.94 |
C18:0 | 75.94±15.85 | 61.13±1.01 | 54.84±4.48 | 69.30±9.17 |
C18:2 cis-9,trans-11 | 0.67±0.16b | 1.13±0.23a | 0.42±0.03b | 0.49±0.01b |
C18:2 trans-10,cis-12 | 0.51±0.11b | 0.92±0.09a | 0.43±0.14b | 0.38±0.07b |
C19:0 | 0.33±0.04b | 0.37±0.03b | 0.41±0.04b | 0.62±0.09a |
C20:4n6 | 0.94±0.31 | 0.93±0.13 | 0.88±0.38 | 0.43±0.07 |
C20:5n3 (EPA) | 0.62±0.18ab | 0.80±0.08a | 0.59±0.10ab | 0.34±0.07b |
C20:2n6 | 0.42±0.03 | 0.74±0.18 | 0.75±0.19 | 0.68±0.08 |
C20:3n6 | 4.93±1.48 | 4.66±0.36 | 3.55±1.20 | 2.62±1.37 |
C20:1 | 1.29±0.56 | 1.72±0.74 | 0.37±0.10 | 0.67±0.23 |
C20:3n3 | 0.44±0.12 | 0.81±0.29 | 0.29±0.03 | 0.44±0.10 |
C20:0 | 2.76±0.56 | 3.42±0.68 | 2.44±0.30 | 3.42±0.60 |
C21:0 | 4.06±1.20a | 2.15±0.46ab | 4.04±1.20a | 1.10±0.16b |
C22:6n3 (DHA) | 0.69±0.13b | 0.40±0.08b | 1.02±0.29a | 0.65±0.10b |
C22:2n6 | 78.51±2.28a | 76.49±5.62a | 9.83±4.15b | 5.67±1.84b |
C22:1n9 | 0.68±0.13a | 0.44±0.06ab | 0.27±0.08b | 0.59±0.02a |
C22:0 | 0.95±0.19 | 1.42±0.45 | 0.87±0.16 | 1.47±0.31 |
C23:0 | 0.90±0.18 | 0.86±0.24 | 0.87±0.31 | 0.51±0.07 |
C24:1n9 | 0.32±0.04 | 2.25±1.69 | 0.82±0.16 | 0.65±0.21 |
C24:0 | 4.15±1.38 | 3.48±0.70 | 3.16±0.38 | 2.56±0.41 |
SFA | 179.27±29.24 | 151.60±5.03 | 134.79±4.31 | 156.13±15.06 |
MUFA | 51.62±8.88 | 69.31±9.60 | 49.88±8.58 | 73.07±5.53 |
PUFA | 104.25±24.28a | 104.78±6.18a | 31.19±6.26b | 22.39±6.44b |
UFA | 155.87±27.28a | 174.91±9.19a | 81.82±9.45b | 96.15±10.36b |
UFA/SFA | 0.87±0.10b | 1.15±0.03a | 0.60±0.06c | 0.61±0.02c |
表4 添加不同剂量硝酸钠对体外发酵瘤胃液脂肪酸浓度的影响
Table 4 Effect of adding sodium nitrate of different doses on fatty acid concentration of rumen fluid in vitro (μg·mL-1)
项目 Item | 硝酸钠浓度NaNO3 concentration | |||
---|---|---|---|---|
0 mg·mL-1 | 1 mg·mL-1 | 2 mg·mL-1 | 3 mg·mL-1 | |
C6:0 | 0.15±0.04c | 0.20±0.04bc | 0.30±0.03b | 0.45±0.03a |
C8:0 | 1.60±0.22 | 1.22±0.48 | 2.07±0.10 | 1.78±0.07 |
C10:0 | 0.38±0.04b | 0.38±0.30b | 0.56±0.04a | 0.58±0.05a |
C11:0 | 0.26±0.02 | 0.26±0.06 | 0.20±0.02 | 0.26±0.05 |
C12:0 | 0.47±0.04 | 0.43±0.03 | 0.43±0.05 | 0.42±0.02 |
C13:0 | 6.03±2.02 | 4.95±0.19 | 2.74±0.23 | 2.68±0.20 |
C14:1n5 | 0.90±0.03 | 0.95±0.05 | 0.90±0.06 | 0.82±0.06 |
C14:0 | 3.02±0.28 | 3.58±0.26 | 3.25±0.29 | 0.82±0.06 |
C15:0 | 3.23±0.55 | 3.97±0.75 | 2.43±0.23 | 2.86±0.23 |
