草业学报 ›› 2022, Vol. 31 ›› Issue (3): 60-70.DOI: 10.11686/cyxb2021196
收稿日期:
2021-05-11
修回日期:
2021-06-21
出版日期:
2022-03-20
发布日期:
2022-01-15
通讯作者:
郑轶琦
作者简介:
Corresponding author. E-mail: yiqi214@163.com基金资助:
Xue-feng REN(), Ya-bo DENG, Guo-zhang ZANG, Yi-qi ZHENG()
Received:
2021-05-11
Revised:
2021-06-21
Online:
2022-03-20
Published:
2022-01-15
Contact:
Yi-qi ZHENG
摘要:
应用SSR分子标记,对河南省15个居群共288份狗牙根材料进行遗传多样性及群体遗传结构分析,结果表明,10对引物共扩增出173条条带,其中163条为多态性条带,多态性条带百分率为94.29%,表明河南省狗牙根具有丰富的多态性。15个居群间的遗传分化系数为0.3857,即发生在居群间的遗传变异达到38.57%,大部分的遗传变异发生在居群内部,居群间基因流为0.7964,居群之间存在一定程度的基因交流。不同居群间遗传一致度的变化范围是0.746~0.964,平均为0.767。15个居群间的UPGMA聚类分析结果表明居群间没有完全按照地理来源进行聚类,遗传距离和地理距离矩阵之间的Mantel检验结果表明狗牙根居群间的遗传距离与地理距离之间无相关性。288份狗牙根材料之间的遗传距离为0.0173~0.5205,平均为0.3113,UPGMA聚类结果将所有材料分为3组。基于Structure软件的群体遗传结构分析结果表明,可将288份狗牙根材料分为2个亚群和一个混合型群体,与288份材料的UPGMA聚类结果基本一致,由此可判断两个亚群的遗传背景单一,混合型群体存在一定的种质基因渗透,遗传背景较为复杂。
任雪锋, 邓亚博, 臧国长, 郑轶琦. 基于SSR标记的河南省狗牙根遗传多样性及群体遗传结构分析[J]. 草业学报, 2022, 31(3): 60-70.
Xue-feng REN, Ya-bo DENG, Guo-zhang ZANG, Yi-qi ZHENG. A SSR marker analysis of genetic diversity and population genetic structure of bermudagrass in Henan Province[J]. Acta Prataculturae Sinica, 2022, 31(3): 60-70.
居群 Population | 采集地点 Location | 经度 Latitudes (E) | 纬度 Longitudes (N) | 样本数目No. of samples |
---|---|---|---|---|
P1 | 鹤壁市淇滨区杨庄村Yangzhuang Village, Qibin District, Hebi City | 114°19′47″ | 35°45′31″ | 18 |
P2 | 濮阳市华龙区辛庄新村Xinzhuang New Village, Hualong District, Puyang City | 115°16′32″ | 35°45′24″ | 20 |
P3 | 新乡市长垣县常村镇常村Chang Village, Changcun Town, Changyuan District,Xinxiang City | 114°33′19″ | 35°11′42″ | 20 |
P4 | 焦作市中站区鑫珠春村Xinzhuchun Village, Zhongzhan District,Jiaozuo City | 113°10′15″ | 35°13′35″ | 20 |
P5 | 开封市杞县老庄村Laozhuang Village, Qi District,Kaifeng City | 114°52′14″ | 34°38′22″ | 20 |
P6 | 商丘市睢阳区辛庄村Xinzhuang Village, Suiyang District, Shangqiu City | 115°33′48″ | 34°13′43″ | 20 |
P7 | 登封市中岳区康村Kang Village, Zhongyue District, Dengfeng City | 113°10′43″ | 34°48′35″ | 20 |
P8 | 洛阳市洛宁县凤翔村Fengxiang Village, Luoning District, Luoyang City | 111°16′23″ | 34°4′12″ | 18 |
P9 | 许昌市鄢陵县蒋庄村Jiangzhuang Village, Yanling District, Xuchang City | 114°12′15″ | 34°8′21″ | 20 |
P10 | 周口市西华县高庄村Gaozhuang Village, Xihua District, Zhoukou City | 114°32′19″ | 33°46′11″ | 19 |
P11 | 南阳市淅川县李家湾村Lijiawan Village, Xichuan District,Nanyang City | 111°48′32″ | 33°13′41″ | 20 |
P12 | 驻马店市确山县李岈村Liya Village, Queshan District,Zhumadian City | 113°56′10″ | 32°43′27″ | 18 |
P13 | 南阳市唐河县老潘庄村Laopanzhuang Village, Tanghe District, Nanyang City | 112°47′11″ | 32°44′48″ | 16 |