C16:1n7 | 0.36±0.07 | 0.36±0.03 | 0.70±0.28 | 0.89±0.30 |
C16:0 | 51.53±9.19 | 55.85±2.27 | 48.91±3.40 | 54.87±7.97 |
C17:0 | 1.86±0.31 | 2.30±0.44 | 1.45±0.18 | 1.94±0.21 |
C18:3n6 | 0.71±0.10 | 1.01±0.13 | 0.93±0.15 | 0.82±0.09 |
C18:3n3 | 0.55±0.16 | 0.60±0.12 | 0.97±0.33 | 0.56±0.22 |
C18:2n6c | 15.27±3.28 | 16.30±0.72 | 11.54±2.16 | 9.33±2.97 |
t11-C18:1 | 12.12±2.01b | 13.85±0.56ab | 14.89±1.39ab | 17.92±1.73a |
C18:1n9c | 35.96±6.95 | 49.75±9.74 | 31.94±7.14 | 51.53±4.94 |
C18:0 | 75.94±15.85 | 61.13±1.01 | 54.84±4.48 | 69.30±9.17 |
C18:2 cis-9,trans-11 | 0.67±0.16b | 1.13±0.23a | 0.42±0.03b | 0.49±0.01b |
C18:2 trans-10,cis-12 | 0.51±0.11b | 0.92±0.09a | 0.43±0.14b | 0.38±0.07b |
C19:0 | 0.33±0.04b | 0.37±0.03b | 0.41±0.04b | 0.62±0.09a |
C20:4n6 | 0.94±0.31 | 0.93±0.13 | 0.88±0.38 | 0.43±0.07 |
C20:5n3 (EPA) | 0.62±0.18ab | 0.80±0.08a | 0.59±0.10ab | 0.34±0.07b |
C20:2n6 | 0.42±0.03 | 0.74±0.18 | 0.75±0.19 | 0.68±0.08 |
C20:3n6 | 4.93±1.48 | 4.66±0.36 | 3.55±1.20 | 2.62±1.37 |
C20:1 | 1.29±0.56 | 1.72±0.74 | 0.37±0.10 | 0.67±0.23 |
C20:3n3 | 0.44±0.12 | 0.81±0.29 | 0.29±0.03 | 0.44±0.10 |
C20:0 | 2.76±0.56 | 3.42±0.68 | 2.44±0.30 | 3.42±0.60 |
C21:0 | 4.06±1.20a | 2.15±0.46ab | 4.04±1.20a | 1.10±0.16b |
C22:6n3 (DHA) | 0.69±0.13b | 0.40±0.08b | 1.02±0.29a | 0.65±0.10b |
C22:2n6 | 78.51±2.28a | 76.49±5.62a | 9.83±4.15b | 5.67±1.84b |
C22:1n9 | 0.68±0.13a | 0.44±0.06ab | 0.27±0.08b | 0.59±0.02a |
C22:0 | 0.95±0.19 | 1.42±0.45 | 0.87±0.16 | 1.47±0.31 |
C23:0 | 0.90±0.18 | 0.86±0.24 | 0.87±0.31 | 0.51±0.07 |
C24:1n9 | 0.32±0.04 | 2.25±1.69 | 0.82±0.16 | 0.65±0.21 |
C24:0 | 4.15±1.38 | 3.48±0.70 | 3.16±0.38 | 2.56±0.41 |
SFA | 179.27±29.24 | 151.60±5.03 | 134.79±4.31 | 156.13±15.06 |
MUFA | 51.62±8.88 | 69.31±9.60 | 49.88±8.58 | 73.07±5.53 |
PUFA | 104.25±24.28a | 104.78±6.18a | 31.19±6.26b | 22.39±6.44b |
UFA | 155.87±27.28a | 174.91±9.19a | 81.82±9.45b | 96.15±10.36b |
UFA/SFA | 0.87±0.10b | 1.15±0.03a | 0.60±0.06c | 0.61±0.02c |
项目 Item | 硝酸钠浓度NaNO3 concentration | |||
---|---|---|---|---|
0 mg·mL-1 | 1 mg·mL-1 | 2 mg·mL-1 | 3 mg·mL-1 | |
总细菌Total bacteria (×1010) | 10.16±1.64b | 18.82±2.03a | 8.29±2.06b | 7.41±1.57b |
真菌Total fungi (×1010) | 2.57±0.39b | 4.31±0.51a | 1.46±0.46b | 1.25±0.08b |
原虫Protozoa (×107) | 33.50±7.94a | 4.46±1.37b | 0.51±0.34b | 0.13±0.01b |
产甲烷菌Methanogens (×109) | 3.13±0.38ab | 3.92±0.53a | 1.58±0.58bc | 1.01±0.07c |
溶纤维丁酸弧菌B. fibrisolvens (×108) | 1.20±0.22b | 11.18±1.34a | 4.23±1.56b | 2.76±1.12b |
蛋白分解丁酸弧菌B. proteoclasticus (×108) | 0.78±0.13b | 3.52±0.43a | 1.34±0.31b | 1.60±0.10b |
非典型丁酸弧菌A. butyrivibrio (×106) | 4.55±2.02c | 46.29±5.04a | 18.31±3.75b | 0.69±0.05c |
亨氏丁酸弧菌B. hungatei (×107) | 4.00±0.67b | 13.26±0.71a | 2.54±1.26bc | 0.23±0.02c |
表5 添加不同剂量硝酸钠对瘤胃微生物数量的影响
Table 5 Effects of adding sodium nitrate of different doses on the number of rumen microorganisms (copies·mL-1)
项目 Item | 硝酸钠浓度NaNO3 concentration | |||
---|---|---|---|---|
0 mg·mL-1 | 1 mg·mL-1 | 2 mg·mL-1 | 3 mg·mL-1 | |
总细菌Total bacteria (×1010) | 10.16±1.64b | 18.82±2.03a | 8.29±2.06b | 7.41±1.57b |
真菌Total fungi (×1010) | 2.57±0.39b | 4.31±0.51a | 1.46±0.46b | 1.25±0.08b |
原虫Protozoa (×107) | 33.50±7.94a | 4.46±1.37b | 0.51±0.34b | 0.13±0.01b |
产甲烷菌Methanogens (×109) | 3.13±0.38ab | 3.92±0.53a | 1.58±0.58bc | 1.01±0.07c |
溶纤维丁酸弧菌B. fibrisolvens (×108) | 1.20±0.22b | 11.18±1.34a | 4.23±1.56b | 2.76±1.12b |
蛋白分解丁酸弧菌B. proteoclasticus (×108) | 0.78±0.13b | 3.52±0.43a | 1.34±0.31b | 1.60±0.10b |
非典型丁酸弧菌A. butyrivibrio (×106) | 4.55±2.02c | 46.29±5.04a | 18.31±3.75b | 0.69±0.05c |
亨氏丁酸弧菌B. hungatei (×107) | 4.00±0.67b | 13.26±0.71a | 2.54±1.26bc | 0.23±0.02c |
1 | Appuhamy J A R, France J, Kebreab E. Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand. Global Change Biology, 2016, 22(9): 3039-3056. |
2 | Zu H C, Xu J, Cong Y Y. Reducing rumen methane emission through regulating rumen microorganisms by adding hydrogen-consuming compounds. Chinese Journal of Animal Nutrition, 2019, 31(11): 4967-4972. |
俎昊辰, 许静, 丛玉艳. 通过添加耗氢化合物调节瘤胃微生物实现甲烷减排. 动物营养学报, 2019, 31(11): 4967-4972. | |
3 | Hulshof R, Berndt A, Gerrits W, et al. Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. Journal of Animal Science, 2012, 90(7): 2317-2323. |
4 | Huyen T, Do H Q, Preston T R, et al. Nitrate as fermentable nitrogen supplement to reduce rumen methane production. Livestock Research for Rural Development, 2010, 22(8): 146. |
5 | Li L, Davis J, Nolan J, et al. An initial investigation on rumen fermentation pattern and methane emission of sheep offered diets containing urea or nitrate as the nitrogen source. Animal Production Science, 2012, 52: 653-658. |