P14 | 信阳市罗山县厉家湾村Lijiawan Village, Luoshan District, Xinyang City | 114°25′52″ | 32°3′32″ | 20 |
P15 | 信阳市潢川县八里村Bali Village, Huangchuan District, Xinyang City | 115°12′22″ | 32°7′21″ | 19 |
表1 狗牙根居群采集点概况
Table 1 Survey of collecting sites of bermudagrass populations
居群 Population | 采集地点 Location | 经度 Latitudes (E) | 纬度 Longitudes (N) | 样本数目No. of samples |
---|---|---|---|---|
P1 | 鹤壁市淇滨区杨庄村Yangzhuang Village, Qibin District, Hebi City | 114°19′47″ | 35°45′31″ | 18 |
P2 | 濮阳市华龙区辛庄新村Xinzhuang New Village, Hualong District, Puyang City | 115°16′32″ | 35°45′24″ | 20 |
P3 | 新乡市长垣县常村镇常村Chang Village, Changcun Town, Changyuan District,Xinxiang City | 114°33′19″ | 35°11′42″ | 20 |
P4 | 焦作市中站区鑫珠春村Xinzhuchun Village, Zhongzhan District,Jiaozuo City | 113°10′15″ | 35°13′35″ | 20 |
P5 | 开封市杞县老庄村Laozhuang Village, Qi District,Kaifeng City | 114°52′14″ | 34°38′22″ | 20 |
P6 | 商丘市睢阳区辛庄村Xinzhuang Village, Suiyang District, Shangqiu City | 115°33′48″ | 34°13′43″ | 20 |
P7 | 登封市中岳区康村Kang Village, Zhongyue District, Dengfeng City | 113°10′43″ | 34°48′35″ | 20 |
P8 | 洛阳市洛宁县凤翔村Fengxiang Village, Luoning District, Luoyang City | 111°16′23″ | 34°4′12″ | 18 |
P9 | 许昌市鄢陵县蒋庄村Jiangzhuang Village, Yanling District, Xuchang City | 114°12′15″ | 34°8′21″ | 20 |
P10 | 周口市西华县高庄村Gaozhuang Village, Xihua District, Zhoukou City | 114°32′19″ | 33°46′11″ | 19 |
P11 | 南阳市淅川县李家湾村Lijiawan Village, Xichuan District,Nanyang City | 111°48′32″ | 33°13′41″ | 20 |
P12 | 驻马店市确山县李岈村Liya Village, Queshan District,Zhumadian City | 113°56′10″ | 32°43′27″ | 18 |
P13 | 南阳市唐河县老潘庄村Laopanzhuang Village, Tanghe District, Nanyang City | 112°47′11″ | 32°44′48″ | 16 |
P14 | 信阳市罗山县厉家湾村Lijiawan Village, Luoshan District, Xinyang City | 114°25′52″ | 32°3′32″ | 20 |
P15 | 信阳市潢川县八里村Bali Village, Huangchuan District, Xinyang City | 115°12′22″ | 32°7′21″ | 19 |
引物编号 Primer code | 重复基元 Repeat the primitive | 正向引物碱基序列 Forward primer sequence (5? to 3?) | 反向引物碱基序列 Reverse primers sequence (5? to 3?) |
---|---|---|---|
CDCA55-56 | (GT)9 | CGAGTCCATGCCTAACTCAA | ACGGAAGGGTCAGTGGTAAC |
CDCA77-78 | (GT)25 | GAAGATGTCATCACGATGGG | CGTACGACCGAGTTCTCTGA |
CDCA155-156 | (TC)16-(AC)15 | CTCCCTCGTCCATTTCATTT | CGTTGGCACTCACTACCAGT |
CDCA379-380 | (AC)7-(GT)37 | AGCACAGGCTTCTTATGCAA | TTATGAAGATAGCCCGGTCC |
CDCA747-748 | (TG)14 | GAACTCCTACCCAAACGGAA | ATGCAGCTAACAAATGGTGC |
CDE127-128 | (GAG)5 | GGAAAGAATCAAGGACCGAC | GAGCAACTGAGCAAGCAAAG |
CDE375-376 | (GGAC)5 | AGACGTTCAGCGTCGTCTAC | TGCACACATCCAGCTAGTGA |