6 | Hafoot C G,Hazlewood G P. Lipid metabolism in the rumen//Hobson P N. The rumen microbial ecosystem. Netherlands: Springer, 1998: 382-426. |
7 | Sun P F, Yao J H, Liu J X. Research progress on hydrogenation of octadecane unsaturated fatty acids in rumen. Journal of Animal Science, 2007(S1): 508-514. |
孙攀峰, 姚建红, 刘建新. 瘤胃十八碳不饱和脂肪酸氢化的研究进展. 动物营养学报, 2007(S1): 508-514. | |
8 | Menke K H, Raab L, Salewski A, et al. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 1979, 93(1): 217-222. |
9 | Hu W L, Wang J K, Lv J M, et al. Rapid gas chromatogram determination of methane, organic acid in vitro ruminal fermentation products. Journal of Zhejiang University (Agriculture & Life Sciences), 2006, 32(2): 217-221. |
胡伟莲, 王佳堃, 吕建敏, 等. 瘤胃体外发酵产物中的甲烷和有机酸含量的快速测定. 浙江大学学报(农业与生命科学版), 2006, 32(2): 217-221. | |
10 | Lu Q Y. Effects of different ratios of dietary starch to neutral detergent fiber on rumen blood, milk and feces metabolism status in high producing lactating cows . Hohhot: Inner Mongolia Agricultural University, 2014. |
鲁秋英. 日粮淀粉/FNDF比例对高产奶牛瘤胃液、血液、乳液和粪便相关代谢指标影响的调查研究. 呼和浩特: 内蒙古农业大学, 2014. | |
11 | Li X Z, Yan C G, Choi S H, et al. Effects of addition level and chemical type of propionate precursors in dicarboxylic acid pathway on fermentation characteristics and methane production by rumen microbes in vitro. Asian Australasian Journal of Animal Science, 2009, 22(1): 82-89. |
12 | Xu T, Tao H, Chang G, et al. Lipopolysaccharide derived from the rumen down-regulates stearoyl-CoA desaturase 1 expression and alters fatty acid composition in the liver of dairy cows fed a high-concentrate diet. BMC Veterinary Research, 2015, 11(1): 1-11. |
13 | Denman S E, McSweeney C S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiology Ecology, 2006, 58(3): 572-582. |
14 | Shingfield K J, Kairenius P, Arölä A, et al. Dietary fish oil supplements modify ruminal biohydrogenation, alter the flow of fatty acids at the omasum, and induce changes in the ruminal Butyrivibrio population in lactating cows. The Journal of Nutrition, 2012, 142(8): 1437-1448. |
15 | Zoetendal E G. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Applied and Environmental Microbiology, 1998, 64(10): 3854. |