ES292439 | (TGC)5 | TCTGAGTACCGCTGCTGCTA | AACACAACAGCCAGCGAAG |
ES295577 | (GGC)7 | TGATTGTCCGAGGTCAGCA | GGTGTGAACCATCAGCAGTT |
ES301023 | (GA)14 | CTGCTGTCGCGCTGGT | ATCTCTGTCGCCTGAGTGCT |
表2 本研究所采用的SSR引物序列
Table 2 Sequences of SSR primers used in the study
引物编号 Primer code | 重复基元 Repeat the primitive | 正向引物碱基序列 Forward primer sequence (5? to 3?) | 反向引物碱基序列 Reverse primers sequence (5? to 3?) |
---|---|---|---|
CDCA55-56 | (GT)9 | CGAGTCCATGCCTAACTCAA | ACGGAAGGGTCAGTGGTAAC |
CDCA77-78 | (GT)25 | GAAGATGTCATCACGATGGG | CGTACGACCGAGTTCTCTGA |
CDCA155-156 | (TC)16-(AC)15 | CTCCCTCGTCCATTTCATTT | CGTTGGCACTCACTACCAGT |
CDCA379-380 | (AC)7-(GT)37 | AGCACAGGCTTCTTATGCAA | TTATGAAGATAGCCCGGTCC |
CDCA747-748 | (TG)14 | GAACTCCTACCCAAACGGAA | ATGCAGCTAACAAATGGTGC |
CDE127-128 | (GAG)5 | GGAAAGAATCAAGGACCGAC | GAGCAACTGAGCAAGCAAAG |
CDE375-376 | (GGAC)5 | AGACGTTCAGCGTCGTCTAC | TGCACACATCCAGCTAGTGA |
ES292439 | (TGC)5 | TCTGAGTACCGCTGCTGCTA | AACACAACAGCCAGCGAAG |
ES295577 | (GGC)7 | TGATTGTCCGAGGTCAGCA | GGTGTGAACCATCAGCAGTT |
ES301023 | (GA)14 | CTGCTGTCGCGCTGGT | ATCTCTGTCGCCTGAGTGCT |
引物组 Primer combination | 扩增总条带数 Number of total bands | 多态性条带数 Number of polymorphic bands | 多态性条带百分率 Percentage of polymorphic bands (%) | Nei’s 基因多样性指数 Nei’s gene diversity index | Shannon’s遗传多样性信息指数 Shannon’s genetic diversity information index |
---|---|---|---|---|---|
CDCA55-56 | 16 | 15 | 93.75 | 0.3850 | 0.5678 |
CDCA77-78 | 19 | 18 | 94.73 | 0.2641 | 0.4202 |
CDCA155-156 | 14 | 13 | 92.86 | 0.2770 | 0.4435 |
CDCA379-380 | 17 | 17 | 100.00 | 0.2787 | 0.4437 |
CDCA747-748 | 20 | 18 | 90.00 | 0.2150 | 0.3608 |
CDE127-128 | 18 | 18 | 100.00 | 0.2153 | 0.3597 |
CDE375-376 | 20 | 18 | 90.00 | 0.1558 | 0.2805 |
ES292439 | 18 | 17 | 94.44 | 0.2173 | 0.3589 |
ES295577 | 16 | 15 | 93.75 | 0.1187 | 0.2016 |
ES301023 | 15 | 14 | 93.33 | 0.1796 | 0.2996 |
总和 Total | 173 | 163 | - | - | - |
平均 Average | 17.3 | 16.3 | 94.29 | 0.2307 | 0.3736 |
表3 引物扩增结果
Table 3 Primers amplification results
引物组 Primer combination | 扩增总条带数 Number of total bands | 多态性条带数 Number of polymorphic bands | 多态性条带百分率 Percentage of polymorphic bands (%) | Nei’s 基因多样性指数 Nei’s gene diversity index | Shannon’s遗传多样性信息指数 Shannon’s genetic diversity information index |
---|---|---|---|---|---|
CDCA55-56 | 16 | 15 | 93.75 | 0.3850 | 0.5678 |
CDCA77-78 | 19 | 18 | 94.73 | 0.2641 | 0.4202 |
CDCA155-156 | 14 | 13 | 92.86 | 0.2770 | 0.4435 |
CDCA379-380 | 17 | 17 | 100.00 | 0.2787 | 0.4437 |