16 | Deman S E, Tomkins N W, Deman S E, et al. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiology Ecology, 2007, 62(3): 313-322. |
17 | Stevenson D M, Weimer P J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Applied Microbiology and Biotechnology, 2007, 75(1): 165-174. |
18 | Nguyen S H, Li L, Hegarty R S. Effects of rumen protozoa of brahman heifers and nitrate on fermentation and in vitro methane production. Asian-Australasian Journal of Animal Sciences, 2016, 29(6): 807. |
19 | Sar C, Mwenya B, Santoso B, et al. Effect of Escherichiacoli W3110 on ruminal methanogenesis and nitrate/nitrite reduction in vitro. Animal Feed Science and Technology, 2005, 118(3/4): 295-306. |
20 | Zhou Z, Meng Q, Yu Z. Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in vitro ruminal cultures. Applied and Environmental Microbiology, 2011, 77(8): 2634-2639. |
21 | Joblin K N. Ruminal acetogens and their potential to lower ruminant methane emissions. Crop & Pasture Science, 1999, 50(8): 1307-1314. |
22 | Kepler C R, Hirons K P, McNeill J J, et al. Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. Journal of Biological Chemistry, 1966, 241(6): 1350-1354. |
23 | Vande V J, Joblin K N. Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen. Letters in Applied Microbiology, 2003, 37(5): 424-428. |
24 | Li D, Wang J Q, Bu D P. Ruminal microbe of biohydrogenation of trans-vaccenic acid to stearic acid in vitro. Bmc Research Notes, 2012, 5(1): 97. |
25 | Yang C, McKain N, McCartney C A, et al. Consequences of inhibiting methanogenesis on the biohydrogenation of fatty acids in bovine ruminal digesta. Animal Feed Science and Technology, 2019, 254: 114-189. |
26 | Guo Y X, Li M W, Peng L J, et al. Effects of sodium nitrate on methane production and fatty acid hydrogenation process of buffalo in vitro fermentation. Chinese Animal Husbandry & Veterinary Medicine, 2020, 47(7): 2071-2080. |
郭艳霞, 李孟伟, 彭丽娟, 等. 体外法研究硝酸钠调控水牛瘤胃甲烷生成对脂肪酸生物氢化途径的影响. 中国畜牧兽医, 2020, 47(7): 2071-2080. | |
27 | Wang R, Tan L W, Wang M, et al. Effect of sodium nitrate and 2-Bromoethanesulphonate on methane, hydrogen and volatile fatty acids production of in vitro ruminal fermentation. Chinese Journal of Animal Nutrition, 2015, 27(5): 1586-1595. |
王荣, 谭利伟, 王敏, 等. 硝酸钠和2-溴乙烷磺酸钠对山羊体外瘤胃发酵甲烷、氢气和挥发性脂肪酸生成的影响. 动物营养学报, 2015, 27(5): 1586-1595. | |
28 | Fan X, Dong H M, Han L J, et al. Experimental study on the factors affecting methane emission of beef cattle. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(8): 179-182. |
樊霞, 董红敏, 韩鲁佳, 等. 肉牛甲烷排放影响因素的实验研究. 农业工程学报, 2006, 22(8): 179-182. | |
29 | Iwamoto M, Asanuma N, Hino T. Ability of Selenomonas ruminantium, Veillonella parvula, and Wolinella succinogenes to reduce nitrate and nitrite with special reference to the suppression of ruminal methanogenesis. Anaerobe, 2002, 8(8): 209-215. |
30 | Sun Y K. The effect of cysteamine hydrochloride and nitrate supplementation on methane emission and growth performance of beef cattle. Changchun: Jilin Agricultural University, 2017. |
孙雨坤. 半胱胺盐酸盐和硝酸盐对肉牛甲烷代谢及生长性能的影响. 长春: 吉林农业大学, 2017. |
[1] | 温媛媛, 张美琦, 刘桃桃, 沈宜钊, 高艳霞, 李秋凤, 曹玉凤, 李建国. 体外产气法评价生薯条加工副产品-稻草混贮与全株玉米青贮组合效应的研究[J]. 草业学报, 2021, 30(8): 154-163. |
[2] | 李宏, 宋淑珍, 高良霜, 郎侠, 刘立山, 宫旭胤, 魏玉兵, 吴建平. 饲养水平对阿勒泰羊胃肠道发育、瘤胃发酵参数及瘤胃微生物区系的影响[J]. 草业学报, 2021, 30(4): 180-190. |
[3] | 李蒋伟, 王志有, 侯生珍, 雷云, 贾建磊, 周力, 桂林生. 日粮精粗比对育肥藏羊瘤胃组织形态及微生物菌群的影响[J]. 草业学报, 2021, 30(3): 100-109. |
[4] | 董利锋, 杨修竹, 高彦华, 李斌昌, 王贝, 刁其玉. 日粮不同NDF/NFC水平对周岁后荷斯坦奶牛生产性能、营养物质消化率、瘤胃发酵特征和甲烷排放的影响[J]. 草业学报, 2021, 30(2): 156-165. |
[5] | 张剑搏, 丁考仁青, 梁泽毅, Anum-aliAhmad, 杜梅, 郑娟善, 丁学智. 早期营养干预对幼龄反刍动物瘤胃微生物区系发育的影响[J]. 草业学报, 2021, 30(2): 199-211. |
[6] | 周恩光, 王虎成, 尚占环. 甜高粱的饲用价值及其绵羊体外瘤胃发酵产气性能研究[J]. 草业学报, 2020, 29(5): 43-49. |
[7] | 涂瑞, 苗建军, 彭忠利, 高彦华, 柏雪, 谢昕廷. 不同精粗比日粮中添加小肽对牦牛瘤胃体外发酵特性的影响[J]. 草业学报, 2020, 29(3): 78-88. |
[8] | 梁婷玉, 郞侠, 吴建平, 王彩莲, 刘立山, 张瑞, 韦胜. 燕麦与苜蓿不同比例组合对驴盲肠体外发酵的影响[J]. 草业学报, 2019, 28(6): 185-195. |
[9] | 董春晓, 吕佳颖, 张智安, 李飞, 李发弟. 饲料来源对育肥湖羊生产性能、养分消化及瘤胃微生物组成的影响[J]. 草业学报, 2019, 28(4): 106-115. |
[10] | 周瑞, 刘立山, 吴建平, 韦胜, 郎侠, 王彩莲. 牛至精油对绵羊瘤胃体外养分降解率、发酵特性及CH4产量的影响[J]. 草业学报, 2019, 28(11): 168-176. |
[11] | 靳继鹏, 郭武君, 张筱艳, 张昌吉, 张勇, 王春辉, 张利平. 冷季放牧补饲对甘肃高山细毛后备母羊瘤胃代谢参数及瘤胃微生物数量的影响[J]. 草业学报, 2018, 27(7): 93-103. |
[12] | 魏欢, 李翔宇, 于全平, 陈勇. 添加5种植物酚类化合物对高精料底物瘤胃体外发酵及产甲烷的影响[J]. 草业学报, 2018, 27(11): 192-199. |
[13] | 孟梅娟, 涂远璐, 白云峰, 严少华, 高立鹏, 刘萍. 小麦秸秆与米糠粕瘤胃体外发酵组合效应研究[J]. 草业学报, 2016, 25(9): 161-172. |
[14] | 王晓成, 刘军花, 朱伟云, 毛胜勇. 瘤胃源酵母的分离筛选及对不同底物发酵能力影响[J]. 草业学报, 2016, 25(5): 141-148. |
[15] | 高小叶, 袁世力, 吕爱敏, 周鹏, 安渊. DNDC模型评估苜蓿绿肥对水稻产量和温室气体排放的影响[J]. 草业学报, 2016, 25(12): 14-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||