CDCA747-748 | 20 | 18 | 90.00 | 0.2150 | 0.3608 |
CDE127-128 | 18 | 18 | 100.00 | 0.2153 | 0.3597 |
CDE375-376 | 20 | 18 | 90.00 | 0.1558 | 0.2805 |
ES292439 | 18 | 17 | 94.44 | 0.2173 | 0.3589 |
ES295577 | 16 | 15 | 93.75 | 0.1187 | 0.2016 |
ES301023 | 15 | 14 | 93.33 | 0.1796 | 0.2996 |
总和 Total | 173 | 163 | - | - | - |
平均 Average | 17.3 | 16.3 | 94.29 | 0.2307 | 0.3736 |
居群编号 Population code | 观测等位基因数 Observed number of alleles | 有效等位基因数 Effective number of alleles | Nei’s 基因多样性指数Nei’s gene diversity index | Shannon’s遗传多样性信息指数Shannon’s genetic diversity information index | 多态性条带百分率 Percentage of polymorphic bands (%) |
---|---|---|---|---|---|
P1 | 1.4220±0.4953 | 1.1971±0.3196 | 0.1186±0.1754 | 0.1830±0.2540 | 42.20 |
P2 | 1.6243±0.4857 | 1.3025±0.3482 | 0.1829±0.1882 | 0.2813±0.2683 | 62.43 |
P3 | 1.6243±0.4857 | 1.2206±0.2708 | 0.1465±0.1577 | 0.2374±0.2328 | 62.43 |
P4 | 1.7283±0.4461 | 1.3555±0.3539 | 0.2144±0.1871 | 0.3293±0.2627 | 72.83 |
P5 | 1.7572±0.4300 | 1.3270±0.3353 | 0.2023±0.1785 | 0.3166±0.2500 | 75.72 |
P6 | 1.4509±0.4990 | 1.2467±0.3595 | 0.1432±0.1928 | 0.2157±0.2757 | 45.09 |
P7 | 1.4855±0.5012 | 1.2411±0.3520 | 0.1416±0.1886 | 0.2162±0.2691 | 48.55 |
P8 | 1.5318±0.5004 | 1.2257±0.3098 | 0.1416±0.1721 | 0.2229±0.2509 | 53.18 |
P9 | 1.5260±0.5008 | 1.2372±0.3210 | 0.1462±0.1789 | 0.2272±0.2594 | 52.60 |
P10 | 1.5549±0.4984 | 1.2576±0.3596 | 0.1520±0.1878 | 0.2351±0.2652 | 55.49 |
P11 | 1.4913±0.5014 | 1.2618±0.3529 | 0.1548±0.1917 | 0.2347±0.2752 | 49.13 |
P12 | 1.4855±0.5012 | 1.2545±0.3313 | 0.1547±0.1855 | 0.2362±0.2701 | 48.55 |
P13 | 1.5665±0.4970 | 1.2534±0.3129 | 0.1586±0.1774 | 0.2475±0.2581 | 56.65 |
P14 | 1.4451±0.4984 | 1.2120±0.3093 | 0.1313±0.1743 | 0.2033±0.2560 | 44.51 |
P15 | 1.4624±0.5000 | 1.2360±0.3498 | 0.1385±0.1882 | 0.2107±0.2694 | 46.24 |
居群水平平均值Average of population level | 1.5437±0.4894 | 1.2552±0.3324 | 0.1151±0.1816 | 0.2398±0.2611 | 54.37 |
物种水平Species level | 2.0000±0.0000 | 1.3444±0.2690 | 0.2288±0.1396 | 0.3717±0.1838 | 100.00 |
表4 河南省狗牙根居群的遗传多样性
Table 4 Genetic diversity of bermudagrass populations in Henan Province (mean±SD)
居群编号 Population code | 观测等位基因数 Observed number of alleles | 有效等位基因数 Effective number of alleles | Nei’s 基因多样性指数Nei’s gene diversity index | Shannon’s遗传多样性信息指数Shannon’s genetic diversity information index | 多态性条带百分率 Percentage of polymorphic bands (%) |
---|---|---|---|---|---|
P1 | 1.4220±0.4953 | 1.1971±0.3196 | 0.1186±0.1754 | 0.1830±0.2540 | 42.20 |
P2 | 1.6243±0.4857 | 1.3025±0.3482 | 0.1829±0.1882 | 0.2813±0.2683 | 62.43 |
P3 | 1.6243±0.4857 | 1.2206±0.2708 | 0.1465±0.1577 | 0.2374±0.2328 | 62.43 |
P4 | 1.7283±0.4461 | 1.3555±0.3539 | 0.2144±0.1871 | 0.3293±0.2627 | 72.83 |
P5 | 1.7572±0.4300 | 1.3270±0.3353 | 0.2023±0.1785 | 0.3166±0.2500 | 75.72 |
P6 | 1.4509±0.4990 | 1.2467±0.3595 | 0.1432±0.1928 | 0.2157±0.2757 | 45.09 |
P7 | 1.4855±0.5012 | 1.2411±0.3520 | 0.1416±0.1886 | 0.2162±0.2691 | 48.55 |
P8 | 1.5318±0.5004 | 1.2257±0.3098 | 0.1416±0.1721 | 0.2229±0.2509 | 53.18 |
P9 | 1.5260±0.5008 | 1.2372±0.3210 | 0.1462±0.1789 | 0.2272±0.2594 | 52.60 |
P10 | 1.5549±0.4984 | 1.2576±0.3596 | 0.1520±0.1878 | 0.2351±0.2652 | 55.49 |
P11 | 1.4913±0.5014 | 1.2618±0.3529 | 0.1548±0.1917 | 0.2347±0.2752 | 49.13 |
P12 | 1.4855±0.5012 | 1.2545±0.3313 | 0.1547±0.1855 | 0.2362±0.2701 | 48.55 |
P13 | 1.5665±0.4970 | 1.2534±0.3129 | 0.1586±0.1774 | 0.2475±0.2581 | 56.65 |
P14 | 1.4451±0.4984 | 1.2120±0.3093 | 0.1313±0.1743 | 0.2033±0.2560 | 44.51 |
P15 | 1.4624±0.5000 | 1.2360±0.3498 | 0.1385±0.1882 | 0.2107±0.2694 | 46.24 |
居群水平平均值Average of population level | 1.5437±0.4894 | 1.2552±0.3324 | 0.1151±0.1816 | 0.2398±0.2611 | 54.37 |
物种水平Species level | 2.0000±0.0000 | 1.3444±0.2690 | 0.2288±0.1396 | 0.3717±0.1838 | 100.00 |
1 | Zheng Y H, Liu J X, Chen S Y. The low temperature tolerance variation and its laws of Cynodon dactylon (L.) Pers. in China. Journal of Plant Resources and Environment, 2002(2): 48-52. |
郑玉红, 刘建秀, 陈树元. 中国狗牙根[Cynodon dactylon (L.)Pers.]耐寒性及其变化规律. 植物资源与环境学报, 2002(2): 48-52. | |
2 | Anderson J M, Taliaferro C M, Martin D L. Evaluating freeze tolerance of bermudagrass in a controlled environment. Hort-Science, 1993, 28(9): 955. |
3 | Harlan J R, de Wet J M J, Rawal K M. Origin and distribution of the seleucidus race of Cynodondactylon (L.) Pers.var.dactylon (Gramineae). Euphytica, 1970, 19(4): 465-469. |
4 | Liu J X, He S A, Liu Y D, et al. Taxonomy of Cynodon dactylon types in east China and their turfgrass quality. Journal of Plant Resources and Environment, 1996(3): 19-23. |
刘建秀, 贺善安, 刘永东, 等. 华东地区狗牙根形态分类及其坪用价值. 植物资源与环境, 1996(3): 19-23. | |
5 | Zheng Y Q, Guo Y, Liu J, et al. Study on the phenotypic diversity of Cynodon dactylon collected from Luoyang City. Northern Horticulture, 2015(1): 72-75. |
郑轶琦, 郭琰, 刘晶, 等. 洛阳市狗牙根种质资源表型遗传多样性研究. 北方园艺, 2015(1): 72-75. | |
6 | Li H, Li L, Lou Y, et al. Genetic diversity of Chinese natural bermudagrass (Cynodon dactylon) germplasm using ISSR markers. Scientia Horticulturae, 2011, 127(4): 555-561. |
7 | Zheng Y Q, Xu S J, Liu J, et al. Genetic diversity and population structure of Chinese natural bermudagrass [Cynodon dactylon (L.) Pers.] germplasm based on SRAP markers. PloS One, 2017, 12(5): e0177508. |
8 | Zhou S Y. Study on genetic diversity by morphological and ISSR markers of bermudagrass resources in south China. Haikou: Hainan University, 2010. |
周少云. 华南地区狗牙根遗传多样性的形态与ISSR研究. 海口: 海南大学, 2010. | |
9 | Ling Y, Ren X M, Zhang X Q, et al. The genetic diversity of Cynodon dactylon germplasm by AFLP and SRAP markers. Chinese Journal of Grassland, 2014, 36(2): 85-92. |
凌瑶, 任秀梅, 张新全, 等. 野生狗牙根种质资源遗传多样性AFLP与SRAP联合分析. 中国草地学报, 2014, 36(2): 85-92. | |
10 | Liu J. Study on genetic diversity by morphological and ISSR markers of wild bermudagrass germplasm in Anhui. Hefei: Anhui Agricultural University, 2013. |
刘杰. 安徽野生狗牙根种质遗传多样性的形态学与ISSR标记研究. 合肥: 安徽农业大学, 2013. | |
11 | Li H B, Wang L H, Sun X B, et al. Genetic diversity analysis of wild bermudagrass (Cynodon dactylon) from Hebei Province by SSR markers. Journal of Agricultural University of Hebei, 2017, 40(6): 60-64, 71. |
李会彬, 王丽宏, 孙鑫博, 等. 河北野生狗牙根遗传多样性的SSR分析. 河北农业大学学报, 2017, 40(6): 60-64, 71. | |
12 | Li J H, Gao W W, Abulaiti, et al. SRAP analysis on genetic diversity of 48 Xinjiang wild bermudagrass. Journal of Xinjiang Agricultural University, 2011, 34(4): 285-291. |
李江华, 高文伟, 阿不来提, 等. 48份新疆野生狗牙根遗传多样性的SRAP分析. 新疆农业大学学报, 2011, 34(4): 285-291. | |
13 | Wang S Y. Henan tree records. Zhengzhou: Henan Science and Technology Press, 1994. |
王遂义. 河南树木志. 郑州: 河南科学技术出版社, 1994. | |
14 | Ding B Z, Wang S Y. Flora of Henan. Zhengzhou: Henan Science and Technology Press, 1981: 183. |
丁宝章, 王遂义. 河南植物志. 郑州: 河南科学技术出版社, 1981: 183. | |
15 | Deng Y B, Ren X F, Li Y C, et al. Phenotypic diversity of Cynodon dactylon genetic resources in Henan Province. Chinese Journal of Grassland, 2021, 43(1): 18-26. |
邓亚博, 任雪锋, 李奕辰, 等. 河南省狗牙根种质资源表型遗传多样性研究. 中国草地学报, 2021, 43(1): 18-26. | |
16 | Wang Z, Wu Y Q, Martin D L, et al. Identification of vegetatively propagated turf bermudagrass cultivars using simple sequence repeat markers. Crop Science, 2010, 50(5): 2103-2111. |
17 | Yeh F C, Yang R, Boyle T J, et al. PopGene 32, Microsoft Windows-based freeware for population genetic analysis, version 1.32. Edmonton: University of Alberta, 2000. |
18 | Rohlf F J. NTSYS-pc: Numerical taxonomy and multivariate analysis system, Version 2.1. Setauket: Exeter Software, 2000. |
19 | Tamura K, Stecher G, Peterson D, et al. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 2013, 30: 2725-2729. |
20 | Evanno G S, Regnaut S J, Goudet J. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620. |
21 | Liu K J, Goodman M, Muse S, et al. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics, 2003, 165: 2117-2128. |
22 | Zhang Y H, Patiguli, Li J H, et al. SSR analyses of different bermudagrass populations. Acta Agrestia Sinica, 2013, 21(3): 598-606. |
张延辉, 帕提古丽, 李江华, 等. 不同居群野生狗牙根材料的SSR分析. 草地学报, 2013, 21(3): 598-606. | |
23 | Ling Y, Yang S P, Zhang X Q, et al. Joint analysis of SSR and AFLP on wild Cynodon dactylon germplasm of southwest China. Guihaia, 2014(6): 734-741, 815. |
凌瑶, 杨树萍, 张新全, 等. 西南地区野生狗牙根种质资源的SSR与AFLP 联合分析. 广西植物, 2014(6): 734-741, 815. | |
24 | Govindaraju D R. Relationship between dispersal ability and levels of gene flow in plants. Oikos, 1988, 52: 31-35. |
25 | Ma T. Study on genetic diversity of wild bermudagrass germplasm resources in Hunan. Changsha: Central South University of Forestry and Technology, 2009. |
马涛. 湖南野生狗牙根种质资源遗传多样性研究.长沙: 中南林业科技大学, 2009. | |
26 | Liu W. Genetic diversity and turf quality on Cynodon dactylon in the southwest of China. Chengdu: Sichuan Agricultural University, 2006. |
刘伟. 西南区野生狗牙根种质资源遗传多样性与坪用价值研究.成都: 四川农业大学, 2006. | |
27 | Hall D, Luquez V, Garcia V M, et al. Adaptive population differentiation in phenology across a latitudinal gradient in European aspen (Populus tremula): A comparison of neutral markers, candidate genes and phenotypic traits. Evolution, 2007, 61: 2849-2860. |
28 | Turner T L, Bourne E C, Wettberg E J, et al. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nature Genetics, 2010, 42(3): 260-263. |
29 | Shimizu K K, Purugganan M D. Evolutionary and ecological genomics of Arabidopsis. Plant Physiology, 2005, 138(2): 578-584. |
30 | Zhang J X, Wang M L, Guo Z P, et al. Genetic diversity and population structure of bermudagrass [Cynodon dactylon (L.) Pers.] along latitudinal gradients and the relationship with polyploidy level. Diversity, 2019, 11(8): 135. |
31 | Xie L F, Li N, Li Y, et al. Genetic diversity and population structure of eggplant (Solanum melongena) germplasm resources based on SRAP method. Bulletin of Botany, 2019, 54(1): 58-63. |
谢立峰, 李宁, 李烨, 等. 茄子种质遗传多样性及群体结构的SRAP分析. 植物学报, 2019, 54(1): 58-63. | |
32 | Wei L B, Miao H M, Li C, et al. Genetic diversity, population structure and linkage disequilibrium analysis of sesame using SNP and InDel markers. Molecular Plant Breeding, 2017, 15(8): 3070-3079. |
魏利斌, 苗红梅, 李春, 等. 芝麻SNP和InDel标记遗传多样性、群体结构及连锁不平衡分析. 分子植物育种, 2017, 15(8): 3070-3079. | |
33 | Linos A, Nikoloudakis N, Katsiotis A, et al. Genetic structure of the Greek olive germplasm revealed by RAPD, ISSR and SSR markers. Scientia Horticulturae, 2014, 175: 33-43. |
34 | Tamaki I, Okada M. Genetic admixing of two evergreen oaks, Quercus acuta and Q. sessilifolia (subgenus Cyclobalanopsis), is the result of interspecific introgressive hybridization. Tree Genetics Genomes, 2014, 10: 989-999. |
35 | Sun Q, Zou M L, Zhang C J, et al. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil. Acta Agronomica Sinica, 2021, 47(1): 42-49. |
孙倩, 邹枚伶, 张辰笈, 等. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析. 作物学报, 2021, 47(1): 42-49. | |
36 | Bian H, Shen Q, Wei H Y, et al. Genetic diversity and population structure analysis of Stylosanthes germplasm resources based on SSR markers. Pratacultural Science, 2019, 36(3): 729-743. |
卞华, 申晴, 韦海燕, 等. 基于SSR标记的柱花草种质资源遗传多样性与群体结构分析. 草业科学, 2019, 36(3): 729-743. |
[1] | 尹晓凡, 魏娜, 郑淑文, 刘文献. 全基因组水平蒺藜苜蓿反转录转座子IRAP分子标记开发及应用[J]. 草业学报, 2022, 31(1): 131-144. |
[2] | 赵欣桐, 陈晓东, 李子吉, 张巨明, 刘天增. 植物内生肠杆菌对狗牙根耐盐性的调控研究[J]. 草业学报, 2021, 30(9): 127-136. |
[3] | 李进, 陈仕勇, 赵旭, 田浩琦, 陈智华, 周青平. 基于SCoT标记的饲用燕麦品种遗传结构及指纹图谱分析[J]. 草业学报, 2021, 30(7): 72-81. |
[4] | 纪会, 官久强, 王会, 周建旭, 阿农呷, 何宗伟, 樊珍详, 邱龙康, 曹诗晓, 安添午, 柏琴, 钟金城, 罗晓林. 亚丁牦牛和拉日马牦牛遗传多样性及遗传结构分析[J]. 草业学报, 2021, 30(5): 134-145. |
[5] | 杨正禹, 陆忠杰, 张茂, 董瑞. 利用数字图像分析132份胡枝子种子表型性状遗传多样性[J]. 草业学报, 2021, 30(11): 87-97. |
[6] | 曾令霜, 李培英, 孙晓梵, 孙宗玖. 新疆不同生境狗牙根种质抗旱性综合评价[J]. 草业学报, 2020, 29(8): 155-169. |
[7] | 雷雄, 游明鸿, 白史且, 陈丽丽, 邓培华, 熊毅, 熊艳丽, 余青青, 马啸, 杨建, 张昌兵. 川西北高原50份燕麦种质农艺性状遗传多样性分析及综合评价[J]. 草业学报, 2020, 29(7): 131-142. |
[8] | 丁永福, 王纪良, 陈奋奇, 庄泽龙, 白明兴, 陆晏天, 金兵兵, 彭云玲. 玉米自交系SSR多样性与穗部性状的关联分析[J]. 草业学报, 2020, 29(7): 143-153. |
[9] | 王建丽, 马利超, 申忠宝, 刘杰淋, 朱瑞芬, 韩微波, 钟鹏, 邸桂俐, 韩贵清, 郭长虹. 基于遗传多样性评估燕麦品种的农艺性状[J]. 草业学报, 2019, 28(2): 133-141. |
[10] | 张彦军, 苟作旺, 王兴荣, 李玥, 祁旭升. 西北地区和尚头小麦遗传多样性及农艺性状的关联分析[J]. 草业学报, 2019, 28(2): 142-155. |
[11] | 李晓雪, 李昌晓, 宋虹, 袁中勋. 水淹和密度配置对牛鞭草与狗牙根扦插苗光合作用的影响[J]. 草业学报, 2019, 28(2): 197-206. |
[12] | 宫文龙, 王赞, 赵桂琴, 马琳, 韦宝, 龚攀, 刘希强. 沙打旺EST-SSR分子标记开发及其遗传多样性分析[J]. 草业学报, 2019, 28(11): 147-158. |
[13] | 孙丽坤, 刘光琇, 张宝贵, 章高森. 环境因子对中国柽柳遗传变异的影响[J]. 草业学报, 2019, 28(10): 178-186. |
[14] | 朱永群, 彭丹丹, 林超文, 聂刚, 许文志, 黄琳凯, 罗付香, 彭建华, 张新全. 苏丹草转录组SSR分子标记开发及遗传多样性评价[J]. 草业学报, 2018, 27(5): 178-189. |
[15] | 杨文航, 任庆水, 秦红, 宋虹, 袁中勋, 李昌晓. 三峡库区消落带不同海拔狗牙根草地土壤微生物生物量碳氮磷含量特征[J]. 草业学报, 2018, 27(2): 57-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